用抗剪强度指标计算承载力表
利用抗剪强度计算地基承载力特征值方法探讨
中 图分 类 号 : U 7 . T 411 文献标识码 : A 文 章 编 号 :6 2— 4 8 2 1 ) 1— 0 8— 3 17 7 2 (0 1 1 0 6 0
Dic si n o l u a i n M e h d o a a t rsi l e o u d t n Be rn p ct y S e rS r n t  ̄ A s u so n Ca c lto t o f Ch r c e itcVau fFo n a o a i g Ca a i b h a t e g h P N i y
第③层位置进行互换 , 其余均与第一种情况相同。
均值法 、 附加应力 面积法进行取值 。现通过实例计
收 稿 日期 :0 1— 5—1 ;修 回 日期 :0 1—0 0 21 0 7 21 9— 5
士意 从 事
,
岩 心 钻探 、 文 地质 、 程 地 质 水 工
6 ‘ ) 南 颖 , 省 色 属 质 产 第 地 大 高 工 师 文 质 工 地 专 , 。 ,汉 , 临人 南有 金地矿 局 四质 队级程 , 地 与程 质业 8 量 河 : 河 水 硕
土的抗剪强度和地基承载力
抗剪强度进行比较: 通过土体中一点有无数的截面,当所有截面上都满
足τ< ,f 该点就处于稳定状态;当所有截面之中有且只有一个截面上
的τ =
时,该点处于极限平衡状态。
f
根据莫尔应力圆与抗剪强度曲线的关系可以判断土中某点M是否处于
极限平衡状态
从理论上讲该点 早已破坏,因而 这种应力状态是
不会存在
不会发生剪 切破坏
③上下盒的错动,剪切过程中试样剪切面积逐渐减小, 剪切面上的剪应力分布不均匀。
4.2.2 三轴剪切试验
三轴试验是根据摩尔库仑破坏准则测定土的黏聚力c 和 内摩擦
角。常规的三轴试验是取三个性质相同的圆柱体试件,分别先在
其四周施加不同的围压(即小主应力),随后逐渐增大大主应力直 到破坏为止
三轴压缩试验原理是根据莫尔――库伦强度理论 得出的。
c
O
3
1 1f 1
三、摩尔-库仑强度理论
3. 破坏判断方法
判别对象:土体微小单元(一点)
1= 常数:
1,3
x
z 2
x
z 2
2
4
2 xz
根据应力状态计算出 大小主应力σ1、σ3
判断破坏可能性
σ3>σ3f 弹性平衡状态
由σ1计算σ3f 比较σ3与σ3f
σ3=σ3f 极限平衡状态 σ3<σ3f 破坏状态
莫尔应力圆描 述土中某点的
尔应力圆描述
2
O 3 1/2(1 +3 ) 1
3
1
莫尔圆可以表示土体中一点的应力状态, 莫尔圆圆周上各点的坐标就表示该点在相 应平面上的正应力和剪应力。
4.1.3 土的极限平衡条件
土体受荷后,任意截面mn上将同时产生法向应力与剪应力,对 与
地基承载力计算公式
地基承载力计算公式-CAL-FENGHAI.-(YICAI)-Company One1地基承载力计算公式地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项:1. 反映粘聚力c的作用;2. 反映基础宽度b的作用;3. 反映基础埋深d的作用。
在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。
下面介绍三种典型的承载力公式。
a.太沙基公式式中:P u——极限承载力,K a c——土的粘聚力,KP aγ——土的重度,KN/m,注意地下水位下用浮重度;b,d——分别为基底宽及埋深,m;N c ,N q ,N r——承载力系数,可由图中实线查取。
