2019-2020学年度高一年级数学试题

合集下载

2019-2020学年高一下学期期末考试数学试卷(PDF版)

2019-2020学年高一下学期期末考试数学试卷(PDF版)

CC1 的中点,则异面直线 A1E 与 GF 所成的角是

16.在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且满足 asinA﹣4bsinC=0,A 为
锐角,则 sin B + sin C 的取值范围为

2sin A
2
四、解答题(本大题共 6 小题,共计 70 分.请在答题卡指定区域内作答.解答时应写出文 字说明、证明过程或演算步骤) 17.(本小题满分 10 分)
3
21.(本小题满分 12 分)
如图,在某商业区周边有两条公路 l1 和 l2,在点 O 处交汇;该商业区为圆心角 、半 3
径 3km 的扇形.现规划在该商业区外修建一条公路 AB,与 l1,l2 分别交于 A,B,要求 AB 与扇形弧相切,切点 T 不在 l1,l2 上.
(1)设 OA=akm,OB=bkm 试用 a,b 表示新建公路 AB 的长度,求出 a,b 满足的 关系式,并写出 a,b 的范围;
A. (x − 3)2 + ( y +1)2 = 4
B. (x + 3)2 + ( y −1)2 = 4
C. (x −1)2 + ( y −1)2 = 4
D. (x +1)2 + ( y +1)2 = 4
4.在△ABC,已知 acosA=bcosB,则△ABC 的形状是
A.等腰三角形
B.直角三角形
C.等腰直角三角形
A.1
B. 2
C.2
D. 2 2
7.在△ABC 中,角 A,B,C 的对边分别是 a,b,c,若 a:b:c=4:3:2,则 2sin A − sin B sin 2C

2019-2020年高一数学考试参考答案

2019-2020年高一数学考试参考答案

2019-2020年高一数学考试参考答案一、选择题(本大题共12小题,每小题5分,共60分.)二、填空题(本大题共6小题,每小题5分,共30分.)13.),1(+∞- 14.1- 15.9;1- 16.4 17.b a c >> 18.2 三、解答题:本大题共6小题,共60分. 解答应写出文字说明,证明过程或演算步骤 . 19.(本题8分) 解:(Ⅰ)原式148121+⨯+=2=. ………………………………4分 (Ⅱ)原式2100lg 3log 33++=7223=++=. …………………8分20.(本题8分)解:(Ⅰ)当4=a 时,}74|{≤≤=x x A ,1|{-<=x x B 或}5>x ,∴}75|{≤<=x x B A . ………………………………4分 (Ⅱ)若A B A = ,则B A ⊆,∴13-<+a 或5>a ,解得4-<a 或5>a . ∴实数a 的取值范围),5()4,(+∞--∞ . …………………………………8分 21.(本题10分)解:(Ⅰ)要使函数)(x f 有意义,只要使0tan ≠x , ∴函数)(x f 的定义域为,|{R x x ∈且},2Z k k x ∈≠π. ………………3分 (Ⅱ)由x x x cos sin tan =,得x x f cos )(=,∴135cos )(==ααf . …………5分 ∵)2,0(πα∈,∴1312cos 1sin 2=-=αα. ………………7分∴4sinsin 4coscos )4cos()4(παπαπαπα-=+=+fB262722131222135-=⨯-⨯=. ………………10分 22.(本题10分)解:(Ⅰ)∵1cos 22sin )(2++=x x x fx x 2cos 2sin +=)42sin(2π+=x , ……………………2分∴)(x f 的最小正周期πωπ==2T . ……………………4分(Ⅱ)由πππππk x k 2234222+≤+≤+得ππππk x k +≤≤+858)(Z k ∈ ∴函数的单调减区间]85,8[ππππk k ++)(Z k ∈. …………………7分(Ⅲ)由43,4[42]2,2[24,4[πππππππ-∈+⇒-∈⇒-∈x x x . ∴当442ππ-=+x 时,即4π-=x 时,)(x f 取得最小值0. …………10分23.(本题12分)解法一:(Ⅰ)连接OP ,PB ,∵P 是弧AB 靠近点B 的三等分点,)0(2>=a a AB ∴a AP PAB 3,6==∠π. ……………………2分∴232336cosa a a AB OP =⨯⨯=⋅=⋅π………………………4分 (Ⅱ)设θ=∠PAB , 则θθcos 2,2a AP POB ==∠,此时向量与的夹角为θ3, ………………………6分 ∴)2cos(cos 23cos cos 222θθθθθ+=⋅=⋅a a P O AP )sin 2sin cos 2(cos cos 22θθθθθ-=a)cos sin 22sin cos 22(cos 22θθθθθ⨯-⨯=a ]2sin )12(cos 2[cos 22θθθ-+=a )12cos 2cos 2(22-+=θθa]89)412(cos 2[22-+=θa , ………………………10分 ∴ 当412cos -=θ时,P O '⋅的最小值为289a -.当12cos =θ时,P O AP ⋅的最大值为22a . ………………12分解法二:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系. ∵P 是弧AB 靠近点B 的三等分点,连接OP ,则3BOP π∠=, …………1分 ∴点P坐标为1()2a .又点A 坐标是(,0)a -,点B 坐标是(,0)a ,∴3()2AP a =,(2,0)AB a =,∴23AP AB a ⋅=.(Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'- ∴(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. ………………6分 ∴22222coscos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+-2221192(cos cos )2168a a θθ=++-222192(cos )48a a θ=+-. ………10分当1cos 4θ=-时,AP OP '⋅有最小值298a -,当cos 1θ=时,AP OP '⋅有最大值22a . …………………12分24.(本题12分)解]:(Ⅰ)…………………………3分(Ⅱ)当]5,1[-∈x 时,54)(2++-=x x x f .)54()3()(2++--+=x x x k x g )53()4(2-+-+=k x k x436202422+--⎪⎭⎫ ⎝⎛--=k k k x , ………………………5分 ∵ 2>k ,∴124<-k. ………………………6分 ① 当1241<-≤-k ,即62≤<k 时,取24kx -=, min )(x g ()[]6410414362022---=+--=k k k . ∵ ,64)10(162<-≤k ,∴064)10(2<--k 则0)(min >x g .………9分② 当124-<-k,即6>k 时,取1-=x ,min )(x g =02>k . 由 ①、②可知,当2>k 时,在]5,1[-∈x 上0)(>x g ,∴在区间]5,1[-上,)3(+=x k y 的图像位于函数)(x f 图像的上方.……12分。

