废气处理催化燃烧法修订稿

合集下载

有机废气催化燃烧处理方案设计

有机废气催化燃烧处理方案设计

有机废气催化燃烧处理方案设计有机废气催化燃烧是一种常用的废气处理技术,其原理是通过催化剂将废气中的有机污染物氧化成二氧化碳和水,并释放产生的热能。

本文将从废气催化燃烧的原理、催化剂的选择、反应器的设计和操作参数的优化等方面,设计一个有机废气催化燃烧处理方案。

废气催化燃烧的原理是在适当的温度和氧气浓度下,将废气中的有机污染物和氧气经过催化剂的作用氧化反应,生成二氧化碳和水,并放出大量的热能。

催化剂选择是废气催化燃烧最关键的一步。

催化剂应具有较高的活性和稳定性,能够在较低的温度下实现有机物的完全氧化。

常用的催化剂有金属氧化物、贵金属催化剂和过渡金属催化剂等。

反应器的设计是废气催化燃烧的另一个重要环节。

常见的反应器类型包括固定床反应器、流化床反应器和喷射式反应器等。

固定床反应器是最常见的一种反应器类型,其具有简单、稳定的特点。

在设计反应器时,应考虑到废气的流量、成分和温度等参数,以确保能够实现高效的有机氧化反应。

针对不同的有机废气成分和浓度,需要调整废气处理的操作参数。

温度是影响废气催化燃烧效果的重要因素,一般要根据废气的成分选择合适的温度范围。

此外,氧气浓度和空速也会对废气处理效果产生一定的影响,应根据废气成分和废气流量等因素进行优化选择。

在实际操作过程中,还应考虑到废气催化燃烧的安全性和环境保护。

废气催化燃烧过程中会释放大量的热能,需要采取相应的措施进行热量的回收利用。

此外,废气处理设备的运行也需要保证达标排放,定期维护保养,确保设备的长期稳定运行。

总之,有机废气催化燃烧是一种有效的废气处理技术,通过选择适当的催化剂、设计合理的反应器和优化操作参数,能够实现有机污染物的高效氧化和排放的达标。

在实际应用中,还需要考虑到设备的安全性和环境保护,确保整个废气处理过程的稳定性和可持续发展。

催化燃烧技术处理工业 voc 废气的技术原理和工业化应用案例

催化燃烧技术处理工业 voc 废气的技术原理和工业化应用案例

催化燃烧技术处理工业 voc 废气的技术原理和工业化
应用案例
催化燃烧技术处理工业VOCs废气的技术原理和工业化应用案例如下:
技术原理:
催化燃烧是一种处理VOCs废气的方法,通过催化剂的作用,使废气中的有机物在较低的温度下氧化分解成无害的物质,如二氧化碳和水。