图2对于松砂和软土,太沙基建议调整抗剪强度指标,采用c′=1/3c ,此时,承载力公式为:式中N c′,N q′,N r′——局部剪切破坏时的承载力系数,可由图中虚线查得。
对于宽度为b的正方形基础对于直径为b′的圆形基础b.汉森承载力公式式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表c,N q,N r值N c N q N r N c N q N r 02422642863083210341236143816401842204432246S c,S q,S r——基础形状系数,可查表表基础形状系数S c,S q,S r值基础形状S c S q S r 条形圆形和方形1+N q/N c1+tanφ矩形(长为L,宽为b)1+b/L×N q/N c1+b/LtanφL d c,d q,d r——基础埋深系数,可查表表埋深系数d c,d q,d rd/b 埋深系数d c d q d r≤〉i c,i q,i r——荷载倾斜系数,可查表表荷载倾斜系数i c i q i r注:H,V——倾斜荷载的水平分力,垂直分力,KN ;F——基础有效面积,F=b'L'm;当偏心荷载的偏心矩为e c和e b,则有效基底长度,L'=L-2e c;有效基底宽度:b'=b-2e b。
土的抗剪强度和地基承载力
3
6 土的抗剪强度和地基承载力
试验结果
f : 土的抗剪强度 tg:摩擦强度-正比于压力
c: 粘聚强度
c O
库仑公式
f c tan
抗剪强度指标
无粘性土 c = 0
c: 粘聚力 :内摩擦角
4
6 土的抗剪强度和地基承载力
2. 应力状态与莫尔圆(平面问题)
平衡方程:
第 六 章
土的抗剪强度和地基承载力
§6 土的抗剪强度和地基承载力
§6.1 土的抗剪强度和极限平衡条件
§6.2 抗剪强度指标的确定
§6.3 无粘性土的抗剪强度
§6.4 土的抗剪强度的影响因素
§6.5 地基的临塑荷载与塑性荷载
Байду номын сангаас
§6.6 地基的极限荷载
2
6 土的抗剪强度和地基承载力
1、直剪试验
试验方法 施加 σ(=P/A) 施加 S 量测 (=T/A)
(2) 固结快剪
施加正应力-充分固结
在3-5分钟内剪切破坏
通过控制剪切速率 来近似模拟排水条 件
(3) 快剪
施加正应力后
立即剪切3-5分钟内剪切破坏
12
6 土的抗剪强度和地基承载力
一、直剪试验
☺优点
设备简单,操作方便 结果便于整理
☹缺点
试样应力状态复杂 应变不均匀 不易控制排水条件 剪切面固定
5
6 土的抗剪强度和地基承载力
2. 应力状态与莫尔圆(平面问题)
α为截面与σ1作用面的夹角,在莫尔 圆上按逆时针方向旋转2倍α
1 ( ), 0 3 圆心: 2 1 1 半径: r ( 1 3 ) 2
土的抗剪强度和极限承载力课件
d——基础埋置深度(m),从室外地面标高计算
m——基础底面以上土的加权重度,地下水位以下取浮重度
b ——基础地面宽度,大于6m时,按6m取值,对于砂土小 于
3m时按3m取值
(3)确定地基承载力特征值修正
《规范》规定:当b>3m或d>0.5m,地基承载力特征值 应该进行修正
f a f a kb ( b 3 ) b m ( d 0 . 5 )
3 f1 t
a 2 4 n o 5 2 c ta 4n o 5 1.8 8 k9 Pa 2 2
计算结果表明: 3f小于该单元土体实际小主应 力 3,实际应力圆半径小于极限应力圆半径 ,
所以,该单元土体处于弹性平衡状态
在剪切面上 f 1 290 45 255
1776年,库仑根据砂土剪切试验
f
砂土
后来,根据粘性土剪切试验
f
库仑定律:土的抗剪强
度是剪切面上的法向总应
力 的线性函数
f tan
f tanc
c
粘土
c:土的粘聚力
