最新高考物理二轮复习专题练习卷---天体运动(含答案解析)

最新高考物理二轮复习专题练习卷---天体运动(含答案解析)
最新高考物理二轮复习专题练习卷---天体运动(含答案解析)

第 1 页 共 13 页

最新高考物理二轮复习专题练习卷---天体运动

1.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a 金、a 地、a 火,它们沿轨道运行的速率分别为v 金、v 地、v 火。已知它们的轨道半径R 金<R 地<R 火,由此可以判定

A .a 金>a 地>a 火

B .a 火>a 球>a 金

C .v 地>v 火>v 金

D .v 火>v 地>v 金

解析 金星、地球和火星绕太阳公转时万有引力提供向心力,则有G Mm R 2=ma ,解得a =G M R 2,结合题中R 金<R 地<R 火,可得a 金>a 地>a 火,选项A 正确,B 错误;同理,有G Mm R 2=m v 2R

,解得v =GM R

,再结合题中R 金<R 地<R 火,可得v 金 >v 地>v 火,选项C 、D 均错误。

答案 A

2.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证

A .地球吸引月球的力约为地球吸引苹果的力的1/602

B .月球公转的加速度约为苹果落向地面加速度的1/602

C .自由落体在月球表面的加速度约为地球表面的1/6

D .苹果在月球表面受到的引力约为在地球表面的1/60

解析 若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万

有引力定律,则应满足G Mm r

2=ma ,即加速度a 与距离r 的平方成反比,由题中数据知,选项B 正确,其余选项错误。

答案 B

3.(多选)已知人造航天器在月球表面附近绕月球做匀速圆周运动,经过时间t (t 小于航天器的绕行周期),航天器运动的弧长为s ,航天器与月球的中心连线扫过角度为θ,万有引力

第 2 页 共 13 页

常量为G ,则

A .航天器的轨道半径为θs

B .航天器的环绕周期为2πt θ

C .月球的质量为s 3Gt 2θ

D .月球的密度为3θ24Gt 2 解析 根据几何关系得:r =s θ

,故A 错误;经过时间t ,航天器与月球的中心连线扫过角度为θ,则:t T =θ2π,得:T =2πt θ

,故B 正确;由万有引力充当向心力而做圆周运动,所以:GMm r 2=mr 4π2T 2,所以:M =4π2r 3GT 2=s 3

Gt 2θ

,故C 正确;人造航天器在月球表面附近绕月球做匀速圆周运动,月球的半径等于r ,则月球的体积:V =43πr 3,月球的密度为ρ=M V =3θ2

4πGt 2,故D 错误。故选BC 。

答案 BC

4.(多选)如图所示,A 是地球的同步卫星。另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h ,A 、B 绕行方向与地球自转方向相同,已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心。关于A 、B 两卫星,下列叙述正确的是

A .同步卫星A 离地面的高度是

B 的2倍,必等于2h

B .B 的周期应为T B =2π

(R +h )3

gR 2 C .某时刻A 、B

两卫星相距最近(O 、B 、A 在同一直线上),当它们再一次相距最近,

第 3 页 共 13 页

则至少经过时间t =2πgR 2

(R +h )3

-ω0 D .A 、B 两卫星的线速度之比为3gω0R 2∶gR 2

R +h 解析 对同步卫星,由万有引力提供向心力有G Mm r 2=mrω02,而GM R 2=g ,解得r =3gR 2ω02

,可知其离地高度为h ′=r -R =3gR 2ω02-R ,同理,B 离地面高度h =3gR 2

ω2

-R ,则无法比较与B 的高度关系,故A 错误;对B 有G Mm (R +h )2

=m (R +h )4π2T B 2,而G Mm R 2=mg ,联立得T B =2π(R +h )3

gR 2

,故B 正确;A 、B 由相距最近到再次最近,B 比A 多转一周即ωt -ω0t =2π,而ω=2πT B =gR 2

(R +h )3,则t =2πgR 2

(R +h )3

-ω0,故C 正确;由v =ωr ,故A 的线速度为v A =rω0=

3gω0R 2,B 的线速度为v B =(R +h )ω=gR 2R +h ,故A 、B 线速度之比为3gω0R 2∶gR 2

R +h ,故D 正确。 答案 BCD

5.(多选)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到2v 时,可摆脱星球引力束缚脱离该星球。已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1,下列说法正确的有

A .探测器的质量越大,脱离星球所需要的发射速度越大

B .探测器在地球表面受到的引力比在火星表面的大

C .探测器分别脱离地球与火星所需要的发射速度相等

D .探测器脱离星球的过程中,势能逐渐增大

解析 探测器在星球表面做匀速圆周运动时,由G Mm R 2=m v 2

R ,得v =GM R

,则摆脱星

第 4 页 共 13 页

球引力时的发射速度2v =2GM R

,与探测器的质量无关,选项A 错误;设火星的质量为M ,半径为R ,则地球的质量为10M ,半径为2R ,地球对探测器的引力F 1=G 10Mm (2R )2=5GMm 2R 2

,比火星对探测器的引力F 2=G

Mm R 2大,选项B 正确;探测器脱离地球时的发射速度v 1=2G ·10M 2R =10GM R

,脱离火星时的发射速度v 2=2GM R ,v 2<v 1,选项C 错误;探测器脱离星球的过程中克服引力做功,势能逐渐增大,选项D 正确。

答案 BD

6.环境监测卫星是专门用于环境和灾害监测的对地观测卫星,利用三颗轨道相同的监测卫星可组成一个监测系统,它们的轨道与地球赤道在同一平面内,当卫星高度合适时,该系统的监测范围可恰好覆盖地球的全部赤道表面且无重叠区域。已知地球半径为R ,地球表面重力加速度为g ,关于该系统下列说法正确的是