2019—2020学年度高一下学期考试数学试题及答案

2019—2020学年度高一下学期考试数学试题及答案

2019-2020学年度高一下学期第二次(线上)考试数学试题(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知实数c b a ,,满足R c b a ∈>>,0,则下列结论正确的是( ) A. c b c a ->- B. 22bc ac > C.bca c < D. c cb a > 2.已知非零向量=a ))(0,(R t t ∈,向量)3,1(-=b ,若b a +与a 垂直,则t 的值为( ) A.1 B. 3 C.2 D. 32 3.等差数列{}n a 的前n 项和为n S ,若246410S ,S ,S ==则等于( ) A.12B.18C.24D.424.设等差数列的前n 项和为,若119a =-,466a a +=-,则当n S 取最小值时, n 等于( ) A.7 B.6C.5D.45.点P 为ABC Rt ∆斜边BC 上一点,0=⋅BC AP ,R y x AC y AB x AP ∈+=,,,若22==AB AC ,则=xy ( ) A.92 B. 254 C. 41 D. 4910 6.已知某几何体的三视图如右图所示,则该几何体的体积为( )A.6π6+B.113π C. 72π D. 136π7.某圆柱的高为2,底面周长为8,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B , 则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .172B .52C .22D .28.已知两个单位向量21e e ,满足||3||2121e e e e -λ=λ+,若0>λ,则21e e ,夹角的最大值为( )A. ︒30B. ︒60C. ︒90D. ︒120{}n a n S9.若一个几何体的三视图如图所示,则此几何体的表面积为( )A. 10+B.6D.4A. 5πB. 2πC. 2D. 4π11.已知关于x 的不等式22|1||1|a a x a a x -≤--++-的解集为}2143|{-≤≤-x x ,则a 的值为( ) A.41 B.21C.22D. 22±12.若数列{}n a 满足1(1)2(2)-=-+≥n nn n a a n ,若1359799=+++++L S a a a a a ,24698100=+++++L T a a a a a ,则=TS( ) A.3 B.4 C.6 D.8第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若实数mn n m n m =+>>4,0,0,则n m +4的最小值为 .14. 设等比数列{}n a 的前n 项和为,公比993,52==q S ,则3699699a a a a a ++++=L . 15.以下说法不.正确的是______________.(写出所有不.正确说法的序号) (1)有一个面是多边形,其余各面都是三角形的几何体叫棱锥.(2)各侧面都是正方形的四棱柱一定是正方体. (3)以直角梯形的一腰为轴旋转所得的旋转体是圆台.(4)圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径.16.已知ABC ∆内一点O 满足⋅=⋅,CB CO BC BO ⋅=⋅, 3,3==BC AC ,则⋅-u u u r u u u r u u u rOC (OA OB )的值为 .三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分10分)已知,11,11<<-<<-b a ,求证:n S(Ⅰ)a a 31)1(3+≥+; (Ⅱ) |||1|b a ab ->-. 18. (本题满分12分)已知在递增等差数列{}n a 中,13a =,3a 是1a 和9a 的等比中项. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若()1+1n nb n a =,n S 为数列{}n b 的前n 项和,当n S m <对于任意的+n ∈N 恒成立时,求实数m 的取值范围.19. (本题满分12分)已知函数R a ax x x x f ∈--+-=,|2||1|)(, (Ⅰ)若1=a ,求解不等式0)(≤x f ;(Ⅱ)若对任意1≥x 不等式0)(≤x f 恒成立,求实数a 的取值范围.20. (本题满分12分)在等差数列{}n a 中,11a =,前n 项和n S 满足条件242,1,2,1n n S n n S n +==+L , (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记(0)n an n b a p p =>,求数列{}n b 的前n 项和n T .21.