:土的内摩擦角
二、土体抗剪强度影响因素
摩擦力的两个来源 1.滑动摩擦:剪切面土粒间表面的粗糙所产生的摩 擦 2.咬合摩擦:土粒间互相嵌入所产生的咬合力
c
三轴试验优缺点
• 优点: ①试验中能严格控制试样排水条件,量测孔隙水压
力,了解土中有效应力变化情况 ②试样中的应力分布比较均匀 • 缺点: ①试验仪器复杂,操作技术要求高,试样制备较复
杂
②试验在2=3的轴对称条件下进行,与土体实际
受力情况可能不符
三、无侧限抗压强度试验
粘性土地基承载力取值分析
粘性土地基承载力取值分析王延恩【摘要】利用土的抗剪强度指标计算粘性土地基承载力时,计算方法有Pa、P1/3、P1/4/Pu、fa,选择五种状态的地基土计算地基承载力,通过比较分析计算结果得出,呈坚硬和硬塑状态的地基土体地基承载力可取临界荷载P1/3或P1/4,呈可塑-流塑状态地基土体地基承载力取临塑荷载Pa,能够较好地保证地基的稳定性.【期刊名称】《治淮》【年(卷),期】2011(000)003【总页数】2页(P22-23)【关键词】粘性土;地基变形;地基承载力;取值;分析【作者】王延恩【作者单位】山东水利职业学院,日照,276826【正文语种】中文《建筑地基基础设计规范》(GB5007-2002)中规定粘性土为塑性指数Ip大于10的土,包括粘土和粉质粘土,粘性土颗粒间存在粘聚力和摩擦力,根据液性指数IL将粘性土的状态划分为表1。
地基承载力是指地基单位面积上承受荷载的能力,地基承载力的确定是基础设计中的重要参数,它直接影响到基础的类型和埋深,关系到建筑物的安全性。
粘性土的抗剪强度指标为粘聚力c和内摩擦角φ,利用土的抗剪强度指标计算粘性土地基承载力时,计算方法有 Pcr、P1/3、P1/4、Pu、fa,得到的地基承载力值有所差别,确定地基承载力对于地基和建筑物的稳定性具有重要的意义。
1 粘性土地基变形特征地基从变形到破坏是一个逐渐发展的过程,地基在荷载作用下,从开始施加荷载至地基发生破坏,地基的变形分为三个阶段(见图1)。
(1)直线变形阶段:当基底压力P≤Pcr时,压力与变形基本成直线关系(oa 段)。
在这一阶段土的变形主要由土的压密、孔隙体积减小引起,此时土中各点的剪应力均小于土的抗剪强度,土体处于弹性平衡状态,如图2(a)所示。
(2)塑性变形阶段:当 Pcr<P<Pu时(ab段),地基中的变形不再是线性变化,压力与变形之间成曲线关系。
在这一阶段,随着压力的增加,地基除进一步压密外,在基础的两侧出现了塑性变形区,而且随着荷载的增加,塑性变形区范围不断扩大,深度逐渐加深,如图2(b)所示。
地基承载力计算
地基承载力计算5.2.1 基础底面的压力,应符合下列规定:1. 当轴心荷载作用时p k≤ƒa (5.2.1-1)式中:p k——相应于作用的标准组合时,基础底面处的平均压力值(kPa);ƒa——修正后的地基承载力特征值(kPa)。
2. 当偏心荷载作用时,除符合式(5.2.1-1)要求外,尚应符合下式规定:p kmax≤1.2ƒa (5.2.1-2)式中:p kmax——相应于作用的标准组合时,基础底面边缘的最大压力值(kPa)。
5.2.2 基础底面的压力,可按下列公式确定:1. 当轴心荷载作用时p k=(F k+G k)/A (5.2.2-1)式中:F k——相应于作用的标准组合时,上部结构传至基础顶面的竖向力值(kN);G k——基础自重和基础上的土重(kN);A——基础底面面积(m2)。
2. 当偏心荷载作用时p kmax=[(F k+G k)/A]+(M k/W) (5. 2.2-2)p kmin=[(F k+G k)/A]-(M k/W) (5. 2.2-3)式中:M k——相应于作用的标准组合时,作用于基础底面的力矩值(kN·m);W——基础底面的抵抗矩(m3);p kmin——相应于作用的标准组合时,基础底面边缘的最小压力值(kPa)。
