计算机组成原理 第二章 运算方法和运算器分析
数字逻辑与计算机组成原理:第二章 数据的表示与运算
第二章 数据的表示与运算
第一节 数的表示
一、无符号数和有符号数
1、无符号数:
没有符号的数,寄存器中的每一位都可用 来存放数据
机器字长为n位,无符号数的表示范围 为0~2n-1
反映无符号数的表示范围
8位 16 位
0 ~ 255 0 ~ 65535
有两种常用的无符号表示法: ◆ 非负数码:表示0或一个正数
(1) 定义
整数
0,x
2n > x ≥ 0
[x]反 = ( 2n+1 – 1) + x 0 ≥ x > 2n(mod 2n+1 1)
x 为真值
n 为整数的位数
如 x = +1101
x = 1101
[x]反 = 0,1101
[x]反 = (24+1 1) 1101 = 11111 1101
用 逗号 将符号位
= 1,0010
和数值部分隔开
小数 x
[x]反 = ( 2 – 2-n) + x
1>x≥ 0 0 ≥ x > 1(mod 2 2-n)
x 为真值 n 为小数的位数
如 x = + 0.1101
x = 0.1010
[x]反 = 0.1101
[x]反 = (2 2-4) 0.1010
= 1.1111 0.1010
有符号小数: +0.1011,在机器中表示为
-0.1011,在机器中表示为
第一节 数的表示
一、无符号数和有符号数 2、有符号数
有符号整数: +1101,机器中表示为
-1101, 机器中表示为
第一节 数的表示
一、无符号数和有符号数
计算机组成原理第二章课件(白中英编-科学出版社)
计算机组成原理
十进制整数转换为二或十六进制数
ห้องสมุดไป่ตู้
演示
整数部分转换:用除法
• 十进制数整数部分不断除以基数2或16,并记下余
数,直到商为0为止 • 由最后一个余数起逆向取各个余数,则为转换成的 二进制和十六进制数
126=01111110B 126=7EH
计算机组成原理
7
十进制小数转换为二或十六进制数
64位双精度规格化浮点数
IEEE 754标准
E=1~2046 e=-1022~+1023 表达的数据范围(绝对值) : 最小值: e=-1022,M=0(1.M=1) 十进制表达:2-1022≈2.23×10-308 最大值: e=1023,M=11…1(52个1) 1.M=1.11…1 (52个1) =2-2-52 十进制表达:(2-2-52)×21023 ≈ 2×21023 ≈1.79×10308
• 整数从左向右 • 小数从右向左 • 每4个二进制位对应一个十六进制位
00111010B=3AH,F2H=11110010B 十六进制数的加减运算类似十进制
• 逢16进位1,借1当16
23D9H+94BEH=B897H A59FH-62B8H=42E7H
计算机组成原理
9
真值和机器数
真值:现实中真实的数值 机器数:计算机中用0和1数码组合表达的数值 定点数:固定小数点的位置表达数值的机器数
目录
☼
☼
☼ ☼ ☼ ☼ ☼ ☼ ☼
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
计算机系统概论 运算方法和运算器 存储系统 指令系统 中央处理器 总线系统 外围设备 输入输出系统 并行组织
白中英《计算机组成原理》(第5版)笔记和课后习题详解复习答案
白中英《计算机组成原理》(第5版)笔记和课后习题详解完整版>精研学习网>无偿试用20%资料
全国547所院校视频及题库全收集
考研全套>视频资料>课后答案>往年真题>职称考试
第1章计算机系统概论
1.1复习笔记
1.2课后习题详解
第2章运算方法和运算器
2.1复习笔记
2.2课后习题详解
第3章多层次的存储器
3.1复习笔记
3.2课后习题详解
第4章指令系统
4.1复习笔记
4.2课后习题详解
第5章中央处理器
5.1复习笔记
5.2课后习题详解
第6章总线系统
6.1复习笔记
6.2课后习题详解
第7章外存与I/O设备
7.1复习笔记
7.2课后习题详解
第8章输入输出系统
8.1复习笔记
8.2课后习题详解
第9章并行组织与结构
9.1复习笔记
9.2课后习题详解
第10章课程教学实验设计
第11章课程综合设计。
计算机组成原理第二章(第三讲)
[例16] 参见图2.6,已知两个不带符号的二进制整 数A = 11011,B = 10101,求每一部分乘积项aibj 的值与p9p8……p0的值。 请同学们自己完成。
本讲总结
1. 溢出及其检测方法 2.基本的二进制加/减法器(难点,熟练掌握)
理解并熟练掌握图2.3
3.十进制加法器 4.原码并行乘法(难点,掌握) 理解并掌握图2.6
[x]补=0.1011 , [x ]补 + [y ]补
[ x+y] 补
无进位
[y]补=0.1001 0.1011 0.1001 1.0100
有进位
两正数相加,结果为负,显然错误。
--运算中出现了“上溢”
[又例] x=+0.1011, y=+0.0010, 求x+y。
[解:]
[x]补=0.1011 , [x]补 + [y]补 无进位
计算机组成原理
3
2.2.3 溢出概念与检验方法
两个正数相加,结果为负(即:大于机器
所能表示的最大正数),称为上溢。 两个负数相加,结果为正(即:小于机器 所能表示的最小负数),称为下溢。 运算出现溢出,结果就是错误的。
[例12] x=+0.1011, y=+0.1001,求x+y。
[解:]
计算机组成原理?第一章计算机系统概论?第二章运算方法和运算器?第三章存储系统?第四章指令系统?第五章中央处理器?第六章总线系统?第七章外围设备?第八章输入输出系统?第九章并行组织目录计算机组成原理3?上一讲回顾1
计算机组成原理
目录
☼
☼
☼ ☼ ☼ ☼ ☼ ☼ ☼
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
现在我们计算一个n位的行波进位加法器的时间延迟。 假如采用图2.3(a)所示的一位全加器并考虑溢出检测,那么n 位行波进位加法器的延迟时间ta为 ta=n·2T+9T=(2n+9)T (2.24) 9T为最低位上的两极“异或”门再加正溢出“异或”门 的总时间,2T为每级进位链的延迟时间。 当不考虑溢出检测时,有 ta=(n-1)·2T+9T (2.25) ta意味着加法器的输入端输入加数和被加数后,在最坏 情况下加法器输出端得到稳定的求和输出所需的最长时间。 显然这个时间越小越好。注意,加数、被加数、进位与和数 都是用电平来表示的,因此,所谓稳定的求和输出,就是指 稳定的电平输出。
计算机组成原理华科版第二章运算方法与运算器课件
4
计算机组成原理
⑵补码表示法
第二章 运算方法与运算器
• 由于补码在作二进制加、减运算时较方便,所以 在计算机中广泛采用补码表示二进制数。
• 补码运算中,可以用加法代替减法,节省元件, 降低成本。
5
计算机组成原理
第二章 运算方法与运算器
⑵补码表示法
原码求补码方法:正数不变(相同)。负数符号位不变, 数值位求反加1
第二种浮点表示的格式为
1,10001001,01111111110000000000000
17
计算机组成原理
⑶ 浮点数的表示举例
第二章 运算方法与运算器
某机用32b表示一个数,阶码部分占8b(含一位符号 位2格5式6).。5,,尾x数2=1部27分/2占56,2 4试b(写含出一x1和位x符2的号两位种)浮。点数设表x1示=-
最小负数 最大负数
最小正数
最大正数
1.0000000 1.1111111
0.0000001
0.1111111
-1
-2-7
2-7
1-2-7
11
计算机组成原理
第二章 运算方法与运算器
定点整数的表示范围:
①设字长为8b,用原码表示时,其表示范围如下:
最小负数 最大负数 最小正数 最大正数
11111111 10000001 00000001 01111111
计算机组成原理
1.真值与机器数
第二章 运算方法与运算器
采用正、负符号加上二进制的绝对值,则这种 数值称为真值。
将正负号分别用一位数码0和1来代替,一般将 这种符号位放在数的最高位。这种在机器中使 用的连同数符一起数码化的数,称为机器数。
1
计算机组成原理
计算机组成原理 第五课
例:X0X1X2X3C =10110 (奇) X0'X1'X2'X3' C' =11110 由X0'X1'X2'X3'生成C*=
(1 ⊕ 1) ⊕ (1 ⊕ 1)
=1,则
C*⊕C' =1⊕0=1 —— 出错
(4) 优缺点
优点:简单易行,省器件. 缺点:只能发现奇数位错,无纠错能力.