(本题满分12分)在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,向量m (cos ,cos )B C =,=n )2,(c a b -,若n m //, (Ⅰ)求角B 的大小;(Ⅱ)若1-=⋅BC AB ,求AC 边上的高BH 的最大值.22. (本题满分12分)设数列{}n a 的前n 项和为n S ,对任意的正整数n ,都有51n n a S =+成立,记*4()1nn na b n N a +=∈-. (Ⅰ)求数列{}n a 与数列{}n b 的通项公式;(Ⅱ)记*221()n n n C b b n N -=-∈,设数列{}n C 的前n 项和为n T ,求证:对任意正整数n 都有32n T <; (III)设数列{}n b 的前n 项和为n R ,是否存在正整数k ,使得4≥k R k 成立?若存在,找出一个正整数k ;若不存在,请说明理由.。

2019-2020学年高一(下)期末数学试卷 (33)-720(解析版)

2019-2020学年高一(下)期末数学试卷 (33)-720(解析版)

2019-2020学年高一(下)期末数学试卷 (33)一、选择题(本大题共12小题,共60.0分)1.不等式x2−x−2>0的解集是()A. (−12,1) B. (1,+∞)C. (−∞,−1)∪(2,+∞)D. (−∞,−12)∪(1,+∞)2.点(0,5)到直线2x−y=0的距离是()A. √52B. √5 C. 32D. √543.某种树的分枝生长规律如图所示,则预计到第6年树的分枝数为()A. 5B. 6C. 7D. 84.在△ABC中,若(a+c)(a−c)=b(b−c),则∠A=()A. 300B. 600C. 1200D. 15005.已知圆C:x2+y2−2x−4y−4=0,则其圆心坐标与半径分别为()A. (1,2),r=2B. (−1,−2),r=2C. (1,2),r=3D. (−1,−2),r=36.已知:△ABC中,a=2,∠B=60°,∠C=75°,则b=()A. √6B. 2C. √3D. √27.已知S n是等差数列{a n}的前n项和,若a2015=S2015=2015,则首项a1=()A. 2015B. −2015C. 2013D. −20138.若直线过P(2,1)点且在两坐标轴上的截距相等,则这样的直线有几条()A. 1条B. 2 条C. 3条D. 以上都有可能9.某几何体的三视图如下所示,则该几何体的体积为()A. 2π+8B. π+8C. 2π+83D. π+8310.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A. 若α⊥β,m⊂α,n⊂β,则m⊥nB. 若α//β,m⊂α,n⊂β,则n//mC. 若m⊥n,m⊂α,n⊂β,则α⊥βD. 若m⊥α,n//m,n//β,则α⊥β11.点P(1,−2)关于点M(3,0)的对称点Q的坐标是()A. (1,2)B. (2,−1)C. (3,−1)D. (5,2)12.已知等差数列{a n},a1=1,a3=3,则数列{1a n a n+1}的前10项和为()A. 1011B. 911C. 910D. 1110二、填空题(本大题共4小题,共20.0分)13.设变量x,y满足约束条件: {x+y⩾3x−y⩾−12x−y⩽3,则目标函数z=3x−2y的最小值为______.14.直线l过点A(−1,3),B(1,1),则直线l的倾斜角为______ .15.平行六面体ABCD−A1B1C1D1的所有棱长均为2,∠A1AD=∠A1AB=∠DAB=60°,那么二面角A1−AD−B的余弦值为______ .16.已知等比数列{a n}的公比为正数,且a1⋅a7=2a32,a2=2,则a1的值是______.三、解答题(本大题共6小题,共70.0分)17.求倾斜角为直线y=−√3x+1的倾斜角的一半,且分别满足下列条件的直线方程:(1)经过点(−4,1);(2)在x轴上的截距为−10.18.已知:△ABC的三个内角A,B,C的对边分别为a,b,c,且满足cos2B−cos(A+C)=0.(Ⅰ)求角B的大小;(Ⅱ)若sinA=3sinC,△ABC的面积为3√3,求b边的长.419.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求{a n}的通项公式;(2)若b n=1,求数列{b n}的前n项和S n.a n a n+120.如图,圆x2+y2=8内有一点P(−1,2),AB为过点P且倾斜角为α的弦,(1)当α=135°时,求|AB|(2)当弦AB被点P平分时,写出直线AB的方程.(3)求过点P的弦的中点的轨迹方程.21.在等差数列{a n}中,a1=10,d=−2,求数列的前n项和S n的最大值.22.如图,在正三棱柱ABC−A1B1C1中,点D在棱BC上,AD⊥C1D,点E,F分别是BB1,A1B1的中点。