A .卫星的运行速度大于7.9 km/s

B .卫星的加速度为g 2

C .卫星的周期为4π

2R g D .这三颗卫星的质量必须相等

解析 v =7.9 km/s 是卫星最大的环绕速度,环境监测卫星的运行速度一定小于7.9 km/s ,故A 错误;三颗卫星监测范围恰好覆盖地球的全部赤道表面且无重叠区域,说明它们刚好

位于等边三角形的三个顶点上,如图所示,根据几何关系可得轨道半径r =R sin 30°

=2R ,由于GMm r 2=mg ′,而GM =R 2g ,解得卫星的加速度为g ′=g 4,故B 错误;根据GMm r 2=mr 4π2T 2,结合GM =R 2g ,解得卫星的周期为T =4π2R g

,故C 正确;这三颗卫星在该轨道上运行及相对位置关系与它们的质量无关,故D 错误。

第 5 页 共 13 页

答案 C

7.如图,一颗在椭圆轨道∶上运行的地球卫星,通过轨道∶上的近地点P 时,短暂点火加速后进入同步转移轨道∶。当卫星到达同步转移轨道∶的远地点Q 时,再次变轨,进入同步轨道∶。下列说法正确的是

A .卫星在轨道∶的P 点进入轨道∶机械能增加

B .卫星在轨道∶经过Q 点时和在轨道∶经过Q 点时速度相同

C .卫星在轨道∶经过Q 点时和在轨道∶经过Q 点时加速度相同

D .由于不同卫星的质量不同,因此它们的同步轨道高度不同

解析 卫星在轨道∶上通过点P 时,点火加速,使其所需向心力大于万有引力,做离心运动,才能进入轨道∶,所以卫星在轨道∶的P 点进入轨道∶机械能增加,故A 项正确。假设卫星从轨道∶返回轨道∶,卫星在轨道∶经过Q 点时,点火减速,使其所需向心力小于万有引力,做向心运动,才能进入轨道∶,所以卫星在轨道∶经过Q 点时和在轨道∶经过Q 点时速度不同,故B 项错误。卫星在轨道∶经过Q 点时和在轨道∶经过Q 点时,所受万有引

力相同,根据牛顿第二定律,产生的加速度相同,故C 项正确。对同步卫星得:r =3GMT 2

4π2。则同步轨道高度与卫星的质量无关,故D 项错误。

答案

AC

8.我国嫦娥五号探测器由轨道器、返回器、着陆器、上升器四个部分组成。根据计划,嫦娥五号探测器将实现月球软着陆及采样返回,其中采样返回是上升器携带样品从月球表面

第 6 页 共 13 页

升空,先在近月圆轨道∶上运行,从P 点经调整轨道∶在Q 点与较高轨道∶上的轨道器对接,最后由轨道器携带样品返回地球,如图所示。已知P 、Q 分别是轨道∶与轨道∶、∶的切点,下列关于此过程中说法正确的是

A .轨道器在轨道∶上的加速度必定大于上升器在轨道∶上的加速度

B .上升器应在轨道∶上的P 点通过减速进入轨道∶

C .上升器与轨道器对接后,组合体速度比上升器在P 点的速度小

D .若上升器和轨道器均在轨道∶运行,上升器在后,只要上升器向前加速,就可追上轨道器

解析 在轨道上运行的飞行器,所受万有引力产生向心加速度,即GMm r 2=ma ,解得a =GM r 2,则轨道半径越大,加速度越小,故A 错误;上升器在轨道∶上的P 点加速,万有引力不能提供足够的向心力而进入轨道∶,可知上升器在轨道∶上P 点的速度小于在轨道∶上P 点的速度,故B 错误;由轨道运行速度与轨道半径关系v =GM r

可知,上升器与轨道器对接后,组合体速度比上升器在P 点的速度小,故C 正确;若上升器在轨道∶加速,则会做离心运动,不可能追上轨道器实现对接,故D 错误。

答案 C

9.将地球和水星绕太阳的运转看成两个不同的匀速圆周运动,太阳为匀速圆周运动的中心。地球和太阳的连线与地球和水星的连线的夹角叫做地球对水星的观察视角,如图所示。

已知地球对水星的最大观察视角为θ,则下列说法正确的是

第 7 页 共 13 页

A .地球与水星的周期之比为T 地T 水=1cos 3 θ

B .地球与水星的角速度之比为ω地ω水=1sin 3 θ

C .地球与水星的线速度之比为v 地v 水

=sin θ D .地球与水星的向心加速度之比为a 地a 水

=sin 4 θ 解析 设水星、地球运行的轨道半径分别为R 水和R 地,根据几何关系可知sin θ=R 水R 地

,根据开普勒第三定律有R 水3T 水2=R 地3T 地2,联立解得地球与水星的周期之比为T 地T 水=1sin 3 θ

,故A 错误;由ω=2πT 得地球与水星的角速度之比为ω地ω水=T 水T 地

=sin 3 θ,故B 错误;地球与水星的线速度之比为v 地v 水=ω地R 地ω水R 水=sin θ,故C 正确;地球与水星的向心加速度之比为a 地a 水=R 地ω地2

R 水ω水2=sin 2 θ,D 错误。

答案 C

10.假设有一载人宇宙飞船在距地面高度为4 200 km 的赤道上空绕地球做匀速圆周运动,地球半径约为6 400 km ,地球同步卫星距地面高为36 000 km ,宇宙飞船和一地球同步卫星绕地球同向运动,每当两者相距最近时,宇宙飞船就向同步卫星发射信号,然后再由同步卫星将信号发送到地面接收站,某时刻两者相距最远,从此刻开始,在一昼夜的时间内,接收站共接收到信号的次数为