2.1.4 数据校验码
1. 数据校验码:
用以发现或同时能得出错误位置特征的数据编码. 计算机中的错误类型: ; (1)固定性错误---元器件故障; ) (2)突发性错误---噪声干扰. )
2. 检错码--奇偶校验码 (1) 定义
使包括一位校验位在内的数据代码,"1"的个数总是奇 (或偶)数个为合法数据的编码.
2. 补码定点减法
(1)补码减法的规则: 推论: [X-Y]补= [X+(-Y)]补 =[X]补+[-Y]补 已知 [Y]补 ,那么 [-Y]补=? (2)求补: 由[Y]补求[-Y]补,称为对Y求补. (3)求补规则 : 不管真值Y时正数还是负数,求补的方法都是将[Y]补 可见:求补时,从[Y]补的最低位开始向高位扫描,见到第 连同符号位在内各位变反, 末位加1. 一个"1",包括这个"1"的各位不变,其余各位变反 例如:[y]补=1.1010,则环冗余校验码(CRC) CRC
n位数据位和r位校验位只有1位出错,共有n+r种情况, (1) 纠正一位错所需的校验码位数r 加上没有错的一种情况,共有n+r+1种情况,而r位二进 设待编码的信息有效位数为n,则r应满足: 制的编码数为2r,因此 2r≥n+r+1 即 r>log2n n r 1 2 2~4 3 5~11 12~26 4 5
计算机组成原理第2章-二进制加减法器
X←F 选通门
X ← X-Y
F← X
减
F← Y F← 1
X← F
4/12/2021
实现补码加运算的执行过程
X ← X+Y
Fs
00000111
OVR
Z
Fs 加法器
C
完成加运算,需 要把被加数和加 数送ALU的输入
端,运算结果要
F←X
选通门
F←Y 接收到累加器,
二选一
需要给出命令:
X
CP
01001001101
基本的二进制加/减法器
全加器的表达式为:
Si = Ai Bi Ci Ci+1 = AiBi + BiCi + AiCi 一位全加器内部逻辑图
Ci+
Si
C
1
AB C
Ci
Ai
Bi A
B
3
信 息 科 学 与 工 程 学 院3
第二章 运算方法和运算器
数据与文字的表示 定点加减法运算 定点乘法运算 定点除法运算 定点运算器的组成 浮点运算与浮点运算器
4/12/2021
单符号位判断
数值位向符 号位有进位
OV= C0 C1 + C0 C1 判断电路
但符号位无 进位输出或
c0
数值位向符 号位没有进 位但符号位 本身有进位 输出是溢出
x0 y0
x1 y1
FA
z0
c1
FA
z1
OV
4/12/2021
双符号位判断
OV= z0' z0 + z'0 z0 = z0' z0
5
信 息 科 学 与 工 程 学 院5
计算机组成原理第四版第二章
+ [y]补 0. 0 1 0 1 [x+y]补 0. 1 1 1 0
所以x+y=+0.1110
Back
第二章 运算方法和运算器
B 补码减法
➢ 公式:
[x-y]补=[x]补-[y]补=[x]补+[-y]补
➢ 举例
已知 x=+0.1101 , y=+0.0110,求x-y。 解: [x]补=0.1101 [y]补=0.0110 ,[-y]补=1.1010 [x]补 0. 1 1 0 1 + [-y]补 1. 1 0 1 0 [x-y]补 1 0. 0 1 1 1
最大正数,称为“上溢” 或“正溢出”
两个负数相加,结果 小于机器所能表示的最
小负数,称为“下溢” 或“负溢出”
判断方法
举例说明
Back
第二章 运算方法和运算器
溢出检测方法常用以下两种方法:
1.采用双符号位(变形补码)判断方法:
变形补码: “00”表示正数、“11”表负数,两符号位同时参加运算, 运算结果符号出现01或10表明溢出。
发生溢出;而在浮点运算时,运算结果超出尾数的表示范围 却并不一定溢出,只有当阶码也超出所能表示的范围时,才 发生溢出。
Back
3.十进制数串的表示方法
➢ 目前,大多数通用性较强的计算机都能直接 处理十进制形式表示的数据。十进制数串 在计算机内主要有两种表示形式:
➢ 1.字符串形式 ➢ 2.压缩的十进制数串形式
➢ 计算机采用定点数表示时,对于既有整数又有小数的原始数据,需要设 定一个比例因子,数据按其缩小成定点小数或扩大成定点整数再参加运 算,运算结果,根据比例因子,还原成实际数值。若比例因子选择不当, 往往会使运算结果产生溢出或降低数据的有效精度。
计算机组成原理课后习题参考答案
计算机组成原理答案第一章计算机系统概论1.比较数字计算机和模拟计算机的特点。
解:模拟计算机的特点:数值由连续量来表示,运算过程是连续的;数字计算机的特点:数值由数字量(离散量)来表示,运算按位进行。
两者主要区别见P1 表1.1。
2.数字计算机如何分类?分类的依据是什么?解:分类:数字计算机分为专用计算机和通用计算机。
通用计算机又分为巨型机、大型机、中型机、小型机、微型机和单片机六类。
分类依据:专用和通用是根据计算机的效率、速度、价格、运行的经济性和适应性来划分的。
通用机的分类依据主要是体积、简易性、功率损耗、性能指标、数据存储容量、指令系统规模和机器价格等因素。
4.冯. 诺依曼型计算机的主要设计思想是什么?它包括哪些主要组成部分?解:冯. 诺依曼型计算机的主要设计思想是:存储程序和程序控制。
存储程序:将解题的程序(指令序列)存放到存储器中;程序控制:控制器顺序执行存储的程序,按指令功能控制全机协调地完成运算任务。
主要组成部分有:(控制器、运算器)(CPU的两部分组成)、存储器、输入设备、输出设备(I/O设备)。
5.什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?解:存储容量:指存储器可以容纳的二进制信息的数量,通常用单位KB、MB、GB来度量,存储容量越大,表示计算机所能存储的信息量越多,反映了计算机存储空间的大小。
单元地址:简称地址,在存储器中每个存储单元都有唯一的地址编号,称为单元地址。
数据字:若某计算机字是运算操作的对象即代表要处理的数据,则称数据字。
指令字:若某计算机字代表一条指令或指令的一部分,则称指令字。
6.什么是指令?什么是程序?解:指令:计算机所执行的每一个基本的操作。
程序:解算某一问题的一串指令序列称为该问题的计算程序,简称程序。
7.指令和数据均存放在内存中,计算机如何区分它们是指令还是数据?解:一般来讲,在取指周期中从存储器读出的信息即指令信息;而在执行周期中从存储器中读出的信息即为数据信息。
计算机组成原理前3章课后习题参考答案解析
白中英第五版计算机组成原理课后习题参考答案第一章计算机系统概述4、冯•诺依曼型计算机的主要设计思想是什么?它包括哪些主要组成部分?答:冯•诺依曼型计算机的主要设计思想是存储程序和程序控制,其中存储程序是指将程序和数据事先存放到存储器中,而程序控制是指控制器依据存储的程序来控制全机协调地完成计算任务。
总体来讲,存储程序并按地址顺序执行,这就是冯•诺依曼型计算机的主要设计思想。
5、什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?答:见教材P8和P10。
7、指令和数据均存放在内存中,计算机如何区分它们是指令还是数据?答:见教材P10。