3. 当基础底面形状为矩形且偏心距e>b/6时(图5.2.2),p kmax应按下式计算:p kmax=[2(F k+G k)]/3la (5. 2.2-4)式中:l——垂直于力矩作用方向的基础底面边长(m);a——合力作用点至基础底面最大压力边缘的距离(m)。
图5.2.2 偏心荷载(e>b/6)下基底压力计算示意b-力矩作用方向基础底面边长5.2.3 地基承载力特征值可由载荷试验或其他原位测试、公式计算,并结合工程实践经验等方法综合确定。
5.2.4 当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其他原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正:ƒa=ƒak+ηbγ(b-3)+ηdγm(d-0.5) (5.2.4)式中:ƒa——修正后的地基承载力特征值(kPa);ƒak——地基承载力特征值(kPa),按本规范第5. 2.3条的原则确定;ηb、ηd——基础宽度和埋置深度的地基承载力修正系数,按基底下土的类别查表5.2.4取值;γ——基础底面以下土的重度(kN/m3),地下水位以下取浮重度;b—基础底面宽度(m),当基础底面宽度小于3m时按3m取值,大于6m时按6m取值;γm——基础底面以上土的加权平均重度(kN/m3),位于地下水位以下的土层取有效重度;d——基础埋置深度(m),宜自室外地面标高算起。
上海地基承载力fd计算(原创)
φd ≤16182022232425基础类型:ψ0.90 1.03 1.17 1.30 1.37 1.44 1.50基础宽度b= 2.5m 基础长度l= 2.5m 基础埋深d= 1.9mφd Nr Nq Nc 00.00 2.00 5.14基底上平均重度γ0=11kN/m310.01 2.00 5.38基底下土重度γ=8kN/m320.01 2.00 5.6330.02 2.00 5.90粘聚力标准值Ck=24kPa40.05 2.00 6.19内摩擦角标准值φk=17度50.07 2.00 6.4960.11 2.00 6.8170.16 2.007.1680.22 2.007.530.8090.30 2.007.92粘聚力分项系数γc= 2.7内摩擦角分项系数γφ= 1.2100.39 2.008.35粘聚力设计值Cd=7.1kPa 内摩擦角设计值φd=11.3度110.50 2.078.80120.63 2.099.28地基承载力修正系数ψ=0.90130.78 2.129.81140.97 2.1510.37Nr=0.54ξr= 1.0015 1.18 2.1810.98Nq= 2.08ξq= 1.0016 1.43 2.2211.63Nc=8.96ξc= 1.0017 1.73 2.2612.3418 2.08 2.3013.1019 2.48 2.3513.93地基承载力设计值fd=######kPa20 2.95 2.4014.8321 3.50 2.4615.8222 4.13 2.5216.8823 4.88 2.5818.0524 5.74 2.6519.3225 6.76 2.7220.723、计算结果说明:1、设计规范:根据上海市工程建设规范《地基基础设计规范》DGJ08-11-2010抗剪强度指标标准值修正系数γ= 承载力系数 基础形状系数2、计算信息(只有矩形基础起作用)表5.2.3-2地基承载力系数表(地下水位以下取浮重度)(地下水位以下取浮重度)上海天然地基承载力设计值fd计算表5.2.3-1 