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案注意事项:1。

答题前,考生务必将自己的姓名、准考证号写在答题卡上。

2。

考生作答时,选择题和综合题均须做在答题卡上,在本试卷上答题无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3。

考试结束后,将答题卡收回.4.本试题卷共4页,如有缺页,考生须声明,否则后果自负.怀化市中小学课程改革教育质量监测试卷2020年上期期末考试高一数学一、单项选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.为了了解某地参加计算机水平测试的5000名学生的成绩,从中抽取了200名学生的成绩进行统计分析.在这个问题中,5000 名学生成绩的全体是A.总体B。

个体 C.从总体中抽取的一个样本D.样本的容量2.设α是第三象限角,且tan1α=,则cosα=A。

-12B. 22C. 22- D. 12-3。

同时掷3枚硬币,那么互为对立事件的是A.至少有1枚正面和最多有1枚正面B.最多1枚正面和恰有2枚正面C 。

至多1枚正面和至少有2枚正面 D.至少有2枚正面和恰有1枚正面4。

某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100 分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+ y 的值为A.7 B 。

8 C.9 D 。

10 5.若4sin cos 3θθ-=则sin()cos()πθπθ--=A 。

16B 。

16- C 。

718-D. 7186.如图所示,用两种方案将块顶角为120°, 腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二的扇形的面积分别为S 1,S 2,周长分别为l 1,l 2,则A.S 1=S 2,l 1>l 2B.S 1=S 2, l 1<l 2 C 。