具体过程包括吸附和催化燃烧两个阶段。

在吸附阶段,废气被吸附在催化剂表面,然后在催化燃烧阶段,吸附在催化剂表面的有机物被氧化分解。

工业化应用案例:
1. 某化工企业:该企业采用催化燃烧技术处理其生产过程中产生的VOCs 废气。

通过使用合适的催化剂和优化工艺参数,实现了废气的有效处理,同时降低了能耗和成本。

经过处理后的废气达到了国家排放标准,为企业带来了明显的经济效益和环境效益。

2. 某家具制造企业:该企业采用催化燃烧技术处理其家具生产过程中产生的VOCs废气。

通过选用合适的催化剂和处理工艺,实现了废气的净化处理,
减轻了对环境的负担。

同时,催化燃烧技术还为企业节省了处理成本,提高了经济效益。

催化燃烧技术在处理VOCs废气方面具有明显的优势,包括高效、低能耗、环保等。

然而,实际应用中仍需根据企业具体情况进行技术选型和方案设计,以确保处理效果和经济效益。

同时,企业也需加强技术研发和管理,持续优化处理工艺和技术水平,以适应不断变化的环境要求和市场变化。

希望以上信息能帮您解决问题。

如果还有其他问题,请随时告诉我。

废气净化塔方法之催化燃烧法

废气净化塔方法之催化燃烧法

(1)贵金属类贵金属类有 Pt、Pd、Rb等,在催化
剂中的含量为0.1〜 0.5%,活性高,热稳定
好,寿命长,但价格贵, 来源困难。
(2)非贵金属氧化物或盐 类非贵金属氧化物或盐 类主要有Mn、Cr、Cu、 Fe、NU Co及稀土金属 类氧化物或盐,这类催 化剂一般含金属量为5%。
废气净化方法之催化燃烧法
• 在催化剂存在下,废气中的叮燃组分能在较低的温度下进行燃 烧反应,这种方法能节约预热燃料,减小反应器的容积,还能 提高反应速率,提高一种或儿种反应 物与另一种或几种反应物 的相对转化率。预热过的制药生产废气流经催化床,在此 进行 催化反应,排出的高温气体引入换热器,把能量传给入口废气。
废气净化方法之催化燃烧法
• 催化燃烧的主要优点是操作温度较低,燃料耗量低,保温要求不 严格,能减少 回火及火灾危险;缺点是催化剂较贵.需要洱生, 基建投资高,大颗粒物及液滴应 预先除上,而且不能用于使催化 剂中毒的气体。爽风环保
而加快了反应速度。
01
02
废气净化方法之催化燃烧法
催化剂足进行 催化燃烧的关 键.H此,必须 对 催化剂杏所
要求:①活性 高,特别在低 温条件下的活 性要高,以降 低起燃点;
②热 稳定性要 好,即在高温 下催化剂仍能 保持其催化性
能;
③抗毒性强;
④使用寿命长 等。
废气净化方法之催化燃烧法
A
B
C
常用的催化剂 有两类。
催化燃烧主要用来治 理制药工业和化学工 业冇机废气和消除恶 臭,在催化剂作 用下,
有机废气中的碳氢化 物可以在较低温度下 (300〜40CTC)迅速氧 化化方法之催化燃烧法
催化剂的存在可以降低 反应进行的活化能.主要 原因在于反应物可以在 催化剂 表间吸附,生成 活化结合物.再转化为产 物,这样就改变了由反 应物到反应产物的 反应 途径,转变为:表向吸 附一活化结合物一产物, 这一过程所需活化能要 比直接 反应低得多,从

有机废气(VOCs)处理吸附浓缩+催化燃烧法

有机废气(VOCs)处理吸附浓缩+催化燃烧法

A165-有机废气(VOCs)处理吸附浓缩+催化燃烧法
通过分析并比较各种处理有机废气的技术与工艺,人们提出了结合的处理工艺技术,此工艺技术适用于大风量、低浓度的苯类、酮类、醛类、醇类等多种有机废气治理。

采用活性炭纤维吸附浓缩、热空气脱附和催化燃烧三种组合工艺净化有机废气。

工艺流程图如图1所示。

有机废气经预处理除去粉尘或兼除其它催化剂毒物,而后由风机送入预热器预热至起燃温度以上再进入催化床反应。

工艺中采用远红外辐射直接加热催化床,可以明显减少启动时间和启动功率,降低预热温度。

借助于换热器,可以明显减少加热功率在启动阶段,换热器使反应床和进入反应床的空气不断升温,直至预热器所供给的热量全部被设备和换热器的出口气流带走。

换热器的另一个作用是回收反应热,视有机组分浓度的高低,顶替部分或全部的电加热。

如浓度大于1 000μL/L,运行中所需的预热功率就可以很低。

此工艺中吸附床选用目前国内外公认的先进的活性炭纤维作吸附材料,其材料具有吸附效率高,吸脱附时间快,使用寿命长的特点,净化效率达90%以上;催化床选用性能优良的蜂窝陶瓷贵金属催化剂,净化效率达95%以上;采用先进的自动控制系统,实现了净化系统内的吸附、脱附、热平衡、催化反应连续不停运行。

净化系统设计合理、结构紧凑、高效。

与同类处理大风量、低浓度有机废气净化系统相比,设备投资和运行能耗明显降低。

VOCs催化燃烧废气处理方法

VOCs催化燃烧废气处理方法

VOCs催化燃烧废气处理方法
1、VOC s废气处理:沸石转轮吸附法
一般的废气浓缩主要通过沸石转轮实现,转轮为圆形结构,内部均匀填充沸石,沸石转轮在不同温度下具有不同的吸附效率,所以安装转轮的风箱根据转轮的特性设置了3个分区,就是吸附区、脱附区、冷却区。

2、VOC s废气处理:催化燃烧设备
通过控制脱附过程流量可将有机废气浓度浓缩很多倍,脱附气流经催化床内设的电加热装置加热至一定温度后,在催化剂作用下起燃,催化燃烧过程净化效率是很高的,燃烧后生成CO2和H2O并释放出大量热量,该热量通过催化燃烧床内的热交换器一部分再用来加热脱附出的高浓度废气,另外一部分加热室是对外来的空气做活性碳脱附气体使用,达到热平衡后可关闭电加热装置,这样就可以靠废气中的有机溶剂做燃料,使再生过程达到自平衡循环,大大的减少能耗,不会有二次污染产生。

3、VOC s废气处理:RTO—热力焚烧炉
VOCs有机废气中热力焚烧炉的工作原理就是将有机废气高温燃烧破坏,让有机物分解成无机物,实现烟气达标排放和燃烧热能回收利用的双重效果。

