弹性与塑性力学基础-第一章应力分析

合集下载

塑性力学(第一章)简单应力状态下的弹塑性力学问题

塑性力学(第一章)简单应力状态下的弹塑性力学问题
MC M 1
σ =ψ(ξ),
dε P ∫
σS
A
—— ξ是刻画塑性变形历史的参数
例如:可取 ξ = 例如: 或
A'
O
M M''
'
N
ε
ξ =W P = ∫ ε P σd
图2(a)
该模型不论拉伸还是压缩都使屈服应力提高,对应图2 该模型不论拉伸还是压缩都使屈服应力提高,对应图2(a)中的NM 和NM'' 。
当材料有较大的塑性变形时(弹性变形相对地很小), 当材料有较大的塑性变形时(弹性变形相对地很小), 可近似地认为体积是不可压的。 可近似地认为体积是不可压的。 静水压力对屈服应力的影响也是不大的。 静水压力对屈服应力的影响也是不大的。
应力§1.3 应力-应变关系关系的简化模型
1.理想弹塑性模型
σ < σs时 ε = σ E 当 , 当 , σ = σs时 ε = σ E + λsignε
适用: 适用:拉伸时的屈服应力和压缩时的屈服应力始终是相等 的。
σ
随动强化模型 p σ −ψ(ε ) = σs ,
p 的单调递增函数) (ψ(ε ) 是塑性应变ε p的单调递增函数)
MC M 1
σS
A
上式在线性强化情形下也可写为
σ − hε = σs ,
p
dψ (h = p 是一个常数 ) dε
O
二、塑性与脆性 如果变形很小就破坏,便称是脆性 如果变形很小就破坏,便称是脆性 ——采用弹性理论分析 ——采用弹性理论分析 如果经受了很大的变形才破坏,材料具有较好的 如果经受了很大的变形才破坏, 韧性或延性,这时材料的塑性变形能力较强, 韧性或延性,这时材料的塑性变形能力较强,便 称是塑性 在这种情况下, 塑性。 称是塑性。在这种情况下,物体从开始出现永久 变形到最终破坏之间仍具有承载能力。 变形到最终破坏之间仍具有承载能力。 ——采用塑性力学分析 ——采用塑性力学分析

弹性与塑性力学基础 第1章 应力分析

弹性与塑性力学基础 第1章 应力分析


1 1 2 2 1 2 1 2 2 4
2
(1-7)
应力圆:任一截面正应力与剪应力关系图 确定任一截面上 的 和。 坐标系: - 圆 半 应力圆 心: 轴上点 径:
1 ( 1 2 ) 2
1 ( 1 2 ) 2
单 向 拉 伸 时 轴 与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
为了便于研究,通常将任意方向
截面上的应力分解为两个分量:
σ-垂直于截面的分量(正应力) τ-平行于截面的分量(剪应力)
即:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
1 cos2 2 sin 2
(1-4)
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿a-a方向,力的平衡方程为:
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
弹性与塑性 力 学 基 础
第一章 应力分析
哈工大(威海) 材料学院
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
任一截面上 的 和 确定方法:
取任一截面上法向 和 的值。第一主应力截面法向夹角的二倍 2 ,由 轴逆时针旋转,应力圆上对应于2点的轴上的 和
弹性与塑性力学基础
哈工大(威海) 材料学院
第 一 章
应 力 分 析
弹性与塑性 力 学 基 础
第一章 应力分析
1.1.1 应力定义
哈工大(威海) 材料学院

000弹塑性力学-应力理论

000弹塑性力学-应力理论
y 32
zl323
2 xyl31l32
2 yzl32l33
2 zxl33l31
(2-4)
x'y' xl11l21 yl12l22 zl13l23 xy (l11l22 l12l21) yz (l12l23 l13l22 ) zx (l13l21 l11l23 ) y'z' xl21l31 yl22l32 zl23l33 xy (l21l32 l22l31) yz (l22l33 l23l32 ) zx (l23l31 l21l33) z'x' xl31l11 yl32l12 zl33l13 xy (l31l12 l32l11) yz (l32l13 l33l12 ) zx (l33l11 l31l13 )
砂土 粘 ( 半 土 透 水 )
毛细张力力 总应力
中和应力 有效应力
px
τ xz
τ O yz τ zy
τ zx
σz
n x'
σx
py
A
x
z'
B
y
假定不计体力,且斜截面上的外法线n 的余弦分别为:
cos(n, x) l1
cos(n, y) l2
(a)
cos(n, z) l3
若令斜截面ABC的面积为1,则三角形 OBC、OAC、OAB的面积分别为:
第一章 概述
1. 弹塑性力学的任务 2. 基本假设 3. 发展概况 4. 主要内容 5. 主要参考文献
第二章 应力理论
§2-1 应力的概念
若一物体受到外力 P1、P2…….Pn 的作用,它必然产生变形,也即其形 状或尺寸会发生变化,同时物体内各 部分之间将产生相互平衡的内力(附 加内力)。现假想用一个平面K将物 体分成两部分,如图2-1所示。显然 这两部分将通过K截面有分布内力的 相互作用。

