《函数概念的理解》PPT课件
合集下载
高中数学《函数的概念》课件
定义域和值域
了解函数定义的形式及其定义域 和值域非常重要。
函数的图像
函数图像的概念
掌握如何根据函数的定义、域、值域和公式绘制函数的图像。
如何绘制函数图像
学习如何使用函数的公式和几何方法来绘制函数的图像。
函数的对称性
探究函数的不同对称性,例如奇偶性和周期性。
函数的性质
1
奇偶性与周期性
了解函数的基本性质,例如奇偶性和周期性,可以帮助简化函数的分析。
高中数学《函数的概念》 ppt课件
数学是一门让人兴奋的学科。接下来,我们将探讨高中数学的一个关键主题: 函数的概念。通过本课程,你将深入了解函数的基本定义、图像、性质及其 实际应用。
函数的定义
定义及其常见表示形式
掌握函数的不同表示形式是理解 数学中其他相关概念的基础。
自变量和因变量
发现自变量和因变量之间的关系 对于定义函数是至关重要的。
函数在工程学中的应用
了解如何在工程学中使用函数来 解决复杂的问题,例如建筑和机 械设计。
总结与展望
1
函数的重要性及其实际应用
掌握函数的概念和应用,可以让你更好地理解标准数学中的其他相关主题。
2
未来函数研究的发展趋势
了解当前对函数研究的最新趋势是什么,可以让你更好地理解数学的未来。
3
课程回顾及展望
回顾本课程的内容,并思考如何将所学应用到实际的问题中。
2
单调性和极值
发现函数的单调性和极值有助于确定函数的最大值和最小值。
3
泰勒公式与函数的逼近
了解如何使用泰勒公式来将函数逼近到无穷小的阶数,以获得更多信息。
函数的应用
函数在经济学中的应用
学习如何使用函数来分析经济数 据,例如股票市场和消费趋势。
人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
5.1函数的概念和图象(第1课时函数的概念)课件高一上学期数学(1)
苏教版 数学 必修第一册
【课标要求】1.会用集合语言和对应关系刻画函数.2.理解函数的概念,了解构成函数的要素.3.会求简单函数的定义域与值域.
要点深化·核心知识提炼
知识点1. 函数的概念
概念
给定两个非空实数集合 和 ,如果按照某种对应关系 ,对于集合 中的每一个实数 ,在集合 中都有唯一的实数 和它对应,那么就称 为从集合 到集合 的一个函数
跟踪训练1(1) 下列图形中不是函数图象的是( )
A
A. B. C. D.
(2)下列各组函数表示同一个函数的是( )
BCD
D
C
4
5
6
7
7
6
4
5
3
4
5
6
4
6
5
4
C
A.3 B.4 C.5 D.7
BCD
1
2
3
4
5
2
3
4
2
3
BCD
A.2 B.3 C.4 D.5
(1)函数的表示:与用哪个字母表示无关;
(2)解析式的化简:在化简解析式时,必须是等价变形.
题型分析·能力素养提升
【题型一】函数的概念
例1(1) 下列各组函数是同一个函数的是( )
C
规律方法 1.判断一个对应关系是否为函数的方法
2.判断两个函数是否为同一个函数的注意点 (1)先求定义域,定义域不同则不是同一个函数; (2)若定义域相同,再看对应关系是否相同.
0
2
B
4.(多选题)下列四个对应关系,构成函数的是( )
AD
A. B. C. D.
4
(1)求函数的定义域;
B层 能力提升练
【课标要求】1.会用集合语言和对应关系刻画函数.2.理解函数的概念,了解构成函数的要素.3.会求简单函数的定义域与值域.
要点深化·核心知识提炼
知识点1. 函数的概念
概念
给定两个非空实数集合 和 ,如果按照某种对应关系 ,对于集合 中的每一个实数 ,在集合 中都有唯一的实数 和它对应,那么就称 为从集合 到集合 的一个函数
跟踪训练1(1) 下列图形中不是函数图象的是( )
A
A. B. C. D.
(2)下列各组函数表示同一个函数的是( )
BCD
D
C
4
5
6
7
7
6
4
5
3
4
5
6
4
6
5
4
C
A.3 B.4 C.5 D.7
BCD
1
2
3
4
5
2
3
4
2
3
BCD
A.2 B.3 C.4 D.5
(1)函数的表示:与用哪个字母表示无关;
(2)解析式的化简:在化简解析式时,必须是等价变形.
