圆的切线证明题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细说如何证明圆的切线
1(2011中考).如图,PA 为⊙O 的切线,A 为切点,过A 作OP 的垂线AB ,垂足为点C,交⊙O 于点B,延长BO 与⊙O 交于点D ,与PA 的延长线交于点E,(1)求证:PB 为⊙O 的切线;
2 已知⊙O 中,AB 是直径,过B 点作⊙O 的切线,连结CO ,若AD ∥OC 交⊙O 于D ,求证:CD 是⊙O 的切线。
3 如图,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于D ,DM ⊥AC 于M 求证:DM 与⊙O 相切.
4(2008年厦门市)已知:如图,中,,以为直径的交于点,于点.
(1)求证:是的切线;
5
已知:如图⊙O 是△ABC 的外接圆,P 为圆外一点,PA ∥BC ,且A 为劣弧的中点,割线PBD 过圆心,交⊙0于另一点D ,连结CD .
(1)试判断直线PA 与⊙0的位置关系,并证明你的结论.
(2)当AB=13,BC=24时,求⊙O 的半径及CD 的长.
6如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.
7.(2010北京中考)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,DOC=2ACD=90。
(1) 求证:直线AC是圆O的切线;
(2) 如果ACB=75,圆O的半径为2,求BD的长。
8、(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC 的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;
9 已知⊙O的半径OA⊥OB,点P在OB的延长线上,连结AP交⊙O于D,过D作⊙O的切线CE交OP于C,求证:PC=CD。
10(2013年广东省9分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E.
(1)求证:∠BCA=∠BAD;(3)求证:BE是⊙O的切线。
11(7分)(2013•珠海)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A
(1)求证:BC为⊙O的切线;
(2)求∠B的度数.
细说如何证明圆的切线
1(2011中考).如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E,(1)求证:PB为⊙O的切线;
2 已知⊙O中,AB是直径,过B点作⊙O的切线,连结CO,若AD∥OC交⊙O于D,求证:CD是⊙O的切线。
点悟:要证CD是⊙O的切线,须证CD垂直于过切点D的半径,由此想到连结OD。
证明:连结OD。
∵AD∥OC,
∴∠COB=∠A及∠COD=∠ODA
∵OA=OD,∴∠ODA=∠OAD
∴∠COB=∠COD
∵CO为公用边,OD=OB
∴△COB≌△COD,即∠B=∠ODC
∵BC是切线,AB是直径,
∴∠B=90°,∠ODC=90°,
∴CD是⊙O的切线。
点拨:辅助线OD构造于“切线的判定定理”与“全等三角形”两个基本图形,先用切线的性质定理,后用判定定理。
3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M
求证:DM与⊙O相切.
3(2008年厦门市)已知:如图,中,,以为直径的交于点,于点.
(1)求证:是的切线;
(2)若,求的值.
(1)证明:,
又,
又于,,
是的切线
4已知:如图⊙O是△ABC的外接圆,P为圆外一点,PA∥BC,且A为劣弧的中点,割线PBD过圆心,交⊙0于另一点D,连结CD.
(1)试判断直线PA与⊙0的位置关系,并证明你的结论.
(2)当AB=13,BC=24时,求⊙O的半径及CD的长.
如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.
(1)求证:AC是⊙O的切线;
(2)求弦BD的长;
(3)求图中阴影部分的面积.
5.(2010北京中考)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,DOC=2ACD=90。
(1) 求证:直线AC是圆O的切线;
(2) 如果ACB=75,圆O的半径为2,求BD的长。
6、(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC 的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
例6. 已知⊙O的半径OA⊥OB,点P在OB的延长线上,连结AP交⊙O于D,过D作⊙O的切线CE 交OP于C,求证:PC=CD。
点悟:要证PC=CD,可证它们所对的角等,即证∠P=∠CDP,又OA⊥OB,故可利用同角(或等角)的余角相等证题。
证明:连结OD,则OD⊥CE。
∴∠EDA+∠ODA=90°
∵OA⊥OB
∴∠A+∠P=90°,
又∵OA=OD,
∴∠ODA=∠A,∠P=∠EDA
∵∠EDA=∠CDP,
∴∠P=∠CDP,∴PC=CD
点拨:在证题时,有切线可连结切点的半径,利用切线性质定理得到垂直关系。
7(2013年广东省9分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC 交DC的延长线于点E.
(1)求证:∠BCA=∠BAD;
(2)求DE的长;
(3)求证:BE是⊙O的切线。
【答案】解:(1)证明:∵BD=BA,∴∠BDA=∠BAD。
∵∠BCA=∠BDA(圆周角定理),
∴∠BCA=∠BAD。
(2)∵∠BDE=∠CAB(圆周角定理),∠BED=∠CBA=90°,
∴△BED∽△CBA,∴BD DE AC AB
=。
∵BD=BA =12,BC=5,∴根据勾股定理得:AC=13。
∴12DE
1312
=,解得:
144
DE
13
=。
(3)证明:连接OB,OD,
在△ABO和△DB O中,∵
AB DB BO BO OA OD
=
⎧
⎪
=
⎨
⎪=
⎩
,
∴△ABO≌△DBO(SSS)。
∴∠DBO=∠ABO。
∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC。∴OB∥ED。
∵BE⊥ED,∴EB⊥BO。∴OB⊥BE。
∵OB是⊙O的半径,∴BE是⊙O的切线。
8.(7分)(2013•珠海)如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A (1)求证:BC为⊙O的切线;