S 1〉S 2,l 1=l 2 D.S 1〈S 2, l 1=l 2 7。

高一数学2019—2020学年度第二学期期末考试试题及答案

高一数学2019—2020学年度第二学期期末考试试题及答案

2019—2020学年度第二学期期末考试高一数学试题注意事项:1.用黑色签字笔在答题卡上作答,在本试卷上答题无效2.考试时间为120分钟,全卷满分150分。

一、单项选择题(每小题只有一个正确答案,请将正确答案填写到答题卡中,共12小题,每小题5分,共60分)1.设集合=⋂===)(}4,3,2{},3,2,1{},5,4,3,2,1{B A C B A U U ,则( )A. }3,2{B. }5,4,1{C. }5,4{D. }5,1{2.α∈(,)22ππ-,sin α=-35,则cos(-α)的值为( ) A .-45 B .45C .35D .-35 3.计算=-3lg 30lg ( )A.4B.2C.1D. 124.下列函数中周期为π且为偶函数的是( )A .y =sin ⎝⎛⎭⎫2x -π2B .y =cos ⎝⎛⎭⎫2x -π2 C .y =sin ⎝⎛⎭⎫x +π2 D .y =cos ⎝⎛⎭⎫x +π2 5.已知函数4log )x (3+=x f ,则=)3(f ( )A.8B. 6C. 7D. 56.在用二分法求方程0123=--x x 的一个近似解时,现在已经将一根锁定在区间)2,1(,则下一步可以判断该根所在的区间为( )A.(1,1.4)B. (1.4,2)C. (1,1.5)D. (1.5,2)7.设f (x )为定义在R 上的奇函数,当x >0时,f (x )=log 3(1+x ),则f (-2)=( )A .-1B .-3C .1D .38.若直线3x +y +a =0过圆x 2+y 2+2x -4y =0的圆心,则a 的值为( )A .-1B .1C .3D .-39.阅读如图所示的程序框图,运行相应的程序,输出的结果i 为( ).A. 3B. 4C. 5 D . 610.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .311.如图所示是函数y =A sin(ωx +φ)+2的图象的一部分,它的振幅、周期、初相分别是( )A .A =3,T =45,φ=-π6B .A =1,T =43π,φ=-34π C .A =1,T =23π,φ=-34π D .A =1,T =43π,φ=-π6 12.函数)(x f 是定义在)0](,[>-a a a 上的奇函数,1)()(+=x f x F ,则)(x F 的最大值和最小值之和为( )A. 0B. 1C. 2D. 不能确定二、填空题(把正确的结果填到答题卡中.共4小题,每小题5分,共20分)13.已知函数7)(2+-=mx x x f 在),2(+∞上是增函数,则实数m 的取值范围是14.已知α为第三象限的角,cos 2α=-35,则tan ⎝⎛⎭⎫π4+2α=________. 15.集合}0|{},42|{<-=<<-=m x x B x x A ,若A B A =⋂,实数m 的范围16.口袋内装有一些大小相同的红球、黄球、白球,从中摸出一个球,摸出红球或白球的概率为0.65,摸出黄球或白球的概率是0.6,那么摸出白球的概率是________.三、解答题(解答应写出文字说明,证明过程或演算步骤,并将你的答案写在答题卡中,在试卷内答题无效.共6小题,共70分)三、解答题17.(10分) 求函数)(xx x x f --++=21log 1)(2的定义域.18.(12分)已知sin ⎝⎛⎭⎫α+π2=-55,a ∈(0,π). (1)求3sin()cos()22sin()cos(3)a a a a ππππ--+-++的值; (2)求3cos(2)4a π-的值.19.(12分)已知二次函数)(x f 的图像过点(0,3),它的图像的对称轴为x=2,且)(x f 在R 上的最大值是5,求:(1) )(x f 的解析式;(2) )(x f 在[21,3]上的值域。

2019-2020年高一下学期期末考试 数学 含答案

2019-2020年高一下学期期末考试 数学 含答案

2019-2020年高一下学期期末考试 数学 含答案一、填空题(本大题共14小题,每小题5分,计70分)1.的值是 .2.化简 .3.函数的定义域是 .4.函数的最小正周期是 .5.若,则点位于第 象限.6.函数取最大值时的值是 .7.若函数的零点则_________.8.函数的递增区间是 .9.为了得到函数)的图象,只需把函数的图象向右平移个___长度单位.10.若,且,则向量与的夹角为 .11.已知扇形的周长为,则该扇形的面积的最大值为 .12.设若函数在上单调递增,则的取值范围是________.13.如图,在△中,则________.14.在直角坐标系中, 如果两点在函数的图象上,那么称为函数的一组关于原点的中心对称点(与看作一组).函数关于原点的中心对称点的组数为 .二、解答题(本大题共6小题,计80分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15.A 、B 是单位圆O 上的点,点A 是单位圆与轴正半轴的交点,点在第二象限.记且.(1)求点坐标;(2)求的值.C16.平面内给定三个向量.(1)若,求实数k;(2)若向量满足,且,求向量.17.已知函数(为常数),.(1)若在上是单调增函数,求的取值范围;(2)当时,求的最小值.18.已知的顶点坐标为,,, 点P的横坐标为14,且,点是边上一点,且. (1)求实数的值与点的坐标;(2)求点的坐标;(3)若为线段(含端点)上的一个动点,试求的取值范围.(2)求函数的单调递增区间与对称中心坐标;(3)当时,函数的图像与轴有交点,求实数的取值范围.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以为上界的有界函数,求实数的取值范围.二、解答题。