第二章运算方法和运算器1、写出下列各整数的原码、反码、补码表示(用8位二进制数)。
3、有一个字长为32位的浮点数,符号位1位,阶码8位,用移码表示,尾数23位,用补码表示,基数为2,请写出:(1)最大数的二进制表示阶码用移码表示,题中并未说明具体偏移量,故此处按照移码的定义,即采用偏移量为27=128,则此时阶码E的表示范围为0000 0000~1111 1111,即0~255,则在上述条件下,浮点数为最大数的条件如下:所以最大数的二进制表示为:0 1111 1111 1111 1111 1111 1111 1111 1111 111 对应十进制真值为:+(1-2-23)×2127(2)最小数的二进制表示浮点数为最小数的条件如下:所以最小数的二进制表示为:1 1111 1111 0000 0000 0000 0000 0000 000对应十进制真值为:-1×2127(3)规格化数所表示数的范围规格化要求尾数若为补码表示,则符号位和最高有效位符号必须不同。
(A)浮点数为最大正数的条件如下:所以最大正数的二进制表示为:0 1111 1111 1111 1111 1111 1111 1111 1111 111 对应十进制真值为:+(1-2-23)×2127(B)浮点数为最小正数的条件如下:所以最小正数的二进制表示为:0 0000 0000 1000 0000 0000 0000 0000 000 对应十进制真值为:+2-1×2-128=+2-129(C)浮点数为最大负数的条件如下:所以最大负数的二进制表示为:0 0000 0000 0111 1111 1111 1111 1111 111 对应十进制真值为:-(2-1+2-23)×2-128(D)浮点数为最小负数的条件如下:所以最小负数的二进制表示为:0 0000 0000 0000 0000 0000 0000 0000 000 对应十进制真值为:-1×2127所以,规格化数所表示数的范围如下:正数 +2-129~+(1-2-23)×2127负数 -2127 ~-(2-1+2-23)×2-1284、将下列十进制数表示成IEEE754标准的32位浮点规格化数。
经典:计算机组成原理-第2章-运算方法和运算器
第二章:运算方法和运算器
2.1 数据与文字的表示方法 2.2 定点加法、减法运算 2.3 定点乘法运算 2.4 定点除法运算 2.5 定点运算器的组成 2.6 浮点运算方法和浮点运算器
其中尾数域所表示的值是1.M。因为规格化的浮点数的尾数域最
左位(最高有效位)总是1。故这一位经常不予存储,而认为隐藏
在小数点的左边。
64位的浮点数中符号位1位,阶码域11位,尾数域52位,指数偏
移值是1023。因此规格化的64位浮点数x的真值为:
x=(-1)s ×(1.M) × 2E-1023 e=E-1023
[X]反=1.x1x2...xn 对于0,有[+0]反=[-0]反之分:
[+0]反=0.00...0
[-0]反=1.11...1
我们比较反码与补码的公式
[X]反=2-2-n+X
[X]补=2+X
可得到 [X]补=[X]反+2-n
8
若要一个负数变补码,其方法是符号位置1,其余各位0变1,1变 0,然后在最末位(2-n)上加1。
10100.10011=1.010010011*24 e=4 于是得到:S=0,E=4+127=131=10000011, M=010010011 最后得到32位浮点数的二进制存储格式为: 0100 0001 1010 0100 1100 0000 0000 0000=(41A4C000)164
计算机组成原理-第2周下-定点加减法运算
[y]补= 1 1 0 1 1 10 0110
所以
x+y=+0110
6
例: x=-11001 ,y=-00011,求 x+y=?
解:[x]补=1 0 0 1 1 1, [y]补=1 1 1 1 0 1
[x]补=1 0 0 1 1 1 +
丢掉
[y]补=1 1 1 1 0 1 11 0 01 0 0 由以上三例看到,补码加法的特点: (1) 符号位要作为数的一部分一 起参加运算。 (2) 要在模2n+1的意义下相加, 即超过2n+1的进位要丢掉!
13
[例16] x=-1101, y=-1011,求x+y。 [解:] [x]补=10011 [y]补=10101 [x]补 + [y]补 [x+y]补 10011 10101 01000
两个负数相加的结果成为正数,这同样是错误的。 之所以发生错误,是因为运算结果产生了溢出。两个正数相 加,结果大于机器所能表示的最大正数,称为正溢出。而两个负数 相加,结果小于机器所能表示的最小负数,称为负溢出。
21
常见的门电路
1.与门 真值表表示的两输入端与门如表2-1所示,逻辑符号如图 2-1所示。从与门的逻辑关系上可以看出,如果输入端A 作为控制端,则A的值将会决定输入端B的值是否能被输 出到端口Y。
Y AB
A
B
Y=AB
0 0 0 0 1 0 1 0 0 1 1 1 表2-1 两输入端与门的真值表
27
5.或非门
真值表表示的两输入端或非门如表2-5所示,逻辑符号如 图2-5所示。可以利用或非门的输入端A来控制输入端B。 当A=0时,(输入信号被反相输出);当A=1时,则不管 B的值是什么,Y都为0。
计算机组成原理(第四版)复习重点及例子
计算机组成原理复习重点及要求第二章运算方法和运算器1.定点数的表示方法:掌握定点数的概念;掌握定点数的机器码表示(主要是原码、补码和移码)。
2.定点数的运算方法:掌握补码加减运算方法、溢出概念及检测方法。
3.定点运算器:掌握全加器的功能;掌握行波进位加减法器的结构及工作原理;理解多功能ALU的结构原理;掌握定点运算器的基本结构及其特点(包括单总线结构、双总线结构和三总线结构)。
4.浮点数的表示方法:掌握浮点数的概念;掌握浮点数表示的一般格式;掌握浮点数规格化表示的方法及其意义。
5.浮点数的运算方法:掌握浮点数的加减运算方法及步骤。
第三章存储系统1.理解多级存储器体系结构的意义及各级存储器的主要作用。
2.SRAM存储器:理解存储器芯片的逻辑结构(包括存储阵列、双译码方式、读写控制等);掌握SRAM存储器芯片的外部引脚特征(包括地址、数据、控制引脚);掌握SRAM存储器容量扩充方法(包括位扩展、字扩展、字位同时扩展,以及与CPU 的连接等)。
3.DRAM存储器:掌握DRAM存储器的存储原理;理解DRAM存储器的刷新问题及刷新方法;掌握DRAM存储器芯片的外部引脚特征。
4.ROM存储器:掌握ROM存储器的种类;掌握EPROM的擦、写特点。
5.Cache存储器:掌握cache存储器的作用及工作原理,理解程序局部性原理的意义;掌握cache-主存系统性能指标的计算方法(包括命中率、平均访问时间及效率);掌握各种主存与cache的地址映射方式及其特点,理解各种映射方式下的主存与cache的地址格式及其各字段的含义;理解替换策略对cache存储器的意义。
6.虚拟存储器:掌握虚拟存储器的作用及相关概念;掌握各式虚拟存储器的工作原理及特点(包括页式、段式和段页式虚拟存储器);掌握各式虚拟存储器的地址变换过程,掌握各自的虚地址格式及其各字段的含义。