地基承载力修正系数表1、基本信息条形基础(当b>6m时,输入6m;当为圆形基础时,输入d)持力层厚度h1=0.5m h1/b=0.2基础宽度b= 2.5m 判断计算类型:基础埋深d= 1.9m粘聚力标准值Ck1=24kPa 粘聚力标准值Ck2=16kPa 内摩擦角标准值φ1=17度内摩擦角标准值φk2=15.5度持力层上平均重度γ0=11kN/m3下卧层上平均重度γ0=9kN/m3持力层以下土重度γ=8kN/m3下卧层以下土重度γ=8kN/m3粘聚力标准值Ck=20kPa 内摩擦角标准值φk=16.25度0.80粘聚力分项系数γc= 2.7内摩擦角分项系数γφ= 1.2粘聚力设计值Cd= 5.9kPa 内摩擦角设计值φd=10.8度地基承载力修正系数ψ=0.90Nr=0.48ξr= 1.00Nq= 2.06ξq= 1.00Nc=8.73ξc= 1.00地基承载力设计值fd=95.33kPa说明:1、设计规范:根据上海市工程建设规范《地基基础设计规范》DGJ08-11-2010 承载力系数 基础形状系数3、计算结果2、计算信息平均抗剪强度指标标准值平均抗剪强度指标标准值(Ck1+Ck2)/2平均抗剪强度指标标准值(Ck1+Ck2)/3抗剪强度指标标准值修正系数γ=按照下卧层指标计算fd 持力层信息下卧层信息上海天然地基软弱下卧层地基承载力设计值fd计算1、基本信息。
《地基基础承载力计算》
《地基基础承载力计算》第五章:工程规范地基承载力实用计算方法 第2节:建筑规范地基承载力计算 5.1 概述 ( 梁总文 )———————————————————————————————————————5.2建筑规范地基承载力计算 5.2.1 天然地基极限承载力天然地基极限承载力f u 可按下式估算。
k c c q q u c N d N b N f ξγξγξγγ++=021(5.2.1)式中u f ―地基极限承载力(kPa );c q N N N 、、γ―地基承载力系数,根据地基持力层代表性内摩擦角φk ( °) ,按表5.2.1-1确定;c q ξξξγ、、―基础形状修正系数,按表5.2.1-2确定;b 、l ―分别为基础(包括箱形基础和筏形基础)底面的宽度和长度(m ); 0γγ、―分别为基底以上和基底组合持力层的土体平均重力密度(KN/m 3);d ―基础埋置深度(m );k c ―地基持力层代表性黏聚力标准值。
表5.2.1-1 极限承载力系数表表5.2.1-2 基础形状系数对(5.2.1)式参数取值做如下说明:(1)对箱、筏形深大基础,宽度b 大于6m 时取b=6m 。
按表5.2.1-2确定基础形状系数时,b 、l 按实际尺寸计算;(2)式中0γγ、的取值,位于地下水位以下且不属于隔水层的土层取浮重力密度;当基底土层位于地下水位以下但属于隔水层时,γ可取天然重力密度;如基底以上的地下水与基底高程处的地下水之间有隔水层,基底以上土层在计算0γ时可取天然重力密度;(3)基础埋深d 根据不同情况按下列规定取值:1)一般自室外地面高程算起;对于地下室采用箱形或筏形基础时,自室外天然地面起算,采用独立基础或条形基础时,从室内地面起算;2)在填方整平地区,可从填土地面起算;但若填方在上部结构施工后完成时,自填方前的天然地面起算;3)当高层建筑周边附属建筑处于超补偿状态,且其与高层建筑不能形成刚性整体结构时,应分析周边附属建筑基底压力低于土层自重压力的影响,由此造成高层建筑基础侧限力的永久性削弱,会降低地基土的承载力。
土的抗剪强度与地基承载力
4.5.1 地基的破坏模式
局部剪切破坏
O
s
p
p~s曲线上坡度发生显著变化(即变化率最大的点)所对应的基底压力p作为地基的极限承载力fu。