2019-2020年高一数学试题 含答案

2019-2020年高一数学试题 含答案

2019-2020年高一数学试题 含答案一.选择题:本大题共10个小题,每小题5分,共50分,把答案填写在答题卡相应的位置上.1.已知a >b ,ab ≠0,则下列不等式中:①a 2>b 2;②b1a 1<;③a 3>b 3;④a 2+b 2>2ab ,恒成立的不等式的个数是A .1个B .2个C .3个D .4个2.一只小狗在如图所示的方砖上走来走去,求最终停在阴影方砖上的概率为A .103B .51C .31 D.1253.在△ABC 中,若CBA sin sin cos =,则△ABC 的形状为 A .锐角三角形 B .直角三角形 C .等腰三角形 D . 钝角三角形4.某人最近7天收到的聊天信息数分别是5,10,6,8,9,7,11,则该组数据的方差为A.724 B .4C.716D .35.某射手射中10环、9环、8环的概率分别为0.24,0.28,0.19,那么,在一次射击训练中,该射手射击一次不够9环的概率为 A.0.48 B .0.52 C.0.71 D .0.296.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格(60分为及格)人数为 A.45 B .51 C.54 D .577.设a >0,b >0,若3是b a 339与的等比中项,则b1a 2+的最小值为A.1 B .13+34 C.23 D .32213+8.如果执行第8题图的程序框图,输出的结果为A.43 B .69 C.72 D .549.数列{a n }满足a n+1=⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤1a 211a 221a 0a 2n n n n ,,,若a 1=53,则a 2014=A.51B.52C.53D.5410.在△ABC 中,sin 2A ≤sin 2B+sin 2C ﹣sinBsinC ,则A 的取值范围是A.(0,6π]B.[6π,π)C.(0,3π]D.[3π,π)二.填空题:本大题共5个小题,每小题5分,共25分,把答案填写在答题卡相第2题图 第8题图 第6题图第12题图应的位置上.11.某算法的程序框图如图所示,若输入量S=1,a=5,则输出S= .(考点:程序框图)12.甲、乙两人在9天每天加工零件的个数用茎叶图表示如下图,则这9天甲、乙加工零件个数的中位数之和为 .(考点:茎叶图与中位数综合)13.已知S n 为等差数列{a n }的前n 项和,且a 6+a 7=18,则S 12= .(考点:数列的性质)14.设实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-1x 0y x 201y x 2,则z=x+3y 的最小值为 .(考点:线性规划)15.如图所示,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB=15m ,AC=25m ,∠BCM=30°,则tan θ的最大值 . (考点:解三角形应用)三.解答题:本大题共6个小题,共75分,把答案填写在答题卡相应的位置上. 16.(10分)甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(I )设(i ,j ),表示甲乙抽到的牌的数字,如甲抽到红桃2,乙抽到红桃3,记为(2,3),请写出甲乙二人抽到的牌的所有情况;(II )若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(考点:概率应用)第11题图 第15题图17.(12分)在等差数列{a n }和等比数列{b n }中,a 1=1,b 1=2,b n >0(n ∈N *),且b 1,a 2,b 2成等差数列,a 2,b 2,a 3+2成等比数列. (I )求数列{a n }、{b n }的通项公式;(II )设c n =a b n ,求数列{c n }的前n 项和S n .(考点:等差、等比数列综合)18.(12分)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打时间x (单位:小时)与当于投篮命中率y 之间的关系:(I )根据上表的数据,求出y 关于x 的线性回归方程a x y b +=∧;(II )预测小李该月6号打6小时篮球的投篮命中率为多少?(考点:线性回归应用)19.(12分)学校食堂定期向精英米业以每吨1500元的价格购买大米,每次购买大米需支付运输费用100元,已知食堂每天需食用大米1吨,储存大米的费用为每吨每天2元,假设食堂每次均在用完大米的当天购买.(I )问食堂每隔多少天购买一次大米,能使平均每天所支付的费用最少?(II )若购买量大,精英米业推出价格优惠措施,一次购买量不少于20吨时可享受九五折优惠,问食堂能否接受此优惠措施?请说明理由.(考点:不等式应用)20.(14分)在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2≥++CcosC对一切实数x恒成立.46xsin(I)求cosC的取值范围;(II)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.(考点:不等式与解三角形综合)试卷说明:本套模拟试题卷按照2014年重庆市四区联合调研抽测考试高一数学试题模板改编而成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年度高一年级数学试题