弹塑性力学第一章 PPT资料共54页

弹塑性力学第一章 PPT资料共54页

16.11.2019
10
§1-2 基本假设和基本规律
2.1基本假设
假设1:固体材料是连续的介质,即固体体积 内处处充满介质,没有任何间隙。
从材料的微观看此假设不正确。因为粒子 间有空隙,但从宏观上看作为整体进行力学分 析时,假设1是成立的。假设1的目的:变形体 的各物理量为连续函数(坐标函数)。
16.11.2019
11
§1-2 基本假设和基本规律
假设2:物体的材料是均匀的。认为物体内 各点的材料性质相同(力学特性相同),所 以从物体内任一部分中取出微元体进行研究, 它的力学性质代表了整个物体的力学性质。
16.11.2019
12
§1-2 基本假设和基本规律
假设3:小变形假设。物体在外因作用下,物 体产生的变形与其本身几何尺寸相比很小。
哑标如:
3
rr1e1r2e2r3e3 riei riei r j e j 3 i1
uu1e1u2e2u3e3 uiei uiei u j e j

i1

33


1e 1 1 e 11e 1 2 e 2 .. ..3.e 3 3 e .3 ie jie jie jie j
排列符号的作用可以简化公式书写,如: 1. 三阶行列式:
A11 A12 A13 AA21 A22 A23eijkAi1Aj2Ak3eijkA1iA2jA3k
A31 A32 A33
(共六项,三项为正,三项为负)。
16.11.2019
32
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
2. 基向量的叉积:右手系
16.11.2019
弹塑性力学
授课教师:龙志飞 目录

弹塑性力学1

弹塑性力学1

n = n1 e1 + n2 e 2 + n3 e3 = ni ei
ni = n ⋅ ei = cos(n, ei ) dSi = cos(n, ei )dS = ni dS
dS dS3
第一章 应力与平衡
一、固体中的应力状态
• 任意斜面上应力矢量的Cauchy应力公式
dSi = cos(n, e i )dS = ni dS

σ ij
的关系

(σ ij = σ ⋅ e j )
(i )
σ i′j′ = σ (i ) ⋅ e j′
= e i′ ⋅ σ ⋅ e j′ = e i′ ⋅ (σ mn e m e n ) ⋅ e j ′ = (α i′i e i ) ⋅ (σ mn e m e n ) ⋅ (α j′j e j ) = α i′iα j ′jσ mnδ imδ nj = α i′iα j′jσ ij
一点应力状态
σ = n ⋅ σ (n) σ j = niσ ij
(n)
t = n ⋅ σ t j = niσ ij
第一章 应力与平衡
二、应力张量
u
u = ui e i
ui
u1 u2 u 3
σ 11 σ 12 σ 13 σ 21 σ 22 σ 23 σ σ 32 σ 33 31
σ 11 − σ 0 σ 12 σ 13 0 σ 22 − σ σ 23 → σ 21 σ σ 32 σ 33 − σ 0 31 S11 S12 S13 = S 21 S 22 S 23 应力偏(斜)张量 S S32 S33 31
• 一点应力状态与应力标号

塑性力学-应力状态

塑性力学-应力状态
( x v )l xy m xz n 0 yx l ( y v )m yz n 0 zx l zy m ( z v )n 0
几何关系
l m n 1
2 2 2
l,m,n不能同时为零 ,因此前式为包括三个未知量
应力强度 或广义剪应力
i
3 2
0
1
1 2 2
( 1 2 )2 ( 2 3 )2 ( 3 1 )2 3J 2 ( x y )2 ( y z )2 ( z x ) 2 6( xy yz zx )
2 2 2
0 为平均应力或静
水压力,只引起物 体体积的变化,i 或0只引起物体形 状的变化, 与应 力状态有关。
应力偏量分量、主应力用应力强度、 平均应力与应力状态状态角表示
应力偏量 主应力
s1+s2+s3 = 0
1+2+3 = 30
应力星圆
应力星圆是以距原点O为0的一点为圆心,以
塑性力学
第1章 应力分析
1. 应力状态
2. 三维应力状态分析
3. 三维应力状态的主应力
4. 最大剪应力
5. 等倾面上的正应力和剪应力 6. 应力罗德参数与应力罗德角 7. 应力张量的分解 8. 平衡微分方程
1-1 应力状态
1. 外力
体力、面力
(1) 体力 —— 弹性体内单位体积上所受的外力
Q —— 体力分布集度 F lim (矢量) V 0 V F Xi Yj Zk
八面体上 的正应力 与剪应力
p 0 0
称为应力状态的特征角,cos 为应力形式指数 。