A .4次

B .6次

C .7次

D .8次

解析 根据圆周运动的规律,分析一昼夜同步卫星与宇宙飞船相距最近的次数,即卫星

第 8 页 共 13 页

发射信号的次数,也为接收站接收到的信号次数,设宇宙飞船的周期为T ,由GMm r 2=m 4π2

T 2r ,得T =2πr 3GM ,则T 2

(24 h)2=(6 400+4 2006 400+36 000

)3,解得T =3 h 。设两者由相隔最远至第一次相隔最近的时间为t 1,有(2πT -2πT 0)·t 1=π,解得t 1=127

h 。再设两者相邻两次相距最近的时间间隔为t 2,有(2πT -2πT 0)·t 2=2π,解得t 2=247 h 。由n =24 h -t 1t 2

=6.5知,接收站接收信号的次数为7次。

答案 C

11.(多选)2017年10月16日,美国激光干涉引力波天文台等机构联合宣布首次发现双中子星并合引力波事件,如图为某双星系统A 、B 绕其连线上的O 点做匀速圆周运动的示意图,若A 星的轨道半径大于B 星的轨道半径,双星的总质量为M ,双星间的距离为L ,其运动周期为T ,则

A .A 的质量一定大于

B 的质量

B .A 的线速度一定大于B 的线速度

C .L 一定,M 越大,T 越大

D .M 一定,L 越大,T 越大

解析 设双星质量分别为m A 、m B ,轨道半径分别为R A 、R B ,角速度相等且为ω,根据

万有引力定律可知:G m A m B L 2=m A ω2R A ,G m A m B L

2=m B ω2R B ,距离关系为:R A +R B =L ,联立解得:m A m B =R B R A

,因为R A >R B ,所以A 的质量一定小于B 的质量,故A 错误;根据线速度与角速度的关系有:v A =ωR A 、v B =ωR B ,因为角速度相等,半径R A >R B ,所以A 的线速度大于

B 的线速度,故B 正确;又因为T =2πω

,联立以上可得周期为:T =2π

L 3G (m A +m B )

,所以

第 9 页 共 13 页

总质量M 一定,两星间距离L 越大,周期T 越大,故C 错误,D 正确。

答案 BD

12.(多选)宇航员站在某一星球上,将一个小球距离星球表面h 高度处由静止释放使其做自由落体运动,经过t 时间后小球到达星球表面,已知该星球的半径为R ,引力常量为G ,则下列选项正确的是

A .该星球的质量为2hR 2Gt 2

B .该星球表面的重力加速度为h 2t 2

C .该星球表面的第一宇宙速度为

2hR t D .该星球的密度为ρ=

3h 2πRGt 2 解析 根据自由落体运动公式h =12gt 2,解得星球表面的重力加速度g =2h t

2,星球表面的物体受到的重力等于万有引力,即G Mm R 2=mg ,解得质量为M =gR 2G =2hR 2

Gt

2,故A 正确,B 错误;根据万有引力提供向心力可得G Mm R 2=m v 2R ,联立以上解得第一宇宙速度为v =2hR t

,故C 正确;在星球表面有G Mm R 2=mg ,星球的密度为ρ=M 43

πR 3,联立以上解得ρ=3h 2πRt 2G ,故D 正确。所以ACD 正确,B 错误。

答案 ACD

13.2018年2月2日,我国成功将电磁监测试验卫星“张衡一号”发射升空,标志我国成为世界上少数拥有在轨运行高精度地球物理场探测卫星的国家之一。通过观测可以得到卫星绕地球运动的周期,

并已知地球的半径和地球表面处的重力加速度。若将卫星绕地球的运动看作是匀速圆周运动,且不考虑地球自转的影响。根据以上数据可以计算出卫星的

第 10 页 共 13 页

A .密度

B .向心力的大小

C .离地高度

D .线速度的大小

解析 卫星做圆周运动的向心力由万有引力提供,则有G Mm (R +h )2=m (2πT )2(R +h ),无法计算得到卫星的质量,更无法确定其密度及向心力大小,A 、B 项错误;又G Mm 0R 2=m 0g ,联立两式可得h =3gR 2T 24π2-R ,C 项正确;由v =2πT

(R +h ),可计算出卫星的线速度的大小,D 项正确。

答案 CD

14.(多选)2015年12月23日俄罗斯新型货运飞船“进步MS -01”与国际空间站成功对接,送去约2.4吨补给物资。如图所示,货运飞船在轨道∶上做圆周运动,周期为T 1,国际空间站在轨道∶上做圆周运动,周期为T 2,下列说法正确的是

A .如果某时刻货运飞船和国际空间站相距最近,两者运行方向相同,则经过

T 1T 22(T 2-T 1)

时间两者相距最远

B .货运飞船在轨道∶上的A 点或轨道∶上的B 点点火加速都可以完成和国际空间站的对接

C .如果货运飞船从轨道∶经过变轨飞行进入轨道∶,则货运飞船动能减少、引力势能增加、机械能增加

D .国际空间站在接收货物后,由于质量变大,与地球间万有引力变大,则轨道变低 解析 货运飞船和国际空间站从相距最近到相距最远,在同向运行时货运飞船比国际空

间站多转半圈,即2πT 1t -2πT 2t =π,解得t =T 1T 22(T 2-T

1)

,故选项A 正确;货运飞船从低轨道A 点

第 11 页 共 13 页

加速做离心运动,到达空间站轨道追上空间

站可完成对接,如果货运飞船从B 点加速做离心运动则到达更高轨道,无法与空间站对接,故选项B 错误;由于v =GM r

,轨道半径越大,速度越小,动能减少,从低轨道到高轨道万有引力做负功,引力势能增加,货运飞船从轨道∶经过变轨飞行进入轨道∶需要变轨加速,发动机对货运飞船做正功,货运飞船机械能增加,故选项C 正确;国际空间站在接收货物后质量变大,但运行速度不变,继续做圆周运动,轨道半径不变,故选项D 错误。