第四章指令系统1.指令系统的基本概念:掌握机器指令、指令系统、系列机、CISC、RISC等概念。
计算机组成原理知识点总结
计算机组成原理白中英复习第一章计算机系统概论电子数字计算机的分类P1通用计算机超级计算机、大型机、服务器、工作站、微型机和单片机和专用计算机;计算机的性能指标P5数字计算机的五大部件及各自主要功能P6五大部件:存储器、运算器、控制器、输入设备、输出设备;存储器主要功能:保存原始数据和解题步骤;运算器主要功能:进行算术、逻辑运算;控制器主要功能:从内存中取出解题步骤程序分析,执行操作;输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式;输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式;计算机软件P11系统程序——用来管理整个计算机系统应用程序——按任务需要编制成的各种程序第二章运算方法和运算器课件+作业第三章内部存储器存储器的分类P65按存储介质分类:易失性:半导体存储器非易失性:磁表面存储器、磁芯存储器、光盘存储器按存取方式分类:存取时间与物理地址无关随机访问:随机存储器RAM——在程序的执行过程中可读可写只读存储器ROM——在程序的执行过程中只读存取时间与物理地址有关串行访问:顺序存取存储器磁带直接存取存储器磁盘按在计算机中的作用分类:主存储器:随机存储器RAM——静态RAM、动态RAM只读存储器ROM——MROM、PROM、EPROM、EEPROMFlash Memory高速缓冲存储器Cache辅助存储器——磁盘、磁带、光盘存储器的分级P66存储器三个主要特性的关系:速度、容量、价格/位多级存储器体系结构:高速缓冲存储器cache、主存储器、外存储器;主存储器的技术指标P67存储容量:存储单元个数M×每单元位数N存取时间:从启动读写操作到操作完成的时间存取周期:两次独立的存储器操作所需间隔的最小时间 ,时间单位为ns;存储器带宽:单位时间里存储器所存取的信息量,位/秒、字节/每秒,是衡量数据传输速率的重要技术指标;SRAM存储器P67基本存储元:用一个锁存器触发器作为存储元;基本的静态存储元阵列P68双译码方式P68读周期、写周期、存取周期P70DRAM存储器P70基本存储元:由一个MOS晶体管和电容器组成的记忆电路;存储原理:所存储的信息1或0由电容器上的电荷量来体现充满电荷:1;没有电荷:0;一个DRAM存储元的写、读、刷新操作P71DRAM的刷新:集中式刷新和分散式刷新P73存储器容量的扩充P73位扩展——增加存储字长P73字扩展——增加存储字的数量P73字、位扩展P74例题P73只读存储器ROM P80掩模ROM、PROM、EPROM、EEPROM、Flash 存储器P80-86并行存储器P86双端口存储器:指同一个存储器具有两组相互独立的读写控制线路;多模块交叉存储器:连续地址分布在相邻的不同模块内,同一个模块内的地址都是不连续的;对连续字的成块传送可实现多模块流水式并行存取,大大提高存储器的带宽; cache基本原理P92避免 CPU“空等”现象CPU 和主存DRAM的速度差异程序访问的局部性原理cache由高速的SRAM组成cache的基本原理P93命中、未命中、命中率P93例题P94cache与主存的地址映射P94全相联映像:主存中的任一块可以映象到缓存中的任一块;直接映像:每个缓存块可以和若干个主存块对应;每个主存块只能和一个缓存块对应;组相联映像:某一主存块 j 按模 u 映射到缓存的第i 组中的任一块;替换算法P98先进先出算法FIFO:把一组中最先调入cache的块替换出去,不需要随时记录各个块的使用情况,所以实现容易,开销小;近期最少使用算法LRU:将近期内长久未被访问过的行块换出;每行设置一个计数器,cache每命中一次,命中行计数器清零,其它各行计数器增1;当需要替换时,比较各特定行的计数值,将计数值最大的行换出;最不经常使用LFU:被访问的行计数器增加1,换值小的行,不能反映近期cache的访问情况;随机替换:从特定的行位置中随机地选取一行换出; cache的写操作策略P99写回法、全写法、写一次法P99-100第四章指令系统指令系统P103程序、高级语言、机器语言、指令、指令系统、复杂指令系统计算机CISC、精简指令系统计算机RISCP103指令格式P105操作码:指令操作性质的二进制数代码地址码:指令中的地址码用来指出该指令的源操作数地址一个或两个、结果地址及下一条指令的地址;三地址指令、二地址指令、一地址指令、零地址指令;三种二地址指令SS、RR、RSP106指令字长度、机器字长P107例题P110操作数类型P110地址数据、数值数据、字符数据、逻辑数据寻址方式P112确定本条指令的操作数地址,下一条欲执行指令的指令地址指令寻址顺序寻址——PC+1跳跃寻址——转移类指令数据寻址P112-116立即寻址——形式地址就是操作数直接寻址——有效地址由形式地址直接给出隐含寻址——操作数地址隐含在操作码中间接寻址——有效地址由形式地址间接提供寄存器寻址——有效地址即为寄存器编号寄存器间接寻址——有效地址在寄存器中基址寻址——有效地址=形式地址+基地址变址寻址——有效地址=形式地址+变址寄存器的内容相对寻址——有效地址=PC的内容+形式地址堆栈寻址——栈顶指针段寻址例题P118指令的分类119数据处理、数据存储、数据传送、程序控制RISC技术P121RISC——精简指令系统计算机CISC——复杂指令系统计算机RISC指令系统的特点P121第五章中央处理器CPU的功能P127指令控制、操作控制、时间控制、数据加工CPU的基本组成P127控制器、运算器、cacheCPU中的主要寄存器P128数据缓冲寄存器DR、指令寄存器IR、程序计数器PC、数据地址寄存器AR、通用寄存器、状态字寄存器PSW操作控制器的分类P130时序逻辑型:硬布线控制器存储逻辑型:微程序控制器指令周期P131取出并执行一条指令所需的全部时间;指令周期、机器周期、时钟周期P131一个指令周期含若干个机器周期一个机器周期包含若干个时钟周期取指周期数据流P132执行周期数据流P133—138时序信号的作用和体制P141时序信号的基本体制是电位—脉冲制;数据加在触发器的电位输入端D ,打入数据的控制信号加在触发器的时钟脉冲输入端 