应力分析(Stress Analysis)

应力分析(Stress Analysis)

推导原理: 静力平衡条件: 静力矩平衡条件:
X 0, Y 0, Z 0
M
x
0, M y 0, M z 0
2 1 f ( x ) 1 f ( x) 泰勒级数展开: f ( x dx) f ( x) ...... 2 1! x 2! x
2 2 P 总应力 8 8 8 八面体上的正应力与塑性变形无关,剪应力与塑性变形有 关。

八面体应力的求解思路:
ij (i, j x, y, z) 1, 2 , 3 8 , 8
I1, I 2
因为
2 2 8 ( I1 3I 2 ) 3
ij ij m
' ij
(i,j=x,y,z)
为柯氏符号。
1 其中 m ( x y z ) 即平均应力, 3

' x xy xz x xy xz 1 0 0 . . ' 0 1 0 y yz y yz m ' . . . . z z 0 0 1
' ' ' ' ' ' I1' x y z 1 2 3 0
' ' ' ' ' ' I2 1 2 2 3 3 1' (体现变形体形状改变的程度)
' ' ' ' I3 1 2 3 const
§1.4 应力平衡微分方程
直角坐标下的应力平衡微分方程* ij 0 i
讨论:1. 等效的实质? 是(弹性)应变能等效(相当于)。 2. 什么与什么等效? 复杂应力状态(二维和三维)与简单应力状态(一维)等效 3. 如何等效? 等效公式(注意:等效应力是标量,没有作用面)。 4. 等效的意义? 屈服的判别、变形能的计算、简化问题的分析等。

弹塑性力学总复习

弹塑性力学总复习

弹塑性⼒学总复习《弹塑性⼒学》课程第⼀篇基础理论部分第⼀章应⼒状态理论1.1 基本概念1.应⼒的概念应⼒:微分⾯上内⼒的分布集度。

从数学上看,应⼒sPF s ??=→?0lim ν由于微分⾯上的应⼒是⼀个⽮量,因此,它可以分解成微分⾯法线⽅向的正应⼒νσ和微分⾯上的剪应⼒ντ。

注意弹塑性⼒学中正应⼒和剪应⼒的正负号规定。

2.⼀点的应⼒状态(1)⼀点的应⼒状态概念凡提到应⼒,必须同时指明它是对物体内哪⼀点并过该点的哪⼀个微分⾯。

物体内同⼀点各微分⾯上的应⼒情况,称为该点的应⼒状态。

(2)应⼒张量物体内任⼀点不同微分⾯上的应⼒情况⼀般是不同的,这就产⽣了⼀个如何描绘⼀点的应⼒状态的问题。

应⼒张量概念的提出,就是为了解决这个问题。

在直⾓坐标系⾥,⼀点的应⼒张量可表⽰为=z zy zx yz yyx xz xy x ij στττστττσσ若已知⼀点的应⼒张量,则过该点任意微分⾯ν上的应⼒⽮量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进⼀步求出该微分⾯上的总应⼒p 、正应⼒νσ和剪应⼒v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=22ννστ-=p(1-2c )(3)主平⾯、主⽅向与主应⼒由⼀点的应⼒状态概念可知,通过物体内任⼀点都可能存在这样的微分⾯:在该微分⾯上,只有正应⼒,⽽剪应⼒为零。

这样的微分⾯即称为主平⾯,该⾯的法线⽅向即称为主⽅向,相应的正应⼒称为主应⼒。

主应⼒、主⽅向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应⼒张量分量构成的矩阵,n σ为主应⼒,}{i n 为主⽅向⽮量。