固结快剪试验也适用于渗透系数小于10-6cm/s的细粒土。试验时对试样施加垂直压力后,每小时测读垂直变形一次,直至固结变形稳定。变形稳定标准为变形量每小时不大于0.005mm,在拔去固定销,剪切过程同快剪试验。所得强度称为固结快剪强度,相应指标称为固结快剪强度指标,以 表示。
透水石
橡皮膜
阀门,接体变量测系统
试样帽
活塞
有机玻璃罩
4.3.2三轴压缩试验
三轴压缩试验
三轴压缩仪
不固结不排水剪(UU)
4.3.2三轴压缩试验
固结不排水剪(CU)
4.32 三轴压缩试验
固结排水剪(CD)
4.3.2 三轴压缩试验
剪切类型 比较项目
Hale Waihona Puke 不固结不排水 (UU)4.3.3 无侧限抗压强度试验
无侧陷压缩示意图
无侧限仪
十字板剪切试验是一种利用十字板剪切仪在现场测定土的抗剪强度的方法。这种试验方法适合于在现场测定饱和粘性土的原位不排水强度,特别适用于均匀的饱和粘性土。
4.3.4 原位十字板剪切试验
4.3.4 原位十字板剪切试验
O
c
1=1f
3f= 3
1<1f
1>1f
(三)已知土中大小主应力状态判断土体所处的状态
1 假定此时的大主应力为破坏时的大主应力,求得破坏时的小主应力 。根据破坏时的小主应力和实际的小主应力之间的关系进行判断。
原位测试查表法对地基承载力初步确定的应用探究
原位测试查表法对地基承载力初步确定的应用探究摘要:随着我国城市现代化建设目标的推进以及工程建设体系的日趋完善,岩土工程勘察逐渐得到了业内的重视。
本文以勘察工作中常用的标贯试验、动力触探试验为基础,依据现行《建筑地基检测技术规范》(JGJ 340-2015)中初判地基承载力特征值的数据表拟合建立数学公式并结合工程案例,对以查表法初步确定地基承载力过程中存在的问题进行探究,达到实际勘察工作中合理应用该方法的目的,以便更好的指导勘察工作。
关键词:查表法、地基承载力、圆锥动力触探试验、标准贯入试验、勘察1引言地基承载力是勘察中的重要参数,也是天然地基基础设计的基本依据,合理的确定地基承载力是确保建筑物安全的前提。
我国确定地基承载力的方法主要有3种:一是用土的抗剪强度指标计算;二是根据载荷试验成果确定;三是根据与载荷试验相关分析的经验数据查表法确定;其中,查表法是最为简单、快捷方法。
由于各类土的地基承载力表数据来源于经验统计,在全国范围内通用同一张地基承载力表,对于广大中国各地存在差异的岩土明显过于简单粗暴,亦无法满足现代工程建设往更高、更大规模、不断突破的方向发展的需求。
因此自《工业与民用建筑地基基础设计规范》(TS 7-74)开始给出黏性土的地基承载力表至《建筑地基基础设计规范》(GB 50007-2002)中不在列入地基承载力表,查表法似乎完成了其时代背景下的使命。
然而,自岩土勘察引入我国已有超60年的历史,工程建设过程中在不同地方至今已完成了种类繁多工程项目,期间积累了丰富的数据形成承载力表。
它提供的经验关系在技术上仍然具有合理性,尤其对刚刚接触勘察工作的行业新人具有不可替代的向导性意义,因此在勘察工作全盘否定查表法的运用是不合理也无必要的,而应该更进一步的去探究运用过程中的一些问题和注意事项,使查表法作为综合确定地基承载力的一种印证方法,达到更好为勘察服务的目的。
现行《建筑地基检测技术规范》(JGJ 340-2015)中仍然保留了通过现场检测技术查表初步判定地基承载力特征值的方法,本人以该规范中通过圆锥动力触探试验及标准灌入试验初步判定地基承载力特征值的数据表为例,对查表法应用过程进行探究。
承载力特征值查表
8.5 地基容许承载力与承载力特征值所有建筑物和土工建筑物地基基础设计时,均应满足地基承载力和变形的要求,对经常受水平荷载作用的高层建筑高耸结构、高路堤和挡土墙以及建造在斜坡上或边坡附近的建筑物,尚应验算地基稳定性。