CP;电位高低表示数据是1还是0,要求打入数据的控制信号来之前电位信号必须已稳定;节拍电位、节拍脉冲P142控制器的控制方式P144同步控制方式:即固定时序控制方式,各项操作都由统一的时序信号控制,在每个机器周期中产生统一数目的节拍电位和工作脉冲;异步控制方式:不受统一的时钟周期节拍的约束;各操作之间的衔接与各部件之间的信息交换采取应答方式;联合控制方式:同步控制和异步控制相结合的方式,大部分指令在固定的周期内完成,少数难以确定的操作采用异步方式;微程序控制原理P145微程序控制是指运行一个微程序来实现一条机器指令的功能;微程序控制的基本思想:仿照计算机的解题程序,把微操作控制信号编制成通常所说的“微指令”,再把这些微指令按时序先后排列成微程序,将其存放在一个只读存储器里,当计算机执行指令时,一条条地读出这些微指令,从而产生相应的操作控制信号,控制相应的部件执行规定的操作;微程序、微指令、微命令、微操作P145机器指令与微指令的关系P150微命令的编码方法P151直接表示法:微指令的每一位代表一个微命令,不需要译码;编码表示法:把一组相斥性的微命令信号组成一个小组即一个字段,然后通过小组字段译码器对每一个微命令信号进行译码,译码输出作为操作控制信号;混合表示法:把直接表示法与字段编码表示法混合使用,以便能综合考虑微指令字长、灵活性、速度等方面的要求;微指令格式P153水平型微指令:是指一次能定义并能并行执行多个微命令的微指令;垂直型微指令:微指令中设置微操作码字段,采用微操作码编译法,由微操作码规定微指令的功能,称为垂直型微指令;垂直型微指令的结构类似于机器指令的结构;硬连线控制器P155基本思想:通过逻辑电路直接连线而产生的,又称为组合逻辑控制方式;这种逻辑电路是一种由门电路和触发器构成的复杂树形逻辑网络;三个输入:来自指令操作码译码器的输出;来自执行部件的反馈信息;来自时序产生器的时序信号,包括节拍电位信号M和节拍脉冲信号T;一个输出:微操作控制信号硬布线控制器的基本原理:某一微操作控制信号C用一个逻辑函数来表达;并行处理技术P161并行性的概念:问题中具有可以同时进行运算或操作的特性;时间并行:让多个处理过程在时间上相互错开,轮流使用同一套硬件设备的各个部件,以加快硬件周转而赢得速度,实现方式就是采用流水处理部件;空间并行:以数量取胜;它能真正的体现同时性时间+空间并行:综合应用;Pentium中采用了超标量流水线技术;流水线的分类P163指令流水线:指指令步骤的并行;将指令流的处理过程划分为取指令、译码、取操作数、执行、写回等几个并行处理的过程段;算术流水线:指运算操作步骤的并行;如流水加法器、流水乘法器、流水除法器等;处理机流水线:是指程序步骤的并行;由一串级联的处理机构成流水线的各个过程段,每台处理机负责某一特定的任务;流水线中的主要问题P164资源相关:指多条指令进入流水线后在同一机器时钟周期内争用一个功能部件所发生的冲突;数据相关:在一个程序中,如果必须等前一条指令执行完毕后,才能执行后一条指令;解决数据相关冲突的办法:为了解决数据相关冲突,流水CPU的运算器中特意设置若干运算结果缓冲寄存器,暂时保留运算结果,以便于后继指令直接使用,称为“向前”或定向传送技术;控制相关:由转移指令引起的;解决控制相关冲突的办法:延迟转移法、转移预测法;例题P165第六章总线系统总线的概念P184总线是构成计算机系统的互联机构,是多个系统功能部件之间进行数据传送的公共通路;总线的分类P184内部总线——CPU内部连接各寄存器及运算部件之间的总线;系统总线——CPU和计算机系统中其他高速功能部件相互连接的总线;按系统传输信息的不同,又可分为三类:数据总线,地址总线和控制总线;I/O总线——中、低速I/O设备之间互相连接的总线;总线性能指标P185总线宽度:指数据总线的根数;寻址能力:取决于地址总线的根数;PCI总线的地址总线为32位,寻址能力达4GB;传输率:也称为总线带宽,是衡量总线性能的重要指标;例题P193总线上信息传送方式P190串行传送:使用一条传输线,采用脉冲传送有脉冲为1,无脉冲为0;连续几个无脉冲的处理方法:位时间;并行传送:每一数据位需要一条传输线,一般采用电位传送电位高为1,电位低为0;分时传送:总线复用、共享总线的部件分时使用总线;总线接口P192I/O接口,也叫适配器,和CPU数据的交换一定是并行的方式,和外设数据的交换可以是并行的,也可以是串行的;总线的仲裁P193集中式仲裁:有统一的总线仲裁器;链式查询方式、计数器定时查询方式、独立请求方式P193—195分布式仲裁:不需要中央仲裁器,每个潜在的主方功能模块都有自己的仲裁器和仲裁号;P195总线的定时P196同步定时:事件出现在总线上的时刻由总线时钟信号来确定;异步定时:后一事件出现在总线上的时刻取决于前一事件的出现,即建立在应答式或互锁机制基础上;PCI总线P200PCI:外围设备互连,PCI总线:连接各种高速的PCI设备;PCI是一个与处理器无关的高速外围总线,又是至关重要的层间总线;它采用同步时序协议和集中式仲裁策略,并具有自动配置能力;PCI总线支持无限的猝发式传送;即插即用;第七章外围设备外围设备的定义和分类P209除了CPU和主存外,计算机系统的每一部分都可作为一个外围设备来看待;外围设备可分为输入设备、输出设备、外存设备、数据通信设备和过程控制设备几大类;磁记录原理P210计算机的外存储器又称磁表面存储设备;所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息;磁盘存储器、磁带存储器均属于磁表面存储器;磁性材料上呈现剩磁状态的地方形成了一个磁化元或存储元,是记录一个二进制信息位的最小单位;磁表面存储器的读写原理P211在磁表面存储器中,利用一种称为磁头的装置来形成和判别磁层中的不同磁化状态;通过电-磁变换,利用磁头写线圈中的脉冲电流,可把一位二进制代码转换成载磁体存储元的不同剩磁状态;通过磁-电变换,利用磁头读出线圈,可将由存储元的不同剩磁状态表示的二进制代码转换成电信号输出;磁盘的组成和分类P213硬磁盘是指记录介质为硬质圆形盘片的磁表面存储设备; 它主要由磁记录介质、磁盘控制器、磁盘驱动器三大部分组成;温彻斯特磁盘简称温盘,是一种采用先进技术研制的可移动磁头固定盘片的磁盘机;它是一种密封组合式的硬磁盘,即磁头、盘片、电机等驱动部件乃至读写电路等组装成一个不可随意拆卸的整体;磁盘上信息的分布P215记录面、磁道、扇区P215磁道编号P215磁盘地址由记录面号也称磁头号、磁道号和扇区号三部分组成;磁盘存储器的技术指标P216存储密度:存储密度分道密度、位密度和面密度;道密度:沿磁盘半径方向单位长度上的磁道数,单位道/英寸;位密度:磁道单位长度上能记录的二进制代码位数,单位为位/英寸;面密度:位密度和道密度的乘积,单位为位/平方英寸;平均存储时间=寻道时间+等待时间+数据传送时间P216数据传输率P217例题P217磁盘cacheP218磁盘cache是为了弥补慢速磁盘和主存之间速度上的差异;磁盘阵列RAIDP218RAID:独立磁盘冗余阵列廉价冗余磁盘阵列,或简称磁盘阵列;简单的说, RAID 是一种把多块独立的硬盘物理硬盘按不同方式组合起来形成一个硬盘组逻辑硬盘,从而提供比单个硬盘更高的存储性能和提供数据冗余的技术;组成磁盘阵列的不同方式成为 RAID 级别;RAID 0 提高存储性能的原理是把连续的数据分散到多个磁盘上存取, 