弹性力学-应力和应变

弹性力学-应力和应变

σ x τ xy τ xz σ xx σ xy σ xz τ xy σ y τ yz 或σ xy σ yy σ yz τ z τ yz σ z σ xz σ yz σ zz
写法: 采用张量下标记号的应力写法 写法: 把坐标轴x、 、 分别 把坐标轴 、y、z分别 表示, 用x1、x2、x3表示, 或简记为x 或简记为 j (j=1,2,3),
s j = σ j −σm, ( j = 1,2,3)
应力偏张量也有三个不变量: 应力偏张量也有三个不变量:
(3 −13)
J1 = s1 + s2 + s3 = σ1 +σ2 +σ3 −3σM = 0 1 2 2 2 J2 = −(s1s2 + s2s3 + s3s1) = (s1 + s2 + s3 ) 2 J3 = s1s2s3
3
偏张量的第二不变量 J2 有关。 有关。
四、等效应力 1.定义: 定义: 定义 相等的两个应力状态的力学效应相同, 如果假定 J2相等的两个应力状态的力学效应相同,那么
对一般应力状态可以定义: 对一般应力状态可以定义:
σ ≡ 3J2 =
1 2
(σ1 −σ2 )2 + (σ2 −σ3 )2 + (σ3 −σ1)2
三、等斜面上的应力 等斜面:通过某点做平面 ,该平面的法线与三个应力主轴
夹角相等 坐标轴与三个应力主轴一致, 设在这一点取 x1, x2 , x3 坐标轴与三个应力主轴一致, σ 3 则等斜面法线的三个方向余弦为
l1 = l2 = l3 =1/ 3
(3 − 20)
八面体面: 八面体面:
满足(3-20)式的面共有八个,构成 满足( 20)式的面共有八个, 一个八面体,如图所示。 一个八面体,如图所示。 等斜面常也被叫做八面体面。 等斜面常也被叫做八面体面。 若八面体面上的应力向量用F 表示,则按( 若八面体面上的应力向量用F8表示,则按(3-3)式有 1 2 2 2 2 2 2 2 F = (σ1l1) + (σ2l2 ) + (σ3l3) = (σ1 +σ2 +σ3 ) (3− 21) 8 3

弹塑性力学——应力

弹塑性力学——应力

x xy xz yx y yz z zx zy
• 张量表示 用1、2、3取代下标x、y、z,
11 12 13 ij 21 22 23 31 32 33
• 应力正、负号规定 正面上的应力若指向坐标轴正方向为正,否则为负; 负面的应力若指向坐标轴负方向为正,否则为负。
y
应力分量的坐标变换
• 新旧坐标的夹角 ex
e ' x
ey
m1 m2
ez
n1 n2
l1 l2
ey '
ez'
l3
m3
n3
• e ' 面(斜截面)的应力矢量在旧坐标下的分量 x
Tx=xl1+yxm1+zxn1 Ty=xyl1+ym1+zyn1 Tz=xzl1+yzm1+zn1
• 力矩平衡:绕z轴
(xydydz)dx(yxdxdz)dy=0 xy=yx 绕x和y方向的形心轴取矩 yz=zy xz= zx
静力学边界条件
n X A
xl+yxm+zxn= X
xyl+ym+zyn= Y =
xzl+yzm+zn
Z
z y x
例1-2 如图所示的楔形体受水压力作用,水的容重为,试写出边界条 件。
zx zx dz dxdy zx dxdy Xdxdydz 0 z
x yx zx X 0 x y z
• 由y、z方向的平衡
xy x y y zy z Y 0
xz yz z Z 0 x y z

弹塑性力学讲义应力

弹塑性力学讲义应力

第1章 应 力1. 1 应力矢量物体受外力作用后,其内部将产生内力,即物体本身不同部分之间相互作用的力。

为了描述内力场,Chauchy 引进了应力的重要概念。

对于处于平衡状态的物体,假想使用一个过P 点的平面C 将其截开成A 和B 两部分。

如将B 部分移去,则B 对A 的作用应以分布的内力代替。

考察平面C 上包括P 点在内的微小面积,如图1.1所示。

设微面外法线(平面C 的外法线)为n ,微面面积为∆S ,作用在微面上的内力合力为∆F ,则该微面上的平均内力集度为∆F /∆S ,于是,P 点的内力集度可使用应力矢量T (n ),定义为T (n ) =SFs ∆∆∆0lim→B∆SACPn ∆Fxyz图1.1 应力矢量定义在笛卡儿坐标系下,使用e x ,e y 和e z 表示坐标轴的单位基矢量,应力矢量可以表示为T (n ) = T x e x +T y e y +T z e z(1.1)式中T x 、T y 和T z 是应力矢量沿坐标轴的分量。

上篇弹性力学第1章应力8除进行公式推导外,通常很少使用应力矢量的坐标分量T x、T y 和T z。

实际应用中,往往需要知道应力矢量沿微面法线方向和切线方向的分量,沿法线方向的应力分量称为正应力,沿切线方向的应力分量称为剪应力。

显而易见,应力矢量的大小和方向不仅取决于P点的空间位置,而且还与所取截面的法线方向n有关,即作用在同一点不同法线方向微面上的应力矢量不同。

所有这些应力矢量构成该点的应力状态。

由应力矢量的定义并结合作用力与反作用力定律,在同一点,外法线为-n微面上的应力矢量为:T(-n)= -T(n) (1.2)1.2 应力张量人们讨论问题常常是在笛卡儿坐标中进行,因此,我们使用六个与坐标面平行的平面从图1.1中P点的邻域截取一个微六面体,如图1.2所示。