题型分析·能力素养提升
【题型一】函数的概念
例1(1) 下列各组函数是同一个函数的是( )
C
规律方法 1.判断一个对应关系是否为函数的方法
2.判断两个函数是否为同一个函数的注意点 (1)先求定义域,定义域不同则不是同一个函数; (2)若定义域相同,再看对应关系是否相同.
0
2
B
4.(多选题)下列四个对应关系,构成函数的是( )
AD
A. B. C. D.
4
(1)求函数的定义域;
B层 能力提升练
人教版必修1数学课件1.2.1 函数的概念精选ppt课件
(1)判断一个集合 A 到集合 B 的对应关系是不是函数关系的 方法:①A,B 必须都是非空数集;②A 中任意一个数在 B 中 必须有并且是唯一的实数和它对应.
[注意] A 中元素无剩余,B 中元素允许有剩余. (2)函数的定义中“任意一个 x”与“有唯一确定的 y”说明函 数中两变量 x,y 的对应关系是“一对一”或者是“多对一”,而不 能是“一对多”.
符号 (-∞,+∞) _[_a_,__+__∞__) (_a_,__+__∞_) (_-__∞_,__a_] (_-__∞_,__a_)
1.判断(正确的打“√”,错误的打“×”) (1) 函 数 值 域 中 的 每 一 个 数 都 有 定 义 域 中 的 数 与 之 对 应.(√ ) (2)函数的定义域和值域一定是无限集合.( × ) (3)定义域和对应关系确定后,函数值域也就确定了.( √ ) (4)若函数的定义域只有一个元素,则值域也只有一个元 素.( √ ) (5)区间表示数集,数集一定能用区间表示.( × ) (6)数集{x|x<-3},其区间表示为(-∞,-3).( √ )
2.函数 y= 1-x+ x的定义域为( D )
A.{x|x≤1}
B.{x|x≥0}
C.{x|x≥1,或 x≤0} D.{x|0≤x≤1}
3.已知 f(x)=x2+1,则 f(f(-1))=( D )
A.2
B.3
C.4
D.5
4.已知 f(x)=2x1+1,x∈{0,1,2},则函数 f(x)的值函数符号,f 表示对应关系,f(x)表示 x 对应的函 数值,绝对不能理解为 f 与 x 的乘积.在不同的函数中 f 的具 体含义不同,对应关系可以是解析式、图象、表格等(下节讲函 数这三种表示).函数除了可用符号 f(x)表示外,还可用 g(x), F(x)等表示.
函数的概念ppt课件
基础 梳理
解析:A.定义域不同;B.定义域不同;C.虽然自变量所用 字母不同,但两个函数的定义域和对应法则都分别相同,因此 是同一个函数;D.对应法则不同. 答案:C
思考 应用 1.怎样检验两个变量之间是否具有函数关系?
解析: 由函数近代定义知, 我们要检验两个变量之间是否具有函 数关系, 只要检验: ①定义域和对应关系是否给出且定义域为非空数 栏 目 集;②根据给出的对应关系,自变量在其定义域内任一个值,是否都 链 接 能确定唯一的函数值.
2.形如f(x)=ax2+bx+c(a≠0)的函数叫二次函数,它的图 象为抛物线.
例如:已知f(x)=x2+2x+3,函数值为6时,相对应的自变 x=1或x=-3 量的值为____________ .
栏 目 链 接
基础 梳理 3 .一般地,设 A、 B是非空的数集,如果按照某个确定的 对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B中都有 唯一确定的数f(x)和它对应,那么f:A→B就称为从集合A到集 合B的一个函数.记作y=f(x),x∈A.其中,x叫做自变量, x 的取值范围A叫做函数的定义域;与x的值相对应y的值叫做函 数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 例如:正方形边长为 x,与 x的值相对应的面积为 y,把 y表 y=x2 {x|x>0} ; 示为 x 的函数: ____________ ;该函数的定义域为 ________ 16 {y|y>0} ;当边长为 4 的时候,面积为 ________ 值域为 ________ ;当面 2 积为4的时候,相应的边长为________ .