答案 AC

15.(多选)我国的“天链一号”是地球同步轨道卫星,可为载人航天器及中低轨道卫星提供数据通讯。如图为“天链一号”a 、赤道平面内的低轨道卫星b 、地球的位置关系示意图:O 为地心,地球相对卫星a 、b 的张角分别为θ1和θ2(θ2图中未标出),卫星a 的轨道半径是b 的4倍。已知卫星a 、b 绕地球同向运行,卫星a 的周期为T ,在运行过程中由于地球的遮挡,卫星b 会进入与卫星a 通讯的盲区。卫星间的通讯信号视为沿直线传播,信号传输时间可忽略。下列分析正确的是

A .张角θ1和θ2满足sin θ2=4sin θ1

B .卫星b 的周期为T 8

C .卫星b 每次在盲区运行的时间为θ1+θ214π

T D .卫星b 每次在盲区运行的时间为θ1+θ216π

T 解析 设地球半径为r 0,由题意可知sin θ12=r 0r a ,sin θ22=r 0r b ,r a =4r b ,解得sin θ22=4sin θ12

,选项A 错误;由r a 3T a 2=r b 3T b 2,T a =T ,r a =4r b ,可知T b =T 8

,选项B 正确;由题意可知,图中A 、B 两点为盲区的两临界点,由数学知识可得∶AOB =θ1+θ2,因而2π(t T b -t T a

)=θ1+

θ2,解得

第 12 页 共 13 页

t =θ1+θ214π

T ,选项C 正确,D 错误。

答案 BC

16.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用。设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为L 的正方形的四个顶点上,其中L 远大于R 。已知万有引力常量为G 。忽略星体自转效应,关于四星系统,下列说法正确的是

A .四颗星圆周运动的轨道半径均为L 2

B .四颗星圆周运动的线速度均为 Gm L (2+24

) C .四颗星圆周运动的周期均为2π 2L 3

(4+2)Gm D .四颗星表面的重力加速度均为G m R

2 解析 如图所示,四颗星均围绕正方形对角线的交点做匀速圆周运动,轨道半径均为r =22

L 。取任一顶点上的星体为研究对象,它受到相邻的两个星体与对角线上的星体的万有引力的合力为

F 合=2

G m 2L 2+G

m 2

(2L )2

第 13 页 共 13 页

由F 合=F 向=m v 2r =m 4π2

T 2·r , 可解得v = Gm L (1+24),T =2π 2L 3(4+2)Gm 故A 、B 项错误,C 项正确。对于星体表面质量为m 0的物体,受到的重力等于万有引力,则有m 0g =G mm 0R 2,故g =G m R

2,D 项正确。 答案 CD

2018年高考物理复习天体运动专题练习(含答案)

2018年高考物理复习天体运动专题练习(含答 案) 天体是天生之体或者天然之体的意思,表示未加任何掩盖。查字典物理网整理了天体运动专题练习,请考生练习。 一、单项选择题(本题共10小题,每小题6分,共60分.) 1.(2014武威模拟)2013年6月20日上午10点神舟十号航天员首次面向中小学生开展太空授课和天地互动交流等科 普教育活动,这是一大亮点.神舟十号在绕地球做匀速圆周运动的过程中,下列叙述不正确的是() A.指令长聂海胜做了一个太空打坐,是因为他不受力 B.悬浮在轨道舱内的水呈现圆球形 C.航天员在轨道舱内能利用弹簧拉力器进行体能锻炼 D.盛满水的敞口瓶,底部开一小孔,水不会喷出 【解析】在飞船绕地球做匀速圆周运动的过程中,万有引

力充当向心力,飞船及航天员都处于完全失重状态,聂海胜做太空打坐时同样受万有引力作用,处于完全失重状态,所以A错误;由于液体表面张力的作用,处于完全失重状态下的液体将以圆球形状态存在,所以B正确;完全失重状态下并不影响弹簧的弹力规律,所以拉力器可以用来锻炼体能,所以C正确;因为敞口瓶中的水也处于完全失重状态,即水对瓶底部没有压强,所以水不会喷出,故D正确. 【答案】 A 2.为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R,地球质量为m,太阳与地球中心间距为r,地球表面的重力加速度为g,地球绕太阳公转的周期T.则太阳的质量为() A.B. C. D. 【解析】地球表面质量为m的物体万有引力等于重力,即G=mg,对地球绕太阳做匀速圆周运动有G=m.解得M=,D正确.

【答案】 D 3.(2015温州质检)经国际小行星命名委员会命名的神舟星和杨利伟星的轨道均处在火星和木星轨道之间.已知神舟星平均每天绕太阳运行1.74109 m,杨利伟星平均每天绕太阳运行1.45109 m.假设两行星都绕太阳做匀速圆周运动,则两星相比较() A.神舟星的轨道半径大 B.神舟星的加速度大 C.杨利伟星的公转周期小 D.杨利伟星的公转角速度大 【解析】由万有引力定律有:G=m=ma=m()2r=m2r,得运行速度v=,加速度a=G,公转周期T=2,公转角速度=,由题设知神舟星的运行速度比杨利伟星的运行速度大,神舟星的轨道半径比杨利伟星的轨道半径小,则神舟星的加速度比杨利伟星的加速度大,神舟星的公转周期比杨利伟星的公转周期小,神舟星的公转角速度比杨利伟星的公转角速度大,故选