在这个微六面体中,若微面的外法线方向与坐标正方向一致,则称为正面;若与坐标正方向相反,则称为负面。

弹塑性力学弹性与塑性应力应变关系详解课件

弹塑性力学弹性与塑性应力应变关系详解课件

有限差分法
有限差分法(Finite Difference Method,简称FDM)是一种基于差分原 理的数值模拟方法。
它通过将连续的时间和空间离散化为有限个差分节点,并利用差分近似代 替微分方程中的导数项,从而将微分方程转化为差分方程进行求解。
有限差分法适用于求解偏微分方程,尤其在求解波动问题和热传导问题方 面具有优势。
05
弹塑性力学的数值模拟方法
有限元法
有限元法(Finite Element Method,简称 FEM)是一种广泛应用于解决复杂工程问题 的数值模拟方法。
它通过将连续的求解域离散化为有限个小的 单元,并对每个单元进行数学建模,从而将 复杂的连续场问题转化为离散的有限元问题。
有限元法具有灵活性和通用性,可以处理各 种复杂的几何形状和边界条件,广泛应用于 结构分析、热传导、流体动力学等领域。
与应变之间不再是线性关系。
重要性
03
了解塑性应力应变关系对于工程设计和结构安全评估具有重要
意义。
屈服准 则
屈服准则定义
描述材料开始进入塑性变形 阶段的条件。
常用屈服准则
例如,Von Mises屈服准则、 Tresca屈服准则等。
屈服准则的意义
为判断材料是否进入塑性变 形阶段提供依据,是弹塑性 力学中的重要概念。
弹塑性力学弹性与塑性应 力应变关系详解课件
目录
• 弹性应力应变关系 • 塑性应力应变关系 • 弹塑性本构模型 • 弹塑性力学的数值模拟方法
01
弹塑性力学基 础
弹塑性力学定义
01
02
03
弹塑性力学
是一门研究材料在弹性与 塑性范围内应力应变关系 的学科。
弹性
材料在受到外力作用后能 够恢复到原始状态的性质。

弹性力学基础-中英

弹性力学基础-中英

The actual point of yield is often difficult to identify. A number of techniques are used to locateσy. The tangent method <or knee method> locates the yield strength at the intersection of the elastic slope and the initial portion of the plastic region <not reliably>. The preferred method is the percentage offset method where yield strength is obtained by drawing a line parallel to the initial elastic region data at 0.2% strain <0.002> offset. Where this line intersects the stress-strain curve then becomes known as the 0.2% yield strength.
Plastic means permanent!
Plastic deformation---it is irreversible or permanent.
O
A
B
C
D
E
elastic region
yield strength 屈服应力 屈服强度
plastic region
ultimate tensile strength 抗拉强度

弹塑性力学-01应力分析

弹塑性力学-01应力分析

A x
pv2px 2p2 ypz2
l2
1 2m 2 2 2n2
2 3
2 v
pv2
2 v
l2 1 2 m 2 2 2 n 2 3 2v 232
3、应力圆
123
v l21 m 22 n 23
v 2 l21 2 m 22 2 n 23 2 v 2
l2m 2n21
1 2 a , 2 0 , 3 a
ma x1 23
3a 2
39
例2:已知某点的应力状态为: x 0, y 20, z 10, xy10, yz0, zx20
求:作用于过该点,方程为 3x 3y2z1 的平面外 侧的正应力和切应力。
解: l:m:n3: 3:2
l2m 2n21
p xl x m yx nzx p ylx ymy nzy p zlx zm y znz
李同林
• 工程弹塑性力学
杨伯源、张义同
• 工程弹塑性力学
毕继红、王晖
• 弹塑性力学引论
杨桂通
• 弹性力学(上、下册) 徐芝伦
• 塑性力学
夏志皋
• 岩土塑性力学原理 郑颖人 沈珠江
. 14
第一章 应力分析
§ 1-1 应力状态 § 1-2 应力张量及分解 § 1-3 等斜截面上的应力、应力状态参数 § 1-4 平衡微分方程
x
a
lco ay,smsxyian
n
xco assian yco assian xy co2as
ax 2ysi2n axy co2as
37
3. 主应力和最大切应力
v 3I1v 2I2 vI30
I1xyzxy
I 2 xy yz zx x 2 y y 2 z z 2 xxy x 2y