通常地基计算时,首先应限制基底压力小于等于地基容许承载力或地基承载力特征值( 设计值) ,以便确定基础的埋置深度和底面尺寸,然后验算地基变形,必要时验算地基稳定性。
地基容许承载力是指地基稳定有足够安全度的承载能力,也即地基极限承载力除以一安全系数,此即定值法确定的地基承载力;同时必须验算地基变形不超过允许变形值。
地基承载力特征值是指地基稳定有保证可靠度的承载能力,它作为随机变量是以概率理论为基础的,分项系数表达的极限状态设计法确定的地基承载力;同时也要验算地基变形不超过允许变形值。
因此,地基容许承载力或地基承载力特征值的定义是在保证地基稳定的条件下,使建筑物基础沉降的计算值不超过允许值的地基承载力。
地基容许承载力:定值设计方法承载力特征值:极限状态设计法按定值设计方法计算时,基底压力P不得超过修正后的地基容许承载力.按极限状态设计法计算时,基底压力P不得超过修正后的承载力特征值。
理论公式确定地基承载力均为修正后的地基容许承载力和承载力特征值.原位法和规范法确定地基承载力未包含基础埋深和宽度两个因素理论公式法确定地基承载力特征值在国标《建筑地基基础设计规范》(GB50007) 中采用地基临塑荷载P 1/4 的修正公式:b: 大于6m,按6m考虑,对于砂土小于3m,按3m考虑关于地基承载力特征值- 结构论文一、原因与钢、混凝土、砌体等材料相比,土属于大变形材料,当荷载增加时,随着地基变形的相应增长,地基承载力也在逐渐加在,很难界定出下一个真正的“极限值”,而根据现有的理论及经验的承载力计算公式,可以得出不同的值。
因此,地基极限承载力的确定,实际上没有一个通用的界定标准,也没有一个适用于一切土类的计算公式,主要依赖根据工程经验所定下的界限和相应的安全系数加以调整,考虑一个满足工程的要求的地基承载力值。
混凝土地坪承载力计算(第一版)
混凝土地坪承载力计算对于500T吊机地面承载力计算1.道路构造(1)-—对应1#、3#支腿2.道路基础承载力:本次重点分析混凝土路面的承载力情况及道路下卧层承载力验算.由原设计单位设计的底基层250厚碎砾石碾压密实,30厚粗砂垫层应该符合道路基础的要求。
3.查表可得C25混凝土参数如下:轴心抗压强度标准值fck=16.7N/mm2抗拉强度标准值ftk=1.78N/mm2抗剪强度ft=4N/mm24.假设3。
5*2.5*0.3钢板为基础,以道路结构层为持力层,参照《建筑地基基础设计规范》GB 50007-2011进行近似计算,已知吊车支腿最大荷126t,相当于1260KN,钢板重量20。
6T,相当于206KN.①计算混泥土地面附加应力:(1260+206)/2。
5*3.5=167.5KN/M2〈16700KN/M2 满足抗压要求②计算混泥土地面剪切应力:(1260+206)/((2.5+3。
5)*2*0.2)=610KN/M2〈4000KN/M2 满足抗剪要求③下卧层承载力验算:1)已知基础宽度b=2。
5M,长度L=3。
5M,基础埋深d=0M,持力层厚度z=0。
2+0.03+0。
25=0.48M,下卧层承载力取fak=110kpa2)持力层为混泥土结构,查表取其重度r=24KN/M33)按下卧层土性指标,对粉砂夹粉土的地基承载力修正:fa= fak+ηbγ(b-3)+ηdγm(d—0.5)=110kpa式中:fa——修正后的地基承载力特征值(kPa);fak——地基承载力特征值(kPa),按本规范第 5.2。
3 条的原则确定;ηb、ηd——基础宽度和埋深的地基承载力修正系数,按基底下土的类别查表 5。
2。