一、选择题(本大题共12小题,每小题5分,共60分)
1.若集合}421|{1>⎪⎭⎫ ⎝⎛=-x x A ,则=A C R ( )
A. }1|{->x x
B.}1|{-<x x
C.}1|{-≥x x
D.}1|{-≤x x
2.把π4
11-表示成πθk 2+(Z k ∈)的形式,使||θ最小的θ的值是 ( ) A.π4 B.-π4 C.34π D.-34
π 3.已知幂函数的图象过点),(214和)
,(3m ,则实数m 的值为( ) A.91 B.9
1± C. 9± D.9 4.函数21log 2-=
x y 的定义域为( ) A.}1|{-≥x x B.}41
|{≥x x C.}2|{≥x x D.}2
2|{≥x x 5.已知1sin =a ,31log 3=b ,3
241⎪⎭⎫ ⎝⎛=c ,则( ) A.c b a >> B.b c a >> C.c a b >> D.b a c >>
6.已知函数⎪⎩⎪⎨⎧>-≤=-0
,220,2)(x x x f x x ,则满足)2()1(x f x f <+的x 的取值范围是( ) A.()∞+,
1 B.()∞+,0 C.()10, D.()1,∞- 7.函数x
x x f 2)(-=的零点所在的区间为( ) A.⎪⎭⎫ ⎝⎛210, B.⎪⎭⎫
⎝⎛121,
C.⎪⎭⎫ ⎝⎛231,
D.⎪⎭⎫ ⎝⎛2,23 8.已知)(x f 是定义域为),(+∞-∞的奇函数,满足)1()1(x f x f -=+.若2)1(=f ,则=++++)50()3()2()1(f f f f ( )
A.50-
B.0
C.2
D.50
9.若存在实数a 使得方程a x =c o s 在]2,0[π上有两个不相等的实数根1x ,2x ,则
=+3
tan 21x x ( ) A.
33 B.3 C. 33- D.3- 10.函数)321
tan(3π+=x y 的一个对称中心是( )
A.()00,
B.⎪⎭⎫ ⎝⎛06,π
C.⎪⎭⎫ ⎝⎛-3332,π
D.⎪⎭⎫ ⎝⎛0,3π 11.已知若1x ,2x 是0124
11=+-+-x x 的两个解,则=+21x x ( ) A. 2 B. 4 C. 8 D. 16 12.已知函数)sin()(ϕω+=x x f (0>ω,2||π
ϕ≤),4π
-=x 为函数)(x f 的零点,4
π
=x 为函数)(x f y =图象的对称轴,且)(x f 在⎪⎭
⎫ ⎝⎛36518ππ,上单调,则ω的最大值为 A. 11
B. 9
C. 7
D. 5
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知集合}21sin |{>=x x M ,集合}0)3lg(|{<-=x x N ,则=N M .
14.已知函数2sin )(++=x b ax x f ,0)(=πf ,则=-)(πf ________. 15.=--+)4
23tan(313cos 37sin πππ________. 16.设函数1
sin )1()(22+++=x x x x f 的最大值为M ,最小值为m ,则=+m M ________. 三、解答题(本大题共6小题,共70分)
17.(10分)设全集 ,集合}41|{<<=x x A ,}32|{a x a x B -≤≤=. 若2-=a ,求A B ,)(A C B U ;
若A B A = ,求实数a 的取值范围.
18.(12分)已知角α的终边上一点),3(y P -,0≠y ,且y 2
1sin =
α,求αcos ,αtan 的值.
19.(12分)已知在ABC ∆中,51cos sin =
+A A . (1)求A A cos sin ⋅的值;
(2)判断ABC ∆是锐角三角形还是钝角三角形;
(3)求A tan 的值.
20.(12分)求函数)]3[sin(log 2π+
=x y 的单调递增区间.
21. (12分)已知函数)(x f 是定义域为R 的奇函数,当0>x 时,x x x f 2)(2-=.
求出函数)(x f 在R 上的解析式;
画出函数)(x f 的图象,并根据图象写出)(x f 的单
调区间.
求使1)(=x f 时的x 的值.
22.(12分)设函数)(x f 是增函数,对于任意R y x ∈,都有)()()(y f x f y x f +=+.
(1)求)0(f ;
(2)证明)(x f 奇函数;
(3)解不等式)3(21)()(212x f x f x f >-.。

相关文档
最新文档