塑性力学知识点

塑性力学知识点

1 / 12
1. 在主应力空间内,过任一点(代表某物理点的应力状态)作一个特殊的微截面,该微截面 的法向与三个应力主轴夹角相等;每个象限作一个,则形成一个封闭的正八面体,这 8 个微截面上的应力称八面体应力。 2. 八面体(8 个微截面上的)正应力 oct m ,表征应力状态的球量部分,与弹性体积变形 有关。 3. 八面体(8 个微截面上的)剪应力 oct
第一章 应力状态(与应变状态)
1. 材料连续、均匀。 2. 静水应力只引起弹性的体积变形、不影响塑性剪切变形(岩土、软金属不适用) 。 3. 温度不高时忽略流变(蠕变、松弛…)效应,应变率不高时忽略应变率效应。
1. 指一点附近的受力情况,即过该点的所有微截面上的应力大小和方向(应力矢量) 。 2. 注意到任意截面的应力矢量可以用三个特殊微分面上的 9 个应力分量 (6 个独立) 来表征。
2. Lode 参数:由上式反推,
1
1

2 2 ( 1 3 ) ,或 3 tan( ) . 1 3
2 / 12
3. Lode 角:应力状态矢在 π 平面的投影 ρ 与 x 轴的夹角,
1 3
arctan( ) .
x-y-L
1. 将应力主轴 σ1、σ2、σ3 向 π 平面投影,得线性相关的三个偏应力轴 S1、S2、S3;在 π 平面 上,取 S2 为 y 轴,其垂直方向为 x 轴;在 π 平面外,取静水轴 L 为第三轴,则得正交 坐标系 x-y-L(由 σ1-σ2-σ3 坐标系旋转而得) 。 2. 传统塑性力学只关心应力偏量(π 平面上的应力状态) ,即只需要用到 x-y 坐标系,比如 Lode 角正是应力偏矢与 x 轴的夹角。
忽略静水应力对屈服的影响时,可简化为 2 个应力偏量不变量的函数:

弹塑性力学课件

弹塑性力学课件
i 1 j 1 2 2 2 2 2 31 31 32 32 33 33 x y z2 2 xy yz zx
3
3
方程 3 I1 I 2 I3 0 称为应力状态的特征方程, 它有三个实根,并规定
2 3 2 1 2 2
2
2 n 2 2 12 32 n1 2 1 3 n12 2 3 n2 3 2 1 3 n1 n1
1 3 2 2 4 1 3 n1 1 3 n1 2 3 n2 3 2 1 3 2 2 4 1 3 n1 1 3 n1 2 3 n2 0 2 1 3 2 2 n1 1 3 n1 2 3 n2 0 2
位移矢量的分解
3
u ux ex u y ey uz ez u1e1 u2e2 u3e3 ui ei
i 1
一点的应力状态
z
z
zy yz
zx
x
x
xz
xy yx
y
y
一点的应力状态
z
N τyx τxy σy σx τxz τzx σz y
τyz τzy
2 2 2 J 2 S x S y S y S z S z S x S xy S yz S zx
1 2 2 2 2 S x S y S y S z S z S x S x S y S y S z S z S x S xy S yz S zx 3 1 2 2 2 2 2 S x S y S z2 S x S y S y S z S z S x S xy S yz S zx 3 2 2 1 2 2 2 2 S x S y S y S z S z S x S xy S yz S zx 6 1 2 2 2 S1 S 2 S 2 S3 S3 S1 6 1 2 2 2 1 2 2 3 3 1 6

弹性与塑性力学基础 第1章 应力分析

弹性与塑性力学基础 第1章 应力分析
➢ 例题1
设物体内某点的应力状态由如下应力分量确定,即x=0, xy=1,xz =2,y =2,yz=0,z=1,试求通过点作用在其方向余 弦为 l m 1 ,n 3 的斜面上的正应力、剪应力和全应力。
11 11
解: 由式(1-17),得斜面上全应力的各分量为
S x lx m y x nz x1 1 1 0 1 1 1 1 3 1 1 2 7 1 1 S y lx y m y nz y1 1 1 1 1 1 1 2 3 1 1 0 3 1 1
轴上点
1 2
(1
2
)
半 径: 12(x y)2 x2y
2020/10/13
应力莫尔圆
弹性与塑性 力学基础
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 ➢ 边界同时存在正应力、剪应力情况
主应力状态1、2和0 的确定
剪应力为零时的正应力的值为
1 2 1 2xy x 2y2x2y
xz zx
四面体受力图
弹性与塑性 力学基础
第一章 应力分析
§1-2 三维应力状态分析
1.2.2 任意倾斜面上的正应力、全应力S、剪应力 表示方法
受力物体内一点的应力状态,可用三个相互垂直面上的应力分量
x,y,z以及xy,yz,zx确定。
即:斜面上正应力、全应力S及 剪应力可由下式确定:
SxlSym Sznxl2ym 2zn22lxm 2ym y2znnzxl SxlSym Szn xl2 ym 2 zn2 2lxm 2 ym y 2 znn zxl
(1-16)
四面体受力图
弹性与塑性 力学基础
第一章 应力分析
§1-2 三维应力状态分析