高考物理二轮复习重点及策略

2019高考物理二轮复习重点及策略 一、考点网络化、系统化 通过知识网络结构理解知识内部的联系。因为高考试题近年来突出对物理思想本质、物理模型及知识内部逻辑关系的考察。 例如学习电场这章知识,必须要建立知识网络图,从电场力和电场能这两个角度去理解并掌握。 二、重视错题 错题和不会做的题,往往是考生知识的盲区、物理思想方法的盲区、解题思路的盲区。所以考生要认真应对高三复习以来的错题,问问自己为什么错了,错在哪儿,今后怎么避免这些错误。分析错题可以帮助考生提高复习效率、巩固复习成果,反思失败教训,及时在高考前发现和修补知识与技能方面的漏洞。充分重视通过考试考生出现的知识漏洞和对过程和方法分析的重要性。很多学生不够重视错题本的建立,都是在最后关头才想起要去做这件事情,北京新东方一对一的老师都是非常重视同时也要求学生一定要建立错题本,在大考对错题本进行复习,这样的效果和收获是很多同学所意想不到的。 三、跳出题海,突出高频考点 例如电磁感应、牛二定律、电学实验、交流电等,每年会考到,这些考点就要深层次的去挖掘并掌握。不要盲区的去大

量做题,通过典型例题来掌握解题思路和答题技巧;重视“物理过程与方法”;重视数学思想方法在物理学中的应用;通过一题多问,一题多变,一题多解,多题归一,全面提升分析问题和解决问题的能力;通过定量规范、有序的训练来提高应试能力。 四、提升解题能力 1、强化选择题的训练 注重对基础知识和基本概念的考查,在选择题上的失手将使部分考生在高考中输在起跑线上,因为选择题共48分。所以北京新东方中小学一对一盛海清老师老师建议同学们一定要做到会的题目都拿到分数,不错过。 2、加强对过程与方法的训练,提高解决综合问题的应试能力 2019年北京高考命题将加大落实考查“知识与技能”、“过程与方法”的力度,更加注重通过对解题过程和物理思维方法的考查来甄别考生的综合能力。分析是综合的基础,分析物理运动过程、条件、特征,要有分析的方法,主要有:定性分析、定量分析、因果分析、条件分析、结构功能分析等。在处理复杂物理问题是一般要定性分析可能情景、再定量分析确定物理情景、运动条件、运动特征。 如物体的平衡问题在力学部分出现,学生往往不会感到困难,在电场中出现就增加了难度,更容易出现问题的是在电

2018高考物理总复习专题天体运动的三大难点破解1深度剖析卫星的变轨讲义

拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 二、重难点提示: 重点:1. 卫星变轨原理; 2. 不同轨道上速度和加速度的大小关系。 难点:理解变轨前后的能量变化。 一、变轨原理 卫星在运动过程中,受到的合外力为万有引力,F 引=2 R Mm G 。卫星在运动过程中所需要的向心力为:F 向= R m v 2 。当: (1)F 引= F 向时,卫星做圆周运动; (2)F 引> F 向时,卫星做近心运动; (3)F 引

运动进入轨道2沿椭圆轨道运动,此过程为离心运动;到达B点,万有引力过剩,供大于求做近心运动,故在轨道2上供需不平衡,轨迹为椭圆,若在B点向后喷气,增大速度可使飞船沿轨道3运动,此轨道供需平衡。 2. 回收变轨 在B点向前喷气减速,供大于需,近心运动由3轨道进入椭圆轨道,在A点再次向前喷气减速,进入圆轨道1,实现变轨,在1轨道再次减速返回地球。 三、卫星变轨中的能量问题 1. 由低轨道到高轨道向后喷气,卫星加速,但在上升过程中,动能减小,势能增加,增加的势能大于减小的动能,故机械能增加。 2. 由高轨道到低轨道向前喷气,卫星减速,但在下降过程中,动能增加,势能减小,增加的动能小于减小的势能,故机械能减小。 注意:变轨时喷气只是一瞬间,目的是破坏供需关系,使卫星变轨。变轨后稳定运行的过程中机械能是守恒的,其速度大小仅取决于卫星所在轨道高度。 3. 卫星变轨中的切点问题 【误区点拨】 近地点加速只能提高远地点高度,不能抬高近地点,切点在近地点;远地点加速可提高近地点高度,切点在远地点。

高考物理真题分类汇编:万有引力和天体运动

高中物理学习材料 金戈铁骑整理制作 2014年高考物理真题分类汇编:万有引力和天体运动 19.[2014·新课标全国卷Ⅰ] 太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是( ) 地球 火星 木星 土星 天王星 海王星 轨道半径(AU) 1.0 1.5 5.2 9.5 19 30 A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日 C .天王星相邻两次冲日的时间间隔为土星的一半 D .地外行星中,海王星相邻两次冲日的时间间隔最短 19.BD [解析] 本题考查万有引力知识,开普勒行星第三定律,天体追及问题.因为冲日现象实质上是角速度大的天体转过的弧度恰好比角速度小的天体多出2π,所以不可能每年都出现(A 选项).由开普勒行星第三定律有T 2木T 2地=r 3木 r 3地=140.608,周期的近似比值为12,故木星的周期为12年,由曲线运动追及公式 2πT 1t -2πT 2t =2n π,将n =1代入可得t =12 11年,为木星两次冲日的时间间隔,所以2015年能看到木星冲日现象, B 正确.同理可算出天王星相邻两次冲日的时间间隔为1.01年.土星两次冲日的时间间隔为1.03年.海王星两次冲日的时间间隔为1.006年,由此可知 C 错误, D 正确. 18.[2014·新课标Ⅱ卷] 假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常量为G .地球的密度为( ) A.3πGT 2 g 0-g g 0 B.3πGT 2g 0 g 0-g C. 3πGT 2 D.3πGT 2g 0 g 18.B [解析] 在两极物体所受的重力等于万有引力,即 GMm R 2 =mg 0,在赤道处的物体做圆周运动的周期等于地球的自转周期T ,则GMm R 2-mg =m 4π2T 2R ,则密度 ρ=3M 4πR 3=34πR 3 g 0R 2 G =3πg 0GT 2(g 0-g ) .B 正确. 3. [2014·天津卷] 研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种