链 时,{x|a≤x≤b} 接
自测 自评 1 . 下列各图中,可表示函数 y = f(x) 的图象的只可能是 ( D )
高中函数课件ppt课件ppt
函数的减法运算
总结词
理解函数减法运算的概念
详细描述
函数减法运算是指将一个函数的图像相对于另一个函数的 图像进行平移,使得一个函数的图像与另一个函数的图像 在某一点相交,然后根据该点的坐标求出函数值。
总结词
掌握函数减法运算的规则
详细描述
函数减法运算的规则是将一个函数的值减去另一个函数的 值,得到一个新的函数。在进行函数减法运算时,同样需 要注意函数的定义域和值域,确保结果有意义。
求解方程和不等式
通过观察函数图像,可以直观地求解方程和不等式,如求函数的零点 、解不等式等。
数学建模和数据分析
通过函数图像可以建立数学模型和进行数据分析,如回归分析、趋势 预测等。
04 函数的运算
函数的加法运算
总结词
理解函数加法运算的概念
详细描述
函数加法运算是指将两个函数的图像进行平移,使得一 个函数的图像与另一个函数的图像在某一点相交,然后 根据该点的坐标求出函数值。
总结词
了解函数减法运算的应用
详细描述
函数减法运算在解决实际问题时也有广泛应用。例如,在 金融领域,可以将两个股票价格的函数进行减法运算,得 到差价的函数。
函数的乘法运算
总结词
理解函数乘法运算的概念
详细描述
函数乘法运算是将两个函数的值相乘,得到一个新的函数 。函数乘法运算的图像是将其中一个函数的图像绕原点旋 转180度后与另一个函数的图像叠加。
x$等形式。
三角函数的图像是周期性的曲线际生活中也有着广 泛的应用,如角度、长度、高度
的计算等。
03 函数的图像
函数图像的绘制方法
描点法
通过选取函数定义域内的若干个 点,用平滑的曲线或直线将它们
高中数学第2章函数1函数概念课件必修1高一必修1数学课件
一
探究(tànjiū)
二
探究(tànjiū)
三
探究四
易错辨析
求函数的定义域
【例1】 求下列函数的定义域:
(1)f(x)=x2-x;
(2)f(x)=(x+2)0;
(3)f(x)=
+1
;
-2
(4)f(x)= + 4 + 1-(x∈Z).
分析:若只给出函数的关系式,而没有指明它的定义域,则函数的定义域就是
对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者为
同一函数.
故以上各对函数中,(1)(4)表示同一函数,(2)(3)表示的不是同一函数.
解:对于(1),在公共定义域R上,f(x)=x和φ(x)=
定义域和对应关系是确定一个函数的两个基本条件,当且仅当两个函数的定
义域和对应关系分别相同时,这两个函数才是同一函数.
探究(tànjiū)
一
探究(tànjiū)
二
探究(tànjiū)三
探究四
易错辨析
变式训练1(1)求下列函数的定义域:
1
①f(x)= ;
-2
②f(x)= 3 + 2;
③f(x)= - 2 + 2(x∈Z).
(2)求函数 y= 2 + 3 −
1
2-
1
+ 的定义域.
第十二页,共三十五页。
探究(tànjiū)一
第十八页,共三十五页。
探究(tànjiū)
一
探究(tànjiū)二
探究(tànjiū)
三
探究四
易错辨析
变式训练3下列各组函数:
2 -
①f(x)= ,g(x)=x-1;
探究(tànjiū)
二
探究(tànjiū)
三
探究四
易错辨析
求函数的定义域
【例1】 求下列函数的定义域:
(1)f(x)=x2-x;
(2)f(x)=(x+2)0;
(3)f(x)=
+1
;
-2
(4)f(x)= + 4 + 1-(x∈Z).
分析:若只给出函数的关系式,而没有指明它的定义域,则函数的定义域就是
对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者为
同一函数.
故以上各对函数中,(1)(4)表示同一函数,(2)(3)表示的不是同一函数.
解:对于(1),在公共定义域R上,f(x)=x和φ(x)=
定义域和对应关系是确定一个函数的两个基本条件,当且仅当两个函数的定
义域和对应关系分别相同时,这两个函数才是同一函数.
探究(tànjiū)
一
探究(tànjiū)
二
探究(tànjiū)三
探究四
易错辨析
变式训练1(1)求下列函数的定义域:
1
①f(x)= ;
-2
②f(x)= 3 + 2;
③f(x)= - 2 + 2(x∈Z).
(2)求函数 y= 2 + 3 −
1
2-
1
+ 的定义域.