弹塑性力学1 应力分析PPT课件

弹塑性力学1 应力分析PPT课件

xy
x
y
斜截面法向 斜截面切向
xy
x S v
Scos
v
y Ssin
静力平衡 方程
(注意应 力符号规
定)
vS(xScos)cos(ySsin)sin (xyScos)sin(xySsin)cos
vS(xScos)sin(ySsin)cos (xySsin)sin(xyScos)cos
斜截面上的应力 分量计算公式
如果作用在物体表面上的外面载荷用Fx,Fy,Fz表 示,而斜面为边界面,此时上式中的Pvx,Pvy,Pvz都换 成Fx,Fy,Fz,则上式亦可作为应力边界条件。
总应力 pv pv2xpv2ypv2z
正应力 vlP vxmvP ynvPz
l2x m 2y n 2z 2 lm x y 2 m y z n 2 nzl x
原因:一旦应力状态确定后,其主应力便已确定,当坐标变 换时,虽然每个应力分量都将随之变化,但主应力的值是不 变的。所以Ii的值是不变的。
(应力不变量的意义)
主应力空间
vlP vxmvP ynvPzl21m22n23
pv2pv2xpv2ypv2z l21 2 m 22 2 n 23 3v 2v 2
x v yx zx
xy y v
zy
xz yz 0 z v
v 3I1 v 2I2 vI30
1,2,3 li, mi, ni
应力不变量
I1xyz
I2xyyzzx x 2 yy 2 zz 2x
I 3 xyz 2 xy yz z xxy 2 zyz 2 xzx 2y
当坐标变换时,应力不变量的值是不变的。
l2 m2 n2 1
0
l2 1v2( (1v2)2 ()1 (v3 )3)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
2
y

2
2 xy
(1-11)
根据式(1-9)的第二式,当 =0时,
=0则可得
tg 2 0 2
xy

x

(1-12)
y
式(1-12)也可参照应力圆直接列出。
弹性与塑性 力 学 基 础
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 边界同时存在正应力、剪应力情况 如果0为方程式(1-12)的最小正根, 则其他的根1,2 ,3 ,… n , 可由下式确定 2 2 n n 0 即 n 0 2 当 1
平面上的应力
0 P / A0
(1-2)
P—轴向力; A0——垂直于轴线的横截面面积。
而当所截平面的法线与轴线成α角时,由于斜
面的面积增大(由A0→A0/cosα) , 相应的轴向应
力为 来越小。
1 P / A 0 cos
(1-3)
随着α增大,截平面越来越倾斜,应力也就越
弹性与塑性 力 学 基 础
=0。
弹性与塑性 力 学 基 础
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 边界同时存在正应力、剪应力情况 如图所示, x-x、 ;y-y、
任意截面上BC:( ,)
设截面BC的面积A, AC面积为Acos ,
AB的面积为Asin 。
边界同时存在正应力、剪 应力时斜截面受力图
§1-2 三维应力状态分析
1.2.1 任意倾斜面上的应力分量表示方法
作用在四面体四个面上的应力及这些面的面积列于表1-1中。
表1-1 四面体各个面上的应力分布
面的名 外法线 称 方向
YOZ XOZ XOY 倾斜面 -X -Y -Z N
面积
应力投影
X轴
1/2dydz 1/2dzdx - x -yx
Y轴
-xy - y -zy Sy
Z轴
-xz -yz - z Sz 四面体受力图
1/2dxdy -zx dA Sx
弹性与塑性 力 学 基 础
第一章 应力分析
§1-2 三维应力状态分析
1.2.1 任意倾斜面上的应力分量表示方法
在四面体面上的力作用于相应面的重心上。体积力忽略不 计。x轴上力的平衡条件为
A 0
(1-1)
当物体受外力P1、P2、P3、…作用时,产生与诸外力相平衡的内力。
作用于变形体 中某一微元面 积的内力ΔP
弹性与塑性 力 学 基 础
第一章 应力分析
单 向 拉 伸 时 轴 向 应 力 值
1.1.2 应力的方向性
应力与方向有关,例如简单拉伸。垂直于轴线
边 界 存 在 正 应 力 时 斜 截 面 受 力 图
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿a-a方向,力的平衡方程为:
A ( 1 A cos ) sin ( 2 A sin ) cos
即:
( 1 2 ) sin co s