而要保证燃烧的充分性,就要满足燃烧原则,也就是空气的湍流度、燃烧温度、有机物在高温区的停留时间。

4、VOC s废气处理:RCO—蓄热式催化燃烧
催化燃烧法是将含有机污染物的废气,在催化剂的作用下和较低的
温度下,将废气中的有机污染物氧化成二氧化碳和水,具有适用范围广,结构简单,净化效率高,节能、无二次污染等优点。

虽然VOC s废气处理方法有很多,但是一般单一的处理方式是很难达到应有的效果,所以在实际应用中我们大多采取多种废气处理设备相结合的方式,这样废气处理会效果会更好。

有机废气催化燃烧处理方案

有机废气催化燃烧处理方案

有机废气催化燃烧处理方案摘要有机废气是工业生产过程中产生的一种有害气体,对环境和人体健康都有一定的危害。

本文介绍了一种基于催化燃烧技术的有机废气处理方案。

该方案通过选择合适的催化剂、优化催化剂载量和反应条件,实现高效、低能耗的有机废气净化。

文中还介绍了该方案的工艺流程、催化剂性能要求以及实际应用案例。

1. 研究背景随着工业化进程的加快,各种有机化合物废气排放量逐年增加。

这些有机废气含有大量的有害物质,如苯、甲苯、二甲苯等。

这些物质对环境和人体健康造成严重威胁,需要采取措施进行净化处理。

2. 催化燃烧原理催化燃烧是一种通过催化剂将有机废气中的污染物氧化成无害物质的技术。

催化剂能够在低温下加速有机物的氧化反应,提高反应速率和转化率。

催化燃烧相比传统的热燃烧技术具有能耗低、温度低、净化效率高等优点。

3. 催化剂选择与性能要求催化剂选择对整个催化燃烧过程的效果起到至关重要的作用。

一般情况下,铂族金属、钴、镍等贵金属常用作催化剂。

催化剂需要具备以下性能要求:•高催化活性:能够在较低温度下有效地催化有机物的氧化反应;•耐高温性:能够在高温条件下保持催化活性,不发生烧结或失活;•长期稳定性:能够长期使用而不降低催化活性;•抗中毒性:能够耐受废气中的有害物质对催化活性的影响。

4. 催化燃烧方案设计基于以上要求,我们设计了一种有机废气催化燃烧处理方案。

方案的主要步骤包括:1.催化剂的选择:根据不同的有机废气成分,选择合适的催化剂,例如Pt、Pd等贵金属催化剂。

2.催化剂的制备:通过合成方法,制备出负载有机废气催化燃烧催化剂。

3.反应装置设计:设计合适的反应器,确保废气与催化剂充分接触,提高反应效率。

4.反应条件优化:通过调整温度、空气流量等参数,寻找最佳的反应条件,提高催化燃烧效果。

5.废气处理后处理:对反应产物进行冷凝、吸附等后处理操作,确保废气的排放符合相关标准。

5. 实际应用案例该有机废气催化燃烧处理方案已在某化工企业得到实际应用。

催化燃烧(RCO)处理工业废气关键技术研究

催化燃烧(RCO)处理工业废气关键技术研究

催化燃烧(RCO)处理工业废气关键技术研究作者:张海鹰张俊鹏袁立新何江湖来源:《青年与社会》2019年第18期摘要:催化燃烧RCO利用化学催化剂,使有机废气在较低的起燃温度发生无氧燃烧,具有适用范围广、效率高、经济性好等优点,在设计过程中,要根据废气类型和具体工况,合理选用高效吸附剂和催化剂,对于吸附脱附装置和催化炉的设计,采用性能和经济型匹配的原则,改进优化催化氧化炉装置和自动化控制,有效降低能耗,提升催化氧化炉的可靠性和安全性。

关键词:催化燃烧RCO;催化剂;催化燃烧炉蓄热式催化燃烧法,英文全称为“Regenerative Catalytic Oxidation Oxidition”,通常简称催化燃烧或 RCO。

蓄热式催化燃烧法对VOCS分子的吸附,脱附后提高了反应物的浓度,利用化学催化剂,使有机废气在较低的起燃温度250-300℃情况下,有机废气发生无氧燃烧,分解成CO2和H2O,同时可以释放出大量热量,因此反应过程中能耗较小,一般情况下达到起燃温度后无再需外界供热,在催化剂的作用下,催化氧化阶段降低反应的活化能,提高了反应的速率。