这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求;这种数据上的并行操作可以充分利用总线的带宽,显着提高磁盘整体存取性能;第八章输入输出系统外围设备的速度分级P236在CPU和外设之间数据传送时加以定时:速度极慢或简单的外设:CPU只需要接受或者发送数据即可;慢速或者中速的设备:可以采用异步定时的方式;高速外设:采用同步定时方式;I/O和主机信息交换方式P237程序查询方式、程序中断方式、直接内存访问DMA方式、通道方式程序查询方式P239数据在CPU和外围设备之间的传送完全靠计算机程序控制;当需要输入/输出时,CPU暂停执行主程序,转去执行设备输入/输出的服务程序,根据服务程序中的I/O指令进行数据传送;这是一种最简单、最经济的输入/输出方式,只需要很少的硬件;但由于外围设备动作很慢,程序进入查询循环时将浪费CPU时间;中断的概念P242中断是指CPU暂时中止现行程序,转去处理随机发生的紧急事件,处理完后自动返回原程序的功能和技术;程序中断方式的原理P242在程序中断方式中,某一外设的数据准备就绪后,它“主动”向CPU发出请求中断的信号,请求CPU暂时中断目前正在执行的程序而进行数据交换;当CPU响应这个中断时,便暂停运行主程序,并自动转移到该设备的中断服务程序;当中断服务程序结束以后,CPU又回到原来的主程序;中断处理过程中的几个问题P243CPU只有在当前一条指令执行完毕后,即转入公操作时才受理设备的中断请求;保存现场P243中断屏蔽P243中断处理过程P243单级中断和多级中断P245单级中断系统中,所有的中断源都属于同一级,所有中断源触发器排成一行,其优先次序是离CPU近的优先权高; 当响应某一中断请求时,执行该中断源的中断服务程序;在此过程中,不允许其他中断源再打断中断服务程序,既使优先权比它高的中断源也不能再打断;多级中断系统是指计算机系统中有相当多的中断源,根据各中断事件的轻重缓急程度不同而分成若干级别,每一中断级分配给一个优先权;优先权高的中断级可以打断优先权低的中断服务程序,以程序嵌套方式工作;一维多级中断是指每一级中断里只有一个中断源,二维多级中断是指每一级中断里又有多个中断源;DMA的基本概念P253直接内存访问DMA是一种完全由硬件执行I/O交换的工作方式;在这种方式中,DMA控制器从CPU完全接管对总线的控制,数据交换不经过CPU,而直接在内存和I/O设备之间进行;DMA方式一般用于高速传送成组数据;DMA方式的优点P253DMA能执行的一些操作P254从外围设备发出DMA请求;CPU响应请求,把CPU工作改成DMA操作方式,DMA控制器从CPU接管总线的控制;由DMA 控制器对内存寻址,即决定数据传送的内存单元地址及数据传送个数的计数,并执行数据传送的操作;发中断,向CPU报告DMA操作的结束;DMA传送方式P254停止CPU访问内存、周期挪用、DMA与CPU交替访内P254 DMA数据传送过程P257传送前预处理;正式传送;传送后处理;P257通道的基本概念P261通道是一个特殊功能的处理器,它有自己的指令和程序专门负责数据输入输出的传输控制,而CPU将“传输控制”的功能下放给通道后只负责“数据处理”功能;这样,通道与CPU 分时使用内存,实现了CPU内部运算与I/O设备的平行工作;通道的功能P253通道具有两种类型的总线:存储总线:承担通道与内存、CPU与内存之间的数据传输任务;通道总线即I/O总线,承担外围设备与通道间的数据传送任务;从逻辑结构上讲,I/O系统一般具有四级连接:CPU与内存通道设备控制器外围设备优先级别:由于大多数I/O设备的读写信号具有实时性,不及时处理会丢失数据;所以通道与CPU同时要求访内时,通道优先权高于CPU;CPU对通道的管理P262CPU是通过执行I/O指令以及处理来自通道的中断,实现对通道的管理;来自通道的中断有两种,一种是数据传送结束中断,另一种是故障中断;通道对I/O模块的管理P262通道通过使用通道指令控制I/O模块进行数据传送操作,并以通道状态字接收I/O模块反映的外围设备的状态;通道的类型P262选择通道、数组多路通道、字节多路通道P263第九章操作系统支持虚拟存储器的概念P282虚拟存储器是借助于磁盘等辅助存储器来扩大主存容量,使之为更大或更多的程序所使用;是一个容量非常大的存储器的逻辑模型,不是任何实际的物理存储器;它指的是主存-外存层次;以透明的方式给用户提供了一个比实际主存空间大得多的程序地址空间;实地址:或物理地址,计算机物理内存的访问地址,由CPU引脚送出,是用于访问主存的地址,对应的存储空间——物理存储空间或主存空间;虚地址:或逻辑地址,在编制程序时独立编址,使用的地址,对应的存储空间——虚存空间或逻辑地址空间;虚地址到实地址的转换过程——程序的再定位;虚存的访问过程P283虚拟存储器的用户程序以虚拟地址编址并存放在辅存中;程序运行时CPU以虚地址访问主存,由辅助硬件找出虚地址和物理地址的对应关系,判断这个虚地址指示的存储单元是否已装入主存:如果在主存,CPU就直接执行已在主存的程序;如果不在,要进行辅存向主存的调度;虚存与cache的异同P283几种虚拟存储器P284段式、页式、段页式页式虚拟存储器P284页、页表:页式虚拟存储系统中,虚地址空间被分成等长大小的页,称为逻辑页;主存空间也被分成同样大小的页,称为物理页;相应地,虚地址分为两个字段:高字段为逻辑页号,低字段为页内地址偏移量;实存地址也分两个字段:高字段为物理页号,低字段为页内地址;通过页表可以把虚地址逻辑地址转换成物理地址;页式虚存地址映射:地址变换时,用逻辑页号作为页表内的偏移地址索引页表,并找到相应物理页号,用物理页号作为实存地址的高字段,再与虚地址的页内偏移量拼接,就构成完整的物理地址;虚页内容若没有调入主存,则计算机启动输入输出系统,把虚地址指示的一页内容从辅存调入主存,再提供CPU访问;转换后援缓冲器P285段式虚拟存储器P286段式虚拟存储器,是以程序的逻辑结构所形成的段如主程序、子程序、过程、表格等作为主存分配单位的虚拟存储器管理方式的存储器;每个段的大小可以不相等;每个程序都有一个段表映象表,用于存放该道程序各程序段从辅存装入主存的状况信息;段表一般驻留在主存中;段式虚存地址映射P287段页式虚拟存储器P287把程序按逻辑单位分段以后,再把每段分成固定大小的页;程序对主存的调入调出是按页面进行的,但它又可以按段实现共享和保护,兼备页式和段式的优点;虚存的替换算法P289虚拟存储器中的替换策略一般采用LRU Least Recent1y Used算法、LFU算法、FIFO算法,或将两种算法结合起来使用;例题P289。
(完整word版)计算机组成原理期末试题及答案
第一章计算机系统概论计算机的硬件是由有形的电子器件等构成的,它包括运算器、存储器、控制器、适配器、输入输出设备。
早起将运算器和控制器合在一起称为CPU(中央处理器)。
目前的CPU包含了存储器,因此称为中央处理器。
存储程序并按地址顺序执行,这是冯·诺依曼型计算机的工作原理,也是CPU自动工作的关键。
计算机系统是一个有硬件、软件组成的多级层次结构,它通常由微程序级、一般程序级、操作系统级、汇编语言级、高级语言级组成,每一级上都能进行程序设计,且得到下面各级的支持。
习题:4冯·诺依曼型计算机的主要设计思想是什么?它包括那些主要组成部分?主要设计思想是:存储程序通用电子计算机方案,主要组成部分有:运算器、逻辑控制装置、存储器、输入和输出设备5什么是存储容量?什么是单元地址?什么是数据字?什么是指令字?存储器所有存储单元的总数称为存储器的存储容量。
每个存储单元都有编号,称为单元地址。
如果某字代表要处理的数据,称为数据字。