(1-8)


1 2 1 2

x
x

1
2
x

y
cos
2
xy
sin 2
y
sin
2
xy
cos 2

(1-9)
消去 后,则得
2 1
x

y



2

2
1 2
x
从受力物体中取出任一无穷小四面体
三个面与坐标面平行, 第四个面法线n方向余弦是l、m、n。 正应力总是沿着作用面的法线方向 剪应力两个下标说明所在的面
(用外法线方向表示)与作用方向,
例如yx表示剪应力所在面与y轴垂直, 它的方向与x轴平行。
四面体受力图
弹性与塑性 力 学 基 础
第一章 应力分析
1 2 (
x
y)
做为圆心, 取
1 2
(
x
y)

C P1 或 C P ,在 P1 及 P2 处取xy 的值
2
作为纵坐标;在 C P1
1 2
(
x
y ) 点,
取xy为正值,得到应力圆的半径CP1,等于

x
2
y

2
2 xy
弹性与塑性 力 学 基 础
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
边界同时存在正应力、剪应力情况按式
(1-11),线段OA和OB表示主应力主应力
1与x轴正向角度0是ACP1之半;
由图也可以看出,最大剪应力
max

x
2
y

2
2 xy
n zx n zy n z
(1-17)
作用在任意倾斜面上的应力分量可以用作用
在相互垂直的三个面上的应力分量来表示。
四面体受力图
弹性与塑性 力 学 基 础
第一章 应力分析
§1-2 三维应力状态分析
1.2.1 任意倾斜面上的应力分量表示方法 如果作用在物体表面上的外部载荷用Fx, Fy, Fz 表示, 于是式(1-17)中的Sx,Sy,Sz都换成Fx, Fy, Fz, 即式(1-17)可作为应力的边界条件。
1.6.1 张量概念
1.6.2 应力张量概念
1.6.3 应力张量球张量与偏张量
1.6.4 应变速率张量
弹性与塑性 力 学 基 础
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.1 应力定义
应力是指当物体中一微元面积M趋近于零时,作用在该面积上的内力
ΔP与ΔA比值的极限,即
lim P / A
第一章 应力分析
§1-2 三维应力状态分析
1.2.1 任意倾斜面上的应力分量表示方法 将式(1-16)代入式(1-15)便可得到Sx的表达式。 S x l x m yx n zx 用同样的方法, 可得到Sy、Sz的表达式,即:
S x l
x
m
yx y yz
S y l x y m S z l x z m
沿BC面的切线方向力的平衡方程为:
A ( x A c o s ) s in ( y A s in ) c o s
( xy A s in ) s in ( xy A c o s ) c o s
边界同时存在正应力、剪 应力时斜截面受力图
弹性与塑性 力 学 基 础

y



2
xy
2
(1-10)
弹性与塑性 力 学 基 础
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
边界同时存在正应力、剪应力情况
坐标系: - 参 数: x、y和xy


心: 轴上点
径: 1
(
1 2
( 1 2 )
2
第一章 应力分析
单 向 拉 伸 时 轴 向 应 力 值 随 截 面 方 位 变 化
§1-1 单向及平面应力状态分析
1.1.2 应力的方向性
为了便于研究,通常将任意方向
截面上的应力分解为两个分量:
σ-垂直于截面的分量(正应力) τ-平行于截面的分量(剪应力)
显然,有:
P / A0 c o s
弹性与塑性 力 学 基 础
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系 沿BC面的法线方向力的平衡方程为:
A ( x A c o s ) c o s ( y A sin ) sin
( xy A c o s ) sin ( xy A sin ) c o s

2
最大剪应力确定方法:出现于 2
出现在图中的

4


2
3 2
的截面上,即
1 2 ( 1 2 )
的截面上,最大剪应力的值为

2=0情况下应力圆:应力圆将切于上,最大剪应力值等于 1。
2
1
1= 2 =0 的情况下:应力圆将变成一个点,此时在任一截面上将有
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
边界同时存在正应力、剪应力情况; 整理后,得

x x
cos
2

y
sin cos
y
y
sin
2
2

xy
cos
xy
sin cos
2
sin
2

x
y)

2

2 xy
应力莫尔圆
弹性与塑性 力 学 基 础
第一章 应力分析
§1-1 单向及平面应力状态分析
1.1.3 平面应力状态应力关系
边界同时存在正应力、剪应力情况
主应力状态1、2和0 的确定 剪应力为零时的正应力的值为
1 2 2
1
x

y


(1-5)
弹性与塑性 力 学 基 础
第一章 应力分析
由式(1-4)和(1-5),将 消去后,可得:
1 2 1
相关文档
最新文档