高考物理二轮复习计划五步走

2019年高考物理二轮复习计划五步走 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 选考模块的复习不可掉以轻心,抓住规律区别对待。 选考模块的复习要突出对五个二级知识点的加强(选修3—4中四个,

选修3—5中一个)。由于分数的限制,该部分的复习重点应该放在扩大知识面上,特别是选修3—3,没有二级要求的知识点,应该是考生最容易拿分的版块,希望认真钻研教材。课本是知识之源,对这几部分的内容一定要做到熟读、精读课本,看懂、弄透,一次不够就两次,两次不行需再来,绝不能留任何的死角,包括课后的阅读材料、小实验、小资料等,因为大多的信息题是从这里取材的。 实验部分一直是高考复习的重点和难点 实验的理论部分一般在第一轮中进行,我们把“走进实验室”放在第二轮。历年来尽管在实验部分花费不少的时间和精力,但掌握的情况往往是不尽如人意,学生中高分、低分悬殊较大,原因在于很多学生思想重视不够、学习方法不对。实验中最重要的是掌握实验目的和原理,特别是《课程标准》下,高考更加注重考查实验原理的迁移能力,即使是考查教材上的原实验,也是改容换面而推出的。原理是为目的服务的,每个实验所选择的器材源于实验原理,电学中的控制电路与测量电路之间的关系是难以把握的地方。复习中还要注意器材选择的基本原则,灵活地运用这些基本原则是二轮实验复习的一个目的。针对每一个实验,注意做到“三个掌握、五个会”,即掌握实验目的、步骤、原理;会控制条件、会使用仪器、会观察分析、会处理数据并得出相应的结论、会设计简单的实验方案。选做题中考实验的可能性也很大,不要忽视这方面内容。 突出重点知识,狠抓主干知识,落实核心知识 二轮复习中我们不可能再面面俱到,切忌“眉毛胡子一把抓”,而且时

高考物理二轮复习攻略

2019高考物理二轮复习攻略 物理在绝大多数的省份既是会考科目又是高考科目,在高中的学习中占有重要地位。以下是查字典物理网为大家整理的高考物理二轮复习攻略,希望可以解决您所遇到的相关问题,加油,查字典物理网一直陪伴您。 一、知识板块:以小综合为主,不求大而全 第一轮复习基本上都是以单元,章节为体系。侧重全面弄懂基本概念,透彻理解基本规律,熟练运用基本公式解答个体类物理问题。综合应用程度不太高。实际上知识与技能的综合是客观存在,所以,我们因势利导把知识进行适当综合。但要循序渐进,以小综合为主,不求一步到位的大而全。 所谓小综合,就是大家一眼就能审视出一个问题涉及那两个知识点,可能用到那几个物理公式的。譬如: 1.力和物体的运动综合问题(力的平衡、直线运动、牛顿定律、平抛运动、匀速圆周运动); 2.万有引力定律的应用问题; 3.机械振动和机械波; 4.动能定理与机械能守恒定律; 5.气体性质问题; 6.带电粒子在电场中的直线运动(匀速、匀加速、匀减速、往复运动),曲线运动(类平抛、圆周运动); 7.直流电路分析问题:①动态分析,②故障分析;

8.电磁感应中的综合问题:①导体棒切割磁感线(单根、双根、U形导轨、形导轨、O形导轨;导轨水平放置、竖直放置、倾斜放置等各种情景),②闭合线圈穿过有界磁场(线圈有正方形、矩形、三角形、圆形、梯形等),(有边界单个磁场,有分界衔接磁场)、(线圈有竖直方向穿过、水平方向穿过等各种情景); 9.物理实验专题复习:①应用性实验,②设计性实验,③探究性实验; 10.物理信息给予题(新概念、新规律、数据、表格、图像等) 11.联系实际新情景题(文字描述新情景、图字展现新情景、建物理模型,重物理过程分析); 12.常用的几种物理思维方法; 13.物理学习中常用的物理方法。 二、方法板块:以基本方法为主,不哗众取宠 分析研究和解答物理问题,离不开物理思想,这种思想直觉反应是思维方法。平时学习中大家已经接触和应用过多种方法,但仍是比较零乱的。因此,有必要适当地加于归纳总结,能知道一些方法的适用情况,区别普遍性与特殊性。其中要以基本方法为主。即必须掌握,熟练应用且平时用得最多的几种方法。 如受力分析法:从中判断研究对象受几个力,是恒力还是变力;过程分析法:能把较复杂的物理问题分析成若干简单的

2019高考物理一轮复习天体运动题型归纳

天体运动题型归纳 李仕才 题型一:天体的自转 【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .1 2 4π3G ρ?? ??? B .1 2 34πG ρ?? ??? C .1 2 πG ρ?? ??? D .1 2 3πG ρ?? ??? 解析:在赤道上2 2 R m mg R Mm G ω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m R Mm G ω=②又 T π ω2= ③ 33 4 R M ρπ= ④ ②③④得:2 3GT π ρ= ④即21 )3(ρπG T =选D 练习 1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布 均匀的球体,半径为R 。则地球的自转周期为( ) A. 2T = 2T =R N m T ?=π2 D.N m R T ?=π2 2、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A. 0203g g g GT π- B. 0203g g g GT π- C. 23GT π D. 23g g GT πρ=

题型二:近地问题+绕行问题 【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。已知月球半径为R ,引力常量为G 。则下列说法正确的是 A .月球表面的重力加速度g 月=hv 2 L 2 B .月球的质量m 月=hR 2v 20 GL C .月球的第一宇宙速度v = v 0 L 2h D .月球的平均密度ρ=3hv 2 2πGL 2R 解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2 ,联立解得g 月=2hv 2 0L 2;由mg 月=G mm 月R 2, 解得m 月=2hR 2v 2 0GT 2;由mg 月=m v 2 R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 2 2πGL 2R 。 练习:“玉兔号”登月车在月球表面接触的第一步实现了中国人“奔月”的伟大梦想。机器人“玉兔号”在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则下列说法正确的是 A .月球表面重力加速度为t 2 2h B .月球第一宇宙速度为 Rh t C .月球质量为hR 2 Gt 2 D .月球同步卫星离月球表面高度 3hR 2T 2 2π2t 2-R 【例题2】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的1 20 。该中心恒星与太阳的质量比约为 A.1 10 B .1 C .5 D .10