第十二页,共三十五页。
探究(tànjiū)一
第十八页,共三十五页。
探究(tànjiū)
一
探究(tànjiū)二
探究(tànjiū)
三
探究四
易错辨析
变式训练3下列各组函数:
2 -
①f(x)= ,g(x)=x-1;
人教版高中数学必修一1.2.1函数的的概念_ppt课件
题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;
《函数的概念及其表示》函数的概念与性质PPT(第一课时函数的概念)
栏目 导引
第三章 函数的概念与性质
(2)①定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R. 不相等. ②对应关系不同,f(x)= 1x,g(x)= x.不是同一个函数. ③定义域、对应关系都相同.同一个函数. ④对应关系不同,f(x)=|x+3|,g(x)=x+3.不是同一个函数. 【答案】 (1)B (2)③
栏目 导引
第三章 函数的概念与性质
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
判断两个函数为同一个函数应注意的三点 (1)定义域、对应关系两者中只要有一个不相同就不是同一个函 数,即使定义域与值域都相同,也不一定是同一个函数. (2)函数是两个非空数集之间的对应关系,所以用什么字母表示 自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
⑤若 f(x)是实际问题的解析式,则应符合实际问题,使实际问 题有意义. (2) 第 (1) 题 易 出 现 化 简 y = x + 1 - 1-x , 错 求 定 义 域 为 {x|x≤1},在求函数定义域时,不能盲目对函数式变形.
第三章 函数的概念与性质
(2)①定义域不同,f(x)的定义域为{x|x≠0},g(x)的定义域为 R. 不相等. ②对应关系不同,f(x)= 1x,g(x)= x.不是同一个函数. ③定义域、对应关系都相同.同一个函数. ④对应关系不同,f(x)=|x+3|,g(x)=x+3.不是同一个函数. 【答案】 (1)B (2)③
栏目 导引
第三章 函数的概念与性质
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函数的概念与性质
栏目 导引
第三章 函数的概念与性质
判断两个函数为同一个函数应注意的三点 (1)定义域、对应关系两者中只要有一个不相同就不是同一个函 数,即使定义域与值域都相同,也不一定是同一个函数. (2)函数是两个非空数集之间的对应关系,所以用什么字母表示 自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.
(-∞,4).
栏目 导引
第三章 函数的概念与性质
已知全集 U=R,A={x|1<x≤3},则∁UA 用区间表示为 ________. 解析:∁UA={x|x≤1 或 x>3},用区间可表示为(-∞,1]∪(3, +∞). 答案:(-∞,1]∪(3,+∞)
栏目 导引
第三章 函数的概念与性质
下图中能表示函数关系的是________.
栏目 导引
第三章 函数的概念与性质
⑤若 f(x)是实际问题的解析式,则应符合实际问题,使实际问 题有意义. (2) 第 (1) 题 易 出 现 化 简 y = x + 1 - 1-x , 错 求 定 义 域 为 {x|x≤1},在求函数定义域时,不能盲目对函数式变形.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个中学生对函数概念的理解——案例研究
• 研究问题 普通学生对函数概念的理解以及理解的程度 (普通学生的函数过程概念以及与教师期望之间的差别)
一个中学生对函数概念的理解——案例研究
• 过程概念理论 Procept Theory (过程概念理论)是 David Tall 和他的同 事 Eddie Gray (英国 Warwick University 数学教育研究中 心主任)于 1994年所发展出来的一个数学学习理论。 理论假定数学有过程和概念的二元性,但显而易见这种二 元性又可以由同一个符号既表示过程又表示结果(如1:2) 他们创造了一个新的术语:procept
• 然而,实际上学生符号数学概念的发展并非是单纯线性成长的关系( procedural -conceptual -proceptual ),而是在过程( procedural ) 及概念( conceptual )阶段之间会做来来回回的修正,最后才形成 稳定的过程概念( procept )
一个中学生对函数概念的理解——案例研究
一个中学生对函数概念的理解——案例研究