如果某字为一条指令,称为指令字7指令和数据均存放在内存中,计算机如何区分它们是指令还是数据?每一个基本操作称为一条指令,而解算某一问题的一串指令序列,称为程序第二章运算方法和运算器按对阶操作。
直接使用西文标准键盘输入汉字,进行处理,并显示打印汉字,是一项重大成就。
为此要解决汉字的输入编码、汉字内码、子模码等三种不同用途的编码。
1第三章 内部存储器CPU 能直接访问内存(cache 、主存)双端口存储器和多模块交叉存储器属于并行存储器结构。
cache 是一种高速缓冲存储器,是为了解决CPU 和主存之间速度不匹配而采用的一项重要的硬件技术,并且发展为多级cache 体系,指令cache 与数据cache 分设体系。
要求cache 的命中率接近于1适度地兼顾了二者的优点又尽量避免其缺点,从灵活性、命中率、硬件投资来说较为理想,因而得到了普遍采用。
习题: 1设有一个具有20位地址和32位字长的存储器,问:(1)该存储器能存储多少个字节的信息?(2)如果存储器由512K ×8位SRAM 芯片组成,需要多少片;(3)需要多少位地址做芯片选择?(1)字节M 4832*220= (2)片84*28*51232*1024==K K (3)1位地址作芯片选择 2 已知某64位机主存采用半导体存储器,其地址码为26位,若使用4M ×8位DRAM 芯片组成该机所允许的最大主存空间,并选用内存条结构形式,问:(1) 若每个内存条16M ×64位,共需几个内存条?(2)每个内存条共有多少DRAM 芯片? (3)主存共需多少DRAM 芯片?CPU 如何选择各内存条?(1). 共需模块板数为m :m=÷2^24=4(块)(2). 每个模块板内有DRAM 芯片数为32 (片)(3) 主存共需DRAM 芯片为:4*32=128 (片)每个模块板有32片DRAM 芯片,容量为16M ×64位,需24根地址线(A23~A0) 完成模块板内存储单元寻址。
白中英计算机组成原理第2章-运算方法与运算器
2024年7月16日星期二
5
2.1 数据与文字的表示方法
2.1.1 数据格式 2.1.2 数的机器码表示 2.1.1 数据格式 2.1.3 字符与字符串的表示方法 2.1.4 汉字的表示方法 2.1.5 校验码
2024年7月16日星期二
6
2.1.1 数据格式——定点数
2024年7月16日星期二
3
2.0 数据的类型(1/2)
按数制分:
十进制:在微机中直接运算困难;
二进制:占存储空间少,硬件上易于实现,易于运算;
十六进制:方便观察和使用;
二-十进制:4位二进制数表示1位十进制数,转换简单。 按数据格式分:
真值:没有经过编码的直观数据表示方式,其值可带正负号, 任何数制均可;
-8 1000 0000 -7 1001 0001 -6 1010 0010 …… …… ……
可以比较直观地判断两个数据的大小; 0 0000 1000
浮点数运算时,容易进行对阶操作;
+1 0001 1001
表示浮点数阶码时,容易判断是否下溢; …… …… ……
当阶码为全0时,浮点数下溢。
+7 0111 1111
优点 与真值对应关系简单;
缺点 参与运算复杂,需要将数值位与符号位分开考虑。
2024年7月16日星期二
11
补码表示法的引入(1/3)
要将指向5点的时钟调整到3点整,应如何处理?
5-2=3
2024年7月16日星期二
5+10=3(12自动 丢失。12就是模)
12
补码表示法的引入(2/3)
继续推导: 5-2=5+10(MOD 12) 5+(-2)=5+10(MOD 12) -2=10(MOD 12)
计算机组成原理第2章5-定点原码并行乘法运算
第二章 运算方法和运算器
n位乘n位积可能为2n位.乘积的最后是所有部分积之和,有n个数相加,而FA只有 两个输入端,所以需要改造 方法一:硬件实现方法(串行的“加法和移位”),硬件结构简单,速度太慢(已经淘 汰). 方法二:阵列乘法器
信 息 科 学 与 工 程 学 院3
与 工 程 学 院7
第二章 运算方法和运算器
时间延迟:
这种乘法器要实现 n 位 × n 位时,需要 n ( n-1) 个全加器和 2n 个“与” 门。该乘法器的总的乘法时间可以估算如下 令Ta为“与门”的传输延迟时间,Tf为全加器(FA)的进位传输延迟时间,假 定用2级“与非”逻辑来实现FA的进位链功能,那么就有:
第二章 运算方法和运算器
不带符号的阵列乘法器
设有两个不带符号的二进制整数: A=am-1…a1a0 B=bn-1…b1b0 在二进制乘法中,被乘数A与乘数B相乘,产生m+n位乘积P:
P=A×B=pm+n-1…p1p0 乘积P 的数值为:
信 息 科 学 与 工 程 学 院4
第二章 运算方法和运算器
信 息 科 学 与 工 程 学 院8
第二章 运算方法和运算器
带符号的阵列乘法器
阵列乘法器只能处理原码的乘法运算,但在计算机中数据经常采用补码表示, 为实现补码乘法运算,就需要采用带符号的阵列乘法器。 带符号的阵列乘法器可借助无符号的阵列乘法器加上求补电路实现。
算前求补+乘法器+算后求补
信 息 科 学 与 工 程 学 院9
第二章 运算方法和运算器
在对2求补时,令A = an…a1a0是给定的(n + 1)位带符号的数,要求确定它的补 码形式。进行求补的方法就是采用按位扫描技术,从数的最右端a0开始,由右向左 进行扫描,直到找到第一个“1”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、单、双、三总线结构的运算器
小结
ALU组成思想 函数发生器 先行进位 整体逻辑电路(三部分:函数,进位,全加) 先行进位电路74182 内部总线
复习:定点运算器的组成
ALU组成思想 函数发生器有哪几个控制端? 先行进位的思路,P和G 整体逻辑电路由几部分构成,M,Cn的作 用是什么? 先行进位电路74182(二级) 内部总线 单、双、三总线结构的特点
适用于原码乘 法,也适用于 间接的补码乘 法。不过在原 码乘法中,算 前求补和算后 求补都不需要。
二、直接补码并行乘法(补码的符号位 与数值同时参加运算,不需算前与算后求补) 1.补码与真值的转换公式
P37(2.25)(对照P21,2.9)
先考虑如何将这两个补码化 成真值(十进制)? (01101)2 (10011)2
计算机中定点数常用补码表示、存储、计算
4·移码
浮点数的阶码常用移码表示
定义:[ x]移=x+2n
2n >x>= -2n
得到的移码总位数是n+1
复习提问
请写出-1010的原码、反码、补码 请写出-1010的8位原码、反码、补码 请写出-1010的移码 请写出-1010的8位移码 请写出+101.011*2+11的规格化形式 一IEEE754标准32位浮点数的16进制值是 (41A4B600),请写出其真值 请说出补码表示方法在计算机中使用的优势 定点纯整数补码值为10000,请说出其真值
2.不带符号的阵列乘法器 二进制乘法中,m位的A与n位的B相 乘,结果P是m+n位的。
被乘数和乘数 产生部分积的与门 乘法阵列
乘法阵列
1.原码相乘 2.符号单独处理
进位
和
3.带符号的阵列乘法器
E=1,求补
E用什么控 (1)二进制对 2求补器 制合适?