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

2015年高考物理真题分类汇编:万有引力和天体运动

2015年高考物理真题分类汇编:万有引力和天体运动 (2015新课标I-21). 我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落,已知探测器的质量约为1.3×103kg,地球质量约为月球质量的81倍,地球半径约为月球半径的3.7倍,地球表面的重力加速度约为9.8m/s2,则此探测器 A. 着落前的瞬间,速度大小约为8.9m/s B. 悬停时受到的反冲作用力约为2×103N C. 从离开近月圆轨道这段时间内,机械能守恒 D. 在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度 【答案】B、D 【考点】万有引力定律及共应用;环绕速度 【解析】在中心天体表面上万有引力提供重力:= mg , 则可得月球表面的重力加速度 g月= ≈ 0.17g地= 1.66m/s2 .根据平衡条件,探测器悬停时受到的反作用力F = G探= m探 g月≈ 2×103N,选项B正确;探测器自由下落,由V2=2g月h ,得出着落前瞬间的速度v ≈3.6m/s ,选项A错误;从离开近月圆轨道,关闭发动机后,仅在月球引力作用下机械能守恒,而离开近月轨道后还有制动悬停,发动机做了功,机械能不守恒,故选项C错误;在近月圆轨道 万有引力提供向心力:= m,解得运行的线速度V月= = < , 小于近地卫星线速度,选项D正确。 【2015新课标II-16】16. 由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。已知同步卫星的环绕速度约为3.1x103/s,某次发 射卫星飞经赤道上空时的速度为1.55x103/s,此时 卫星的高度与同步轨道的高度相同,转移轨道和 同步轨道的夹角为30°,如图所示,发动机给卫星 的附加速度的方向和大小约为 A. 西偏北方向,1.9x103m/s B. 东偏南方向,1.9x103m/s C. 西偏北方向,2.7x103m/s D. 东偏南方向,2.7x103m/s 【答案】B

高考物理二轮复习 专题十 高考物理模型

2013年高考二轮复习专题十 高考物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦力依然为零(见一轮书中的方法概述). 图9-1乙 4.悬挂有物体的小车在斜面上滑行(如图9-2所示): 图9-2

高考物理天体运动公式归纳

高考物理天体运动公式归纳 高考物理天体运动公式 1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)} 2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上) 3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2; ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地 +h)/T2{h&asymp;36000km,h:距地球表面的高度,r地:地球的半径} 强调:(1)天体运动所需的向心力由万有引力提供,F向=F 万;(2)应用万有引力定律可估算天体的质量密度等; (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同; (4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

高考物理分子动理论、能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r (2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值) (3)r>r0,f引>f斥,F分子力表现为引力 (4)r>10r0,f引=f斥&asymp;0,F分子力&asymp;0,E分子势能&asymp;0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的), W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册 P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

高三一轮专题复习:天体运动知识点归类解析

天体运动知识点归类解析 【问题一】行星运动简史 1、两种学说 (1)地心说:地球是宇宙的中心,而且是静止不动的,太阳、月亮以及其他行星都绕地球运动。支持者托勒密。 (2).日心说:太阳是宇宙的中心,而且是静止不动的,地球和其他行星都绕太阳运动。(3).两种学说的局限性 都把天体的运动看的很神圣,认为天体的运动必然是最完美,最和谐的圆周运动,而和丹麦天文学家第谷的观测数据不符。 2、开普勒三大定律 开普勒1596年出版《宇宙的神秘》一书受到第谷的赏识,应邀到布拉格附近的天文台做研究工作。1600年,到布拉格成为第谷的助手。次年第谷去世,开普勒成为第谷事业的继承人。 第谷去世后开普勒用很长时间对第谷遗留下来的观测资料进行了整理与分析他在分析火星的公转时发现,无论用哥白尼还是托勒密或是第谷的计算方法得到的结果都与第谷的观测数据不吻合。他坚信观测的结果,于是他想到火星可能不是按照人们认为的匀速圆周运动他改用不同现状的几何曲线来表示火星的运动轨迹,终于发现了火星绕太阳沿椭圆轨道运行的事实。并将老师第谷的数据结果归纳出三条著名定律。 第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 第二定律:对任意一个行星来说,它与太阳的连线在相等时间内扫 过的面积相等。 如图某行星沿椭圆轨道运行,远日点离太阳的距离为a,近日

点离太阳的距离为b ,过远日点时行星的速率为a v ,过近日点时的速率为b v 由开普勒第二定律,太阳和行星的连线在相等的时间内扫过相等的面积,取足够短的时间t ?,则有: t bv t av b a ?=?2 1 21① 所以 b a v v a b = ② ②式得出一个推论:行星运动的速率与它距离成反比,也就是我们熟知的近日点快远日点慢的结论。②式也当之无愧的作为第二定律的数学表达式。 第三定律:所有行星的轨道半长轴的三次方跟它的公转周期平方的比值都相等。 用a 表示半长轴,T 表示周期,第三定律的数学表达式为k T a =23 ,k 与中心天体的质量有 关即k 是中心天体质量的函数)(23 M k T a =①。不同中心天体k 不同。今天我们可以由万有 引力定律证明:r T m r Mm G 2234π=得2234πGM T r =②即2 4)(π GM M k =可见k 正比与中心天体的质量M 。 ①式)(23 M k T a =是普遍意义下的开普勒第三定律多用于求解椭圆轨道问题。 ②式2 234πGM T r =是站在圆轨道角度下得出多用于解决圆轨道问题。为了方便记忆与区分我 们不妨把①式称为官方版开三,②式成为家庭版开三。 【问题二】:天体的自转模型 1、重力与万有引力的区别