EXP7:你怎么读你写的东西? K8:f(3+5)=f(3)+f(5) EXP8:你怎么理解f(3)? K9:恩……它让我想到“函数的零点”之类的,……因为我们经 常写一个式子,我的意思是圆括号内不写一个数,所以我认为是 一个式子…… Kasia是毫不犹疑的机械的读出这个等式,她很可能并不理解,尽 管她读出了“函数”但她关注的是数而不是“f”。而对f(3)联想 到与函数概念相关的其他术语——零点,也说明她不能给出正确 的解释。
一个中学生对函数概念的理解——案例研究
• 任务 给出一个例子:使函数f满足对定义域内任意的实 数x、y,下列等式成立:f(x+y)=f(x)+f(y)
一个中学生对函数概念的理解——案例研究
• 4、学生行为描述 • 4.1概述
一个中学生对函数概念的理解——案例研究
• 4.2 详述
• 4.2.1任务中的“例子”一词所引发的一系列联想
• 3、研究方法 访谈——持续46分钟,录音记录并写成文字稿做分析,其 中K表示被访者Kasia,EXP表示实验者,后面的数字表示 说的第几句话。如K24。
一个中学生对函数概念的理解——案例研究
• 被访者 Kasia——克拉科夫一所综合高中的16岁学生,数学能力 一般,但她还学习希腊语和拉丁语,她被老师形容为“典 型的人文主义者”(数学不好),作者认识她已有三年, 对她学习数学的情况十分清楚,而且与她关系融洽。她的 性格开朗、健谈、愿意说出自己的想法也会表达自己的思 考过程。 接受访谈时Kasia已经学过三年的函数,她清楚正式的函 数概念,对不同的表述和例子也十分熟悉。数学课上她反 复在用这些概念,因此也持续在变化。
一个中学生对函数概念的理解——案例研究
一个中学生对函数概念的理解——案例研究
论文框架 1 研究背景 2 理论框架——过程概念理论 3 研究方法 4 学生行为描述 5 结论
一个中学生对函数概念的理解——案例研究
• 研究背景 函数是数学中基础概念,在教学中给予了很多的时间和重 视,但对学生来说在理解上仍面临很多困难。 一是Sierpinska(1992)提出认识论上的障碍:数学的哲学 性和思维的抽象性,还有概念关联很多相关术语。 二是函数概念的双重性:既可看做是一个对象——一系列 有序实数对,也可以看做是是一个计算过程(Sfard,1991). 貌似无关,实则要将两者统一为一个整体。 Gray and Tall(1994)也指出函数记号同时具备两种作用: 一是对指定自变量可以求得函数值;二是对任意自变量都 可以概述其函数概念。
一个中学生对函数概念的理解——案例研究
Miroslawa Sajka. (2003). A Secondary School Student's Understanding of the Concept of Function——A Case Study
Educational Studies in Mathematics P( 229-254)
K3:x、y可以取任何数吗?或者任意的式子?是数还是式呢? EXP3:读一下题。 K4:……我想是一个式子…… EXP4:什么式子? K5:函数式。。对,对,是式子,不是一个特殊的数 EXP5:你怎么想的? K6:我不知道,两种都有可能,我一开始想的是一个特殊的数,x、y 可以用两个数字代入,例如3和5,…… Kasia想具体的处理这个问题,所以一开始就关注到数,可能是受“ 给出一个例子”这些字眼的影响,而函数式不够“具体”,所以用数 代替函数自变量。
一个中学生对函数概念的理解——案例研究
Sierpinska(1992)强调在理解上要灵活,f(x)可以代表一 个函数或是函数f的值。这可能使普通学生觉得混乱。 Even(1990)调查发现教师在函数概念教学上成功与否的 条件之一是教师对这一学科知识理解的全面性。 Sfard(1991)从历史和心理的观点指出函数概念的形成过 程。她认为函数概念先是在操作上获得的,然后才转化成 为数学的名词。 Vinner(1983,1991)基于定义和概念图之间的关联提出一 个认知过程模型。这个模型的基础是对比10、11年级学 生以及大学生和中学教师对概念和概念图的不同认识。并 给出了一些教学建议。
一个中学生对函数概念的理解——例研究
一个中学生对函数概念的理解——案例研究
补充认识
• 理论上,典型或传统的符号数学概念的发展,是从步骤( procedure )进步到过程( process )进而发展出过程概念( procept )。
• 学生反覆练习一个步骤(例如:一个公式或规则),可以帮助其正确 的处理一些典型的题目( problems );熟练了针对某一题型的一个 或多个相关步骤(进入 process 阶段),可以帮助学生更灵活且有效 率地解题;当学生对某一数学符号发展出过程概念( procept )时, 表示该学生能很自由地对此一数学符号背后所隐含的运算过程( process )和数学概念( concept )间做转换。