一、催化燃烧的特点(一)适用范围广催化燃烧几乎可以处理所有的有机废气及恶臭气体,包括苯类、酚类、醛类、酮类、酯类、醇类、醚类、和烃类等。

它适用于处理各种中低浓度的废气成分。

特别是对石油化工、喷涂涂料、绝缘材料、食品加工等行业排放的低浓度、多成分,又没有回收价值的废气,采用吸附-催化燃烧法的处理效果会更好。

(二)效率高采用催化燃烧法RCO处理有机废气,废气的净化率一般都在95%以上,最终反应产物大部分为CO2和H2O,因此处理过程无二次污染形成的问题。

由于反应温度低,也能大大减少了NOX的生成。

(三)经济性好催化燃烧法相对于常用的吸附法、光催化氧化、低温等离子等处理低浓度有机废气的处理方法,前期投资成本会稍微有所提高,当然主要还是取决于催化剂性能和效率以及废气处理中的有机物浓度,也与热量回收效率、经营管理和操作工艺等有关。

催化燃烧有机废气方案

催化燃烧有机废气方案

催化燃烧有机废气方案引言随着工业发展和人类活动的增加,有机废气的排放问题日益凸显。

有机废气的高浓度排放不仅对环境造成严重污染,还对人体健康造成潜在风险。

因此,采取有效的措施处理有机废气,特别是采用催化燃烧技术,成为解决这一问题的重要途径。

催化燃烧原理催化燃烧是利用催化剂在较低温度下实现有机物氧化反应的过程。

其基本原理是将有机废气与催化剂接触,通过催化剂的作用,促使有机物发生氧化反应,转化为无害的废气排放。

催化燃烧技术具有高效、节能的特点,广泛应用于有机废气处理领域。

催化燃烧有机废气方案的关键技术催化剂选择催化剂是催化燃烧过程中的核心元素,其选择直接影响到废气处理效果。

催化剂应具有较高的活性和稳定性,能够在较低的温度下催化有机物的氧化反应。

常用的催化剂包括铂、钯、铑等贵金属催化剂以及过渡金属氧化物等。

反应温度控制催化燃烧过程中,反应温度的控制是十分重要的。

温度过低会导致反应缓慢,处理效率低下;温度过高则容易引起其他问题,如催化剂的失活。

因此,合理控制反应温度,通常在200℃至400℃范围内进行燃烧,有助于提高废气处理效果。

在进行催化燃烧处理之前,对废气进行适当的预处理可以提高处理效果。

常见的废气预处理方法包括除尘、脱硫、脱氮等。

除尘可以去除颗粒物,避免对催化剂的堵塞影响;脱硫和脱氮则可以减少废气中的有害气体含量,提高处理效果。

催化燃烧有机废气方案的应用案例汽车尾气处理汽车尾气排放是城市环境污染的重要来源之一。

采用催化燃烧技术,可以有效降低尾气中的有害物质含量,包括一氧化碳、氮氧化物等。

通过在汽车尾气排放系统中设置催化转化器,将废气中的有机物与催化剂接触,实现有机物的氧化反应,从而达到净化废气的目的。

工业生产过程中产生的有机废气,包括VOCs(挥发性有机化合物)等,对环境和人体健康造成潜在危害。

催化燃烧技术被广泛应用于工业废气处理领域,通过选择适当的催化剂和控制反应条件,实现工业废气的高效处理,减少有机物的排放。

催化燃烧法工业有机废气治理工程技术规范-中华人民共和国环境保护部

催化燃烧法工业有机废气治理工程技术规范-中华人民共和国环境保护部

附件五:催化燃烧法工业有机废气治理工程技术规范(征求意见稿)编制说明《催化燃烧法工业有机废气治理工程技术规范》编制组2011年2月目次1 任务来源 (1)2 标准制定的必要性 (1)3 主要工作过程 (2)4 国内外相关标准研究 (3)5同类工程现状调研 (5)6 主要技术内容及说明 (12)7 标准实施的环境效益及经济技术分析 (23)8 标准实施建议 (23)9 征求意见汇总处理情况说明 (23)10 技术审查工作情况说明 (23)1 任务来源原国家环境保护总局办公厅《关于开展2008年度国家环境保护标准制修订项目工作的通知》(环办函【2008】44号)下达计划《气态污染物治理工程技术规范催化法》,项目序号367,统一编号1422。

经讨论建议更名为《催化燃烧法工业有机废气治理工程技术规范》。

本标准主要起草单位:中国环境保护产业协会、中国人民解放军防化研究院、中科院生态环境中心、中国矿业大学(北京)、福建嘉园环保股份有限公司、北京绿创大气环保工程有限公司、北京云辰天环保科技有限公司、北京富尔维纳环保节能技术有限公司。

2 标准制定的必要性挥发性有机污染物(V olatile Organic Compounds, VOCs)大多数有毒、有害,具有一定的致癌性;参与光化学反应,形成光化学烟雾;部分可破坏臭氧层。