高中物理天体运动多星问题 (2)

双星模型、三星模型、四星模型 天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万 有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。 【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银 r ,1、 持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。 解析:双星绕两者连线上某点做匀速圆周运动,即: 22 21212 21L M L M L M M G ωω==---------? ..L L L =+21-------?由以上两式可得:L M M M L 2121+= ,L M M M L 2 12 2+= 又由1 2212214L T M L M M G π=.----------?得:) (221M M G L L T +=

【例题3】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两 星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为(D ) A .2 12)(4GT r r r -2π B .2 312π4GT r C .2 32π4GT r D .2 122π4GT r r 答案:D , 球A 引球看成似处理 这样算得的运行周期T 。已知地球和月球的质量分别为且A 对A 根据牛顿第二定律和万有引力定律得L m M T m L +=22)( 化简得) (23 m M G L T +=π ⑵将地月看成双星,由⑴得) (23 1m M G L T +=π 将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得 L T m L GMm 2 2 )2(π= 化简得GM L T 3 22π=

高考物理二轮复习计划(一)

2019年高考物理二轮复习计划(一) 通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。 二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:(1)力与直线运动;(2)力与曲线运动;(3)功和能;(4)带电体(粒子)的运动;(5)电路与电磁感应;(6)必做实验部分; (7)选考模块。每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。具体说来,专题复习中应注意以下几个方面的问题: 抓住主干知识及主干知识之间的综合 高中物理的主干知识是力学和电磁学部分,在各部分的综合应用中,

主要以下面几种方式的综合较多:①牛顿三定律与匀变速直线运动和曲线运动的综合(主要体现在动力学和天体问题、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式);②以带电粒子在电场、磁场中运动为模型的电学与力学的综合,如利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场 中的运动、利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动、利用能量观点解决带电粒子在电场中的运动;③电磁感应现象与闭合电路欧姆定律的综合,用力与运动观点和能量观点解决导体在匀强磁场中的运动问题;④串、并联电路规律与实验的综合(这是近几年高考实验命题的热点),如通过粗略地计算选择实验器材和电表的量程、确定滑动变阻器的连接方法、确定电流表的内外接法等。对以上知识一定要特别重视,尽可能做到每个内容都过关,绝不能掉以轻心,要分别安排不同的专题重点强化,这是我们二轮复习的重中之重,希望在这些地方有所突破。

高考物理二轮专项

高考物理二轮专项:功和机械能压轴题训练 1.(10分)如图21所示,两根金属平行导轨MN和PQ放在水平面上,左端向上弯曲且光滑,导轨间距为L,电阻不计。水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B,方向竖直向下。质量均为m、电阻均为R的金属棒a和b垂直导轨放置在其上,金属棒b置于磁场Ⅱ的右边界CD处。现将金属棒a从弯曲导轨上某一高处由静止释放,使其沿导轨运动。设两金属棒运动过程中始终与导轨垂直且接触良好。 (1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为mg,将金属棒a从距水平面高度h处由静止释放。求: 金属棒a刚进入磁场Ⅰ时,通过金属棒b的电流大小; 若金属棒a在磁场Ⅰ运动过程中,金属棒b能在导轨上保持静止,通过计算分析金属棒a释放时的高度h应满足的条件; (2)若水平段导轨是光滑的,将金属棒a仍从高度h处由静止释放,使其进入磁场Ⅰ。设两磁场区域足够大,求金属棒a在磁场Ⅰ运动过程中,金属棒b中可能产生焦耳热的最大值。 2.(8分)如图所示,长为l的绝缘细线一端悬于O点,另一端系一质量为m、电荷量为q的小球。现将此装置放在水平向右的匀强电场中,小球静止在A点,此时细线与竖直方向成37°角。重力加速度为g,sin37°=0.6,cos37°=0.8。 (1)判断小球的带电性质; (2)求该匀强电场的电场强度E的大小; (3)若将小球向左拉起至与O点处于同一水平高度且细绳刚好紧,将小球由静止释放,求小球运动到最低点时的速度大小。 3.(10分)如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ = 30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 0.5T。质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r。现从静止释放杆a b,测得最大速度为v m。改变电阻箱的阻值R,得到v m与R的关系如图乙所示。已知轨距为L = 2m,重力加速度g取l0m/s2,轨道足够长且电阻不计。 (1)当R = 0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;(2)求金属杆的质量m和阻值r;

高中物理天体运动知识

“万有引力定律”习题归类例析 万有引力定律部分内容比较抽象,习题类型较多,不少学生做这部分习题有一种惧怕感,找不着切入点.实际上,只要掌握了每一类习题的解题技巧,困难就迎刃而解了.下面就本章的不同类型习题的解法作以归类分析. 一、求天体的质量(或密度) 1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量 由mg=G 得.(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.) [例1]宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ. [解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度. 根据平抛运动的特点得抛出物体竖直方向上的位移为 设初始平抛小球的初速度为v,则水平位移为x=vt.有○1 当以2v的速度平抛小球时,水平位移为x'= 2vt.所以有② 在星球表面上物体的重力近似等于万有引力,有mg=G ③ 联立以上三个方程解得 而天体的体积为,由密度公式得天体的密度为。 2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量 卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得 若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为 [例2]下列几组数据中能算出地球质量的是(万有引力常量G是已知的)() A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r B.月球绕地球运行的周期T和地球的半径r C.月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T和轨道半径r [解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由可以求出中心天体地球的质量,所以C项正确.由求得地球质量为,所以D项正确. 二、人造地球卫星的运动参量与轨道半径的关系问题 根据人造卫星的动力学关系 可得

相关文档
最新文档