E=0,原值
(2)带求补级的阵列乘法器(带符号,间接补码)
0.10101100),求x+y。
2.6 浮点运算方法和运算器
• 浮点加法、减法运算 浮点乘除法运算 浮点运算流水线
十进制的浮点数加减 法是怎样计算的?
一、浮点加法、减法运算
1.运算规则 设有两个浮点数x和y,它们分别为 x=2Ex· Mx y=2Ey· My
则:x±y=(Mx2Ex-Ey±My)2Ey, Ex<=Ey
2.四歩骤
M(23) 尾数
x e=E-127
请阅读P18 的解释 请自学P18 的例1
X=(-1)s*(1.M)*2E-127
阶码
-126~+127
3.十进制数串的表示方法 (1)如BCD码 (2)压缩的十进制数串形式 简单小结: 表示
二、数的机器码表示 机器码和真值 两个0 1.原码 两个 定义 0 2.反码 正数-不变 反3.补码
•
•
符号位作为数的一部分参加运算
要在模()的意义下运算
P29 图2.2 溢出:运算结果超出了机器可表示的范围 二、溢出的概念与检测方法 举例15、16 正溢、负溢
结论P30
计算机内部怎么判断溢出?
1.采用双符号位的补码(变形补码), mod n+2 运算 例17、18 2.单符号位 V=Cf + C0
舍入处理,什么情况下要舍入?对阶或右规时 简单舍入:0舍1入,恒置1 IEEE754标准:参考
步骤中的细节问题(4)-溢出处理
浮点数的溢出是以其阶码溢出表现出来的。
阶码上溢(+,-∞) 阶码下溢(0) 尾数上溢(右规) 尾数下溢(有效位移出,舍入)
例28.设x=2010×0.11011011,y=2100×(-
2.3 定点乘法运算(从原码-补码) 一、原码并行乘法
用计算机如何计 算这样的阵列
定点原码乘法的运算规则:乘积的符号位由两数
的符号位按异或运算得到,而乘积的数值部分则是两个正 数相乘之积。P32(2.22)
例(列到黑板上,部分积是什么?)(注意位数)
1.手工与机器的差别: 解决: (1).串行N次加法-移位运算 (2).由硬件实现并行乘法器
结果为负,则商0,加[y]补右移K位值
如果次数< n+1 ,则转2
K+1
如果次数K为n+1,则写出商和余数,结束
Bi
Ai P Ci Si Bi
二、并行除法器
1.可控加法/减法(CAS)单元 p=0时,加法 P=1时,减法
P Ci+1
2.不恢复余数的阵列除法器
进位值是余数符 号的非,可以做 商的值及下一次 运算的控制端 (P43有误)
设补码表示,阶码用双符号位,尾数用单符号位,则浮点表示 [x]浮=00 010, 0.11011011 [y]浮=00 100, 1.01010100 <1> 判0,x,y均不为零 <2> 求阶差并对阶 △E为-2,x的阶码小, 应使Mx右移两位,Ex加2, [x]浮=00 100,0.00110110(11) <3> 尾数求和 0. 0 0 1 1 0 1 1 0 (11) + 1. 0 1 0 1 0 1 0 0 不溢出 ──────────────── 1. 1 0 0 0 1 0 1 0 (11) <4>规格化处理 尾数运算结果的符号位与最高数值位同值,应 执行左规处理,结果为1.00010101(1),阶码为 00 011。 <5>舍入处理:采用0舍1入法处理,则为1. 0 0 0 1 0 1 1 0 <6>判溢出 :阶码符号位为00,不溢出,故得最终结果为 x+y=2011×(-0.11101010)
1.基本பைடு நூலகம்想
有两个问题要解决: 1)函数发生器是什 么样的? 2)进位问题怎么办?
2.函数发生器的逻辑 (74LS181)
S0 0 0 1 1 s1 0 1 0 1 Yi Ai AiBi AiBi 0 S2S3 0 0 0 1 1 0 1 1 Xi 1 Ai+Bi Ai+Bi Ai
S0S1→Yi S2S3→Xi
三、字符与字符串的表示方法 1.字符的表示方法 ASCII码
2.字符串的存放
四、汉字的表示方法 汉字的内码、外码、字模码
思考:
一、书上的例题课堂没讲的 请自学 二、请思考P63,2.
作业: 一、P63, 1. 3. 4. 二、写出1001110、0011011 两个数的偶校验编码和奇校验编 码。(将校验码加在前面)
第二章
运算方法和运算器
•数据与文字的表示方法 •定点加、减、乘、除法运算,定点运算器 •浮点加、减、乘、除法运算,浮点运算器
例如:01000001表示什么? 2.1 数据与文字的表示方法
一、数据格式
考虑的因素:P16
数值型数据:定点、浮点
1.定点数的表示方法
原理上、纯小数、纯整数
符号位:0-正号
1-负号
3.先行进位的公式
基本公式Cn+1=Y0+X0Cn 以四位为例的传递结果 行波进位的
Cn+4=G+PCn
G-进位发生输出 P-进位传送输出
4.
功 能 表
4.两级先行进位部件74182
用两个6位全先行进位部件级联组成的32位ALU
三、内部总线
•内部总线,外部总线? E允 •单向传送总线,双向传送总线 许
X=+1001 X=-1001,变变看 (加符号位n位)
例5,6 原码、反码、补码
只有加法运算、一个 0 负数-符号位不变,其后逐位变
正数-不变 负数-反码,在末位加1
怎样计算补码的真值?
? P21公式2.9 01001,11001 纯整数补码, 求十 进制真值 例3,例4自学一下
四种编码应用总结
例:11、12、
2.2 定点加法、减法运算 再来理解 一下补码 一、补码加法、减法 公式:
[x+y]补= [x]补+[y]补 (mod 2n+1)
求补码的负补码,13、14
[x-y]补 =[x]补-[y]补= [x]补+[-y]补 (mod 2n+1)
补码运算的特点:
注: [x]补和[-y]补是n位的
阶符
定点纯整数100101(最高位是符号位) 的十进制值是多少? 定点纯小数100101(最高位是符号位) 的十进制值是多少? 浮点数1001101010的十进制值是多少? 其格式如上图所示
IEEE754标准的32位浮点数的 标准格式 P18,例2
浮点数为什么需要标准?
S(1) 数符
E(8) 阶码
1)0操作数检查; 2)比较阶码大小并完成对阶; 3)尾数进行加或减运算; 4)结果规格化并进行舍入处理。
步骤中的细节问题(1)
对阶时向大的阶看齐还是向小的阶看齐?为什么?
向大的阶看齐
步骤中的细节问题(2)-规格化问题 ①运算结果尾数有溢出,只要将尾数向右移一位
(右规),同时将阶码加1。
直接乘法的竖式P39 2.一般化的全加器形式 4类
3.直接补码阵 列乘法器
对照P39的 阵列来看
小结:
原码乘法器 间接补码乘法器 直接补码乘法器
解决: 2.4 定点除法运算
(1)恢复余数法
(2)不恢复余数法(加减交替法)
一、原码除法算法
(1)和(2)都是串行计算方法
定点原码除法的运算规则:商的符号位由两数
e-指数(阶) 尾数
R-基数2、8、16 m-尾数 阶符 阶码