我国一些城市空气中VOCs的浓度是美国城市空气浓度5~15倍,工业排放有机废气已经成为城市主要污染源之一。

涉及VOCs排放的工业行业包括石油化工、精细化工、喷涂、包装印刷、医药与农药制造、半导体及电子产品制造、人造板与木制家具制造、皮革、漆包线、制鞋、涂料、油墨、粘合剂生产、金属铸造等,行业众多,各行业中所产生的VOCs种类繁多,组成复杂,常见的组分有碳氢化合物、苯系物、醇类、酮类、酚类、醛类、酯类、胺类、腈(氰)类等。

目前,在我国VOCs污染源主要分布在全国各地城市与城市群,分布面广,其中90%以上尚未治理,对大气环境影响严重,应依据相关污染治理法规的要求进行治理。

催化燃烧(RCO)处理工业废气关键技术研究

催化燃烧(RCO)处理工业废气关键技术研究

催化燃烧(RCO)处理工业废气关键技术研究催化燃烧(RCO)是一种常用的工业废气处理技术,通过在高温条件下引入催化剂,将有机废气中的有害成分转化为无害的物质。

本文将重点介绍催化燃烧处理工业废气的关键技术。

1. 催化剂选择:催化剂是催化燃烧过程中的核心组成部分,其选择和设计对处理效果具有重要影响。

催化剂应具备高的催化活性、稳定性和抗中毒性,同时要与废气中的有机物相适应。

2. 反应器设计:反应器是催化燃烧的核心设备,其设计应考虑废气特性、催化剂特性和反应条件等因素。

一般可以采用固定床、移动床或流化床等形式,以保证废气和催化剂的有效接触和反应。

3. 温度控制:催化燃烧反应需要高温条件,通常在400-800℃范围内进行。

温度的选择应根据废气特性和催化剂的工作温度进行调整,以保证催化剂的活性和废气处理效果。

4. 氧含量控制:氧气是催化燃烧反应中的重要参与者,过量的氧气会导致废气中有机物的不完全燃烧,而缺氧则会影响催化剂的催化活性。

氧含量的控制是催化燃烧反应的重要参数之一。

5. 废气预处理:一些废气中含有高浓度的杂质物质,如颗粒物、硫化物等,会对催化剂产生不利影响,因此需要进行预处理。

常用的预处理方法包括脱硫、除尘等。

6. 催化剂再生:催化燃烧反应会使催化剂表面吸附物质增多,从而影响其活性和稳定性,需要定期进行再生。

再生方法包括高温燃烧、蒸汽再生等,可使催化剂重新恢复活性。

7. 控制系统:催化燃烧系统需要配备合适的控制系统,以监测和调节温度、氧含量、废气流量等关键参数。

控制系统可以实现自动化运行,提高处理效率和稳定性。

催化燃烧处理工业废气是一项复杂的技术工作,需要充分考虑催化剂选择、反应器设计、温度控制、氧含量控制、废气预处理、催化剂再生和控制系统等因素。

只有合理选择和优化这些关键技术,才能实现高效、可靠的废气处理效果。

催化燃烧(RCO)处理工业废气关键技术研究

催化燃烧(RCO)处理工业废气关键技术研究

催化燃烧(RCO)处理工业废气关键技术研究近年来,随着工业化进程的加快和环境污染的日益严重,工业废气治理成为了一项亟待解决的重大问题。

工业废气中含有多种有害物质,如挥发性有机化合物(VOCs)、氮氧化物(NOx)和二氧化硫(SO2)等,对环境和人类健康造成了严重危害。

催化燃烧(RCO)技术是一种高效的工业废气治理方法,已经成为工业废气治理领域的研究热点。

在工业废气管理中,RCO技术利用催化剂促进氧化反应的进行,将有害气体转化为无害的二氧化碳和水,达到减少和消除废气中有害物质的目的。

本文将针对RCO技术的关键技术进行深入研究和探讨,以期为工业废气治理提供更有效的技术支持。

一、催化剂的研发和选取作为RCO技术的核心部分,催化剂的选择和研发对于RCO技术的工艺性能具有决定性的影响。

目前,研究者们主要关注于寻找具有高活性和热稳定性的催化剂,以满足RCO技术对于高温和长期运行的要求。

针对不同工业废气的特性和成分,需要设计合适的催化剂配方和催化剂载体结构,以提高催化剂的活性和稳定性。

还需要选择具有良好耐受性和抗中毒性的催化剂,以应对废气中有害物质的多样性和不确定性。

未来的研究方向包括利用纳米技术和多相界面协同效应,开发新型高效的催化剂,以进一步提高RCO技术的治理效率。

二、温度控制与热管理在RCO技术中,温度是影响废气治理效率的重要因素。

过低的温度会降低催化反应的活性,而过高的温度则会降低催化剂的稳定性。

合理的温度控制和热管理对于RCO技术的运行至关重要。

目前,研究者们主要通过设计合理的RCO反应器结构和配置适当的热能回收装置来解决温度控制和热管理的问题。

温度控制与热管理技术的发展将推动RCO技术向着更高效、更稳定的方向发展,为工业废气治理提供更可靠的技术保障。

三、催化剂失活与再生技术在RCO技术的运行过程中,催化剂由于长期受到有害物质的影响,容易出现失活现象,从而降低了其活性和稳定性。

催化剂的失活与再生技术成为RCO技术研究的重要方向。

HJ 2027-2013催化燃烧法工业有机废气治理工程技术规范

HJ 2027-2013催化燃烧法工业有机废气治理工程技术规范

中华人民共和国国家环境保护标准HJ 2027—2013催化燃烧法工业有机废气治理工程技术规范Technical specifications of catalytic combustion method for industrial organic emissions treatment project本电子版为发布稿。

请以中国环境科学出版社出版的正式标准文本为准。

环境保护部发布I目次前言 (II)1 适用范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 污染物与污染负荷 (3)5 总体要求 (3)6 工艺设计 (4)7 主要工艺设备 (6)8 检测与过程控制 (7)9 主要辅助工程 (7)10 工程施工与验收 (7)11 运行与维护 (8)II前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,规范工业有机废气治理工程的建设,防治工业有机废气的污染,改善环境质量,制定本标准。

本标准规定了工业有机废气催化燃烧法治理工程的设计、施工、验收和运行的技术要求。

本标准为指导性文件。

本标准为首次发布。

本标准由环境保护部科技标准司组织制订。

本标准主要起草单位:中国环境保护产业协会、中国人民解放军防化研究院、中国科学院生态环境研究中心、北京绿创环保设备股份有限公司、中节能天辰(北京)环保科技有限公司、北京奥德维纳环保节能技术有限公司、嘉园环保股份有限公司、科迈科(杭州)环保设备有限公司。

本标准环境保护部2013年3月29日批准。

本标准自2013年7月1日起实施。

本标准由环境保护部解释。

1催化燃烧法工业有机废气治理工程技术规范1 适用范围本标准规定了工业有机废气催化燃烧法治理工程的设计、施工、验收和运行的技术要求。

本标准适用于工业有机废气的催化燃烧法治理工程,可作为环境影响评价、工程咨询、设计、施工、验收及建成后运行与管理的技术依据。

2 规范性引用文件本标准内容引用了下列文件中的条款。

催化燃烧(RCO)处理工业废气关键技术研究

催化燃烧(RCO)处理工业废气关键技术研究

催化燃烧(RCO)处理工业废气关键技术研究催化燃烧(RCO)是一种常见的工业废气处理技朮,通过利用催化剂促进废气中有害气体的氧化反应,将它们转化为无害的物质。

这种技术在环保领域发挥着重要的作用,对于保护环境和人类健康具有重要意义。

近年来,随着环保意识的增强和环保法规的日益严格,对RCO技术的研究和应用也越来越受到重视。

本文将重点介绍RCO处理工业废气的关键技术研究。

一、废气成分分析在进行RCO处理之前,首先需要对工业废气进行成分分析,确定其中的有害气体种类和浓度。

不同的废气成分对于选择合适的催化剂和优化催化剂的工作条件具有重要影响。

对废气成分进行准确的分析是RCO技术研究的第一步。

目前常用的分析方法包括气相色谱-质谱联用技术(GC-MS)、红外光谱分析技术等。

二、催化剂的选择和优化催化剂是RCO处理工业废气的核心部分,其选择和优化对于催化燃烧反应的效率和稳定性起着至关重要的作用。

合适的催化剂可以提高催化燃烧反应的速率和选择性,从而降低处理工业废气的能耗和成本。

常用的催化剂包括贵金属催化剂(如铂、钯等)和过渡金属氧化物催化剂(如铁、铜、铬等)。

近年来,高活性、高稳定性和抗毒化的新型催化剂也成为研究的热点,例如钼酸盐、硅氧烷等。

三、温度和氧化剂控制在RCO处理工业废气的过程中,温度和氧化剂浓度是影响催化燃烧反应效率和选择性的重要参数。

合适的温度可以促进催化剂的活性,提高反应速率;而适当的氧化剂浓度可以保证废气中的有害气体被充分氧化。

对温度和氧化剂浓度进行精确控制是RCO技术研究的重要内容之一。

目前,常用的温度控制方法包括加热炉控制、恒温水浴控制等;而氧化剂控制主要包括空气控制、氧气控制等。

四、毒物抑制技术工业废气中常常含有一些对催化剂具有毒性或者中毒作用的有害物质,如硫化氢、氯化氢等。

这些毒物会降低催化剂的活性和稳定性,从而影响RCO处理工业废气的效率和稳定性。

对毒物的抑制技术也是RCO技术研究的重要内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废气处理催化燃烧法 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-
废气处理催化燃烧法
一、催化原理及装置组成
1、催化剂定义催化剂是一种能提高化学反应速率,控制反应方向,在反应前后本身的化学性质不发生改变的物质。

2、催化作用机理催化作用的机理是一个很复杂的问题,这里仅做简介。

在一个化学反应过程中,催化剂的加入并不能改变原有的化学平衡,所改变的仅是化学反应的速度,而在反应前后,催化剂本身的性质并不发生变化。

那么,催化剂是怎样加速了反应速度呢了既然反应前后催化剂不发生变化,那么催化剂到底参加了反应没有实际上,催化剂本身参加了反应,正是由于它的参加,使反应改变了原有的途径,使反应的活化能降低,从而加速了反应速度。

例如反应A+B→C是通过中间活性结合物(AB)过渡而成的,即:A+B→[AB]→C其反应速度较慢。

当加入催化剂K后,反应从一条很容易进行的途径实现:A+B+2K→[AK]+[BK]→[CK]+K→C+2K中间不再需要[AB]向C的过渡,从而加快了反应速度,而催化剂并未改变性质。

3、催化燃烧的工艺组成不同的排放场合和不同的废气,有不同的工艺流程。

但不论采取哪种工艺流程,都由如下工艺单元组成。

①废气预处理为了避免催化剂床层的堵塞和催化剂中毒,废气在进入床层之前必须进行预处理,以除去废气中的粉尘、液滴及催化剂的毒物。

②预热装置预热装置包括废气预热装置和催化剂燃烧器预热装置。

因为催化剂都有一个催化活性温度,对催化燃烧来说称催化剂起燃温度,必须使废气和床层的温度达到起燃温度才能进行催化燃烧,因此,必须设置预热装置。

但对于排出的废气本身温度就较高的场合,如漆包线、绝缘材料、烤漆等烘干排气,温度可达300℃以上,则不必设置预热装置。

预热装置加热后的热气可采用换热器和床层内布管的方式。

预热器的热源可采用烟道气或电加热,目前采用电加热较多。

当催化反应开始后,可尽量以回收的反应热来预热废气。

在反应热较大的场合,还应设置废热回收装置,以节约能源。

预热废气的热源温度一般都超过催化剂的活性温度。

为保护催化剂,加热装置应与催化燃烧装置保持一定距离,这样还能使废气温度分布均匀。

从需要预热这一点出发,催化燃烧法最适用于连续排气的净化,若间歇排气,不仅每次预热需要耗能,反应热也无法回收利用,会造成很大的能源浪费,在设计和选择时应注意这一点。

③催化燃烧装置一般采用固定床催化反应器。

反应器的设计按规范进行,应便于操作,维修方便,便于装卸催化剂。

在进行催化燃烧的工艺设计时,应根据具体情况,对于处理气量较大的场合,设计成分建式流程,即预热器、反应器独立装设,其间用管道连接。

对于处理气量小的场合,可采用催化焚烧炉(见图16-13),把预热与反应组合在一起,但要注意预热段与反应段间的距离。

催化燃烧过程的热平衡:
催化燃烧是放热反应,放热量的大小取决于有机物的种类及其含量。

依靠废气燃烧的反应热,维持催化燃烧过程持续进行是最经济的操作方法,而能否以自热维持体系的正常反应,则取决于燃烧过程的放热量、催化剂的起燃温度、热量回收率、废气的初始温度。

以净化含甲苯的废气为例,设3种废气中分别含有甲苯2000、1000、500 mg/m3,催化剂的相应起燃温度分别为200、250、300℃,废气的初始温度分别为30、150℃,热交换器的效率与需补充能量的关系如表2所示(表中t1、t2、t3、t4、t5分别表示废气初始温度、经热交换器预热后的温度、进催化床的温度,出催化床的温度及净化气经热交换器换热后放空的温度)。

从表2可见,热交换器的效率越高,催化剂的起燃温度越低,废气的初始温度越高,实现自热运转可能性越大。

而5000mg/m3左右的有机物残留量在工业有机废气中是常见的,只要热交换器的换热效率达到50%~60%,就可利用热交换器回收燃烧反应热来维持催化燃烧体系的进行。

催化燃烧法的优点
1.可以降低有机废气的起始燃烧温度。

例如甲醇、甲醛在以氧化铝为载体的Pt催化剂(Pt/Al2O3)的作用下,室温下就开始燃烧,而直接燃烧法起始燃烧点通常为300~600℃。

2.燃烧不受碳氢化合物浓度的限制。

3.基本上不会造成二次污染。

4.设备较简单,投资少,见效快。

无论燃煤是发电还是供热、供汽,使用它的主要设备为锅炉。

我国大中城市中普遍使用小型锅炉供热,更小型的茶炉供应开水。

这样,成千上万根细小的烟囱,就一起竖直着指向天空,随时喷出一股股黑烟,污染天空。

因此科学家提出治理大气污染应从锅炉开始。

废气处理催化燃烧净化塔在催化剂的作用下,使有机废气中的碳氢化合物在温度较低的条件下迅速氧化成水和二氧化碳。

催化燃烧法处理工业有机废气是20世纪40年代末出现的技术。

从1949年美国研制出世界上第一套催化燃烧装置到现在,这项技术已广泛地应用于油漆、橡胶加工、塑料加工、树脂加工、皮革加工、食品业和铸造业等部门,也用于汽车废气净化等方面。

中国在1973年开始将催化燃烧法用于治理漆包线烘干炉排出的有机废气,随后又在绝缘材料、印刷工业等方面进行了研究,使催化燃烧法得到了广泛的应用。

催化燃烧工艺:
1、吸附过程吸附是气体结合到固体上去的质量传递过程。

气体(吸附质)进入固体(吸附剂)的孔隙中但并未进入其晶格内。

吸附过程可能是物理过程,也可能是化学过程。

物理吸附主要是范德华引力起作用,一般没有选择性,在吸附过程中没有电子转移,没有化学键的生成与破坏。

化学吸附实际上是一种化学反应,具有选择性,在化学吸附过程中,气体和固体表面发生了化学反应。

最普遍使用的吸附剂是活性炭、分子筛、硅胶和活
性氧化铝。

这些吸附剂经过处理后表面积极大,可有效吸附碳氢化合物等污染物。

其缺点是对水有优先选择性吸附作用。

所有的吸附剂在一定的高温下会发生变化。

在这些温度下,其吸附能力很弱。

污染物可以被解脱出来,从而使吸附剂的活性得到再生,这个过程成为脱附。

为了进行连续操作,一般提供两个或多个吸附床。

一个或几个吸附床在吸附时,另一个或几个吸附床则进行再生。

在吸附过程中,被收集的污染物滞留在吸附床中,只要吸附床有足够的容量,污染物就不会释放出来。

但是当吸附床中的污染物浓度达到饱和时,污染物便开始释放出来,这种现象称为穿透。

达到饱和的吸附床需要进行再生,一般采用加热的气体对吸附床进行脱附,一方面使吸附床重新具有活性,一方面是污染物被解脱出来进行回收或分解处理。

2、燃烧过程当气流中的污染物可被氧化时,燃烧是一种彻底的污染控制方案。

碳氢化合物就属于这类污染物。

燃烧可以分为直接火焰燃烧和催化燃烧两类。

燃烧即是在氧和热的作用下将碳氢化合物转化为水和二氧化碳。

其反应方程式如下: CnH2m+(n+m/2)
O2=nCO2+H2O+Heat 在燃烧过程中,气流量和有机物负荷是选择燃烧技术的重要参数。

一个衡量污染物负荷的参数是低爆炸极限(LEL)或低可燃极限(LFL)。

气流的低爆炸极限是气体可自燃的最低有机物浓度(100%LEL)。

由于100%LEL具有爆炸危险,美国消防协会规定气流的LEL不能超过50%,在LEL超过25%时应设置可燃气体监控装置。

另一个要考虑的因素是气流的能量密度,当气流的能量密度必须大于m3时点火后气体可自行维持燃烧,否则需要提供辅助燃料,另外要考虑燃烧后不产生有毒的副产品。

能量值低于m3的气体,可利用催化剂来帮助氧化燃烧。

经常使用的活性催化剂是铂或钯的化合物,使用陶瓷作载体。

使用催化剂可降低燃烧温度,节省运行费用,但是主要缺点是微量的硫和铅的化合物会使催化剂中毒,而且特定的催化剂对每种有机污染物起到催化燃烧的作用是不同的,对有些有机污染物的去除可能无效。

在燃烧工艺中,为了节省能源,一般对燃烧使用或产生的热量进行利用。

利用方式包括换热和回热两种。

换热方式是利用换热器在燃烧后产生的高温气体和低温气体(进气或其他需要热源的气流)之间进行换热能量传递,回热方式是利用蓄热装置直接和气流进行交替热交换,因此热量利用的效率更高。

不同的燃烧工艺组合,形成4种基本的燃烧工艺方式:催化燃烧(换热),直接燃烧(换热),回热催化燃烧(RCO),回热燃烧(RTO)。

在此基础上还形成了转轮富集燃烧,陶瓷过滤器等方式。

相关文档
最新文档