4 取值; γ-—基础底面以下土的重度(kN/m3),地下水位以下取浮重度;b——基础底面宽度(m),当基础底面宽度小于 3m 时按 3m 取值,大于 6m 时按 6m取值;γm——基础底面以上土的加权平均重度(kN/m3),位于地下水位以下的土层取有效重度d-—基础埋置深度(m)4)计算下卧层顶面处土的自重压力:Pcz=r*dz=24*0。
地基承载力验算表
52.9
6
强度指标对地基承载力特征值进行估算。 基础埋深 d 16 15.6 9.6 9.6 8.8 8.8
基底以下平均 基底以上平均 重度 重度
γ 20 20 20 20 20 20
γ m 20 20 20 20 20 20
Mb 0.2075 0.2075 0.2075 0.2075 0.2075 0.2225
承载力系数 Md 1.8455 1.8455 1.8455 1.8455 1.8455 1.908
地基承载力特 征值
基底压力
Mc 4.308 4.308 4.308 4.308 4.308 4.382
fa 840.31 825.55 604.09 604.09 574.56 594.32
P 520 720 460 460 400 400
3、按《建筑地基基础设计规范》(GB50007-2011)由土的抗剪强度指标对地基承载力特征值 参考公式:fa= M b γ b+M d γ m d+M c C k
地上建 地下室 建筑物编号 筑楼高 层数
1#办公楼 2#办公楼 3#办公楼 4#办公楼
23F 33F 21F 21F
3F 3F 2F 2F
内摩擦角 内黏聚力 计算宽度 φk Ck b 持力层 代表钻孔 泥岩⑤ BG134 11.1 52.2 6 泥岩⑤ BG77 11.1 52.2 6 泥岩⑤ BG62 11.1 52.2 6 泥岩⑤ BG44 11.1 52.2 6 泥岩⑤ BG13 11.1 52.2 6
含砾黏ห้องสมุดไป่ตู้
2F 5#办公楼 18F 性土② BG14 11.7 备注 每层楼及每层地下室基底压力按20kPa估算
是否满足 承载力要求 满足 满足 满足 满足 满足 满足
土的抗剪强度与地基承载力
2
由几何条件可以得出下列关系式:
sin j
s1 s 3 s 1 s 3 2cctanj
(5-4)
上式经三角变换后,得如下极限平衡条件式:
j j s 1 s 3tan 2 (45 ) 2ct an (45 ) (5-5)
2 2
或
j j s 3 s 1tan 2 (45 ) 2ct an (45 )
()
由摩尔应力圆可知,圆周上的A点表示与水平线成α角的斜截面, A点的坐标表示该斜截面上的剪应力 和正应力s。将抗剪强度直 线与摩尔应力圆绘于同一直角坐标系上,可出现三种情况:
土中一点达极限平衡时的摩尔应力圆
摩尔应力圆与抗剪强度之间的关系
(1)应力圆与库仑直线相离(Ⅰ),说明应力圆代表的单元体上 各截面的剪应力均小于抗剪强度,即各截面都不破坏,所以,该 点处于稳定状态。 (2)应力圆与库仑直线相割(Ⅲ),说明库仑直线上方的一段弧 所代表的各截面的剪应力均大于抗剪强度,即该点已有破坏面产 生,事实上这种应力状态是不可能存在的。 (3)应力圆与库仑直线相切(Ⅱ),说明单元体上有一个截面的 剪应力刚好等于抗剪强度,而处于极限平衡状态,其余所有的截 面都有 < f ,因此,该点处于极限平衡状态。所以圆(Ⅱ)称 为极限应力圆。 根据极限应力圆与抗剪强度线之间的几何关系,可求得抗剪强度 指标c、j和主应力 s1、s3之间的关系。由图可知: s s AO′= s 1 s 3 ;OO′= 1 3 cctanj
2 2
(5-6)
由图中的几何关系可知,土体的破坏面(剪破面)与大主 应力作用面的夹角α为: