椭偏测厚仪主要全参数及工作原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“椭偏测厚仪”有关情况介绍

一、引言:

1、椭偏法是一种测量光在样品表面反射后偏振状态改变的广西方

法,它可以同时测得样品薄膜的厚度和折射率。由于此法具有非接触性、非破坏性以及高灵敏度、高精度等优点,鼓广泛用于薄膜厚度及材料的光学常数的测定。

2、椭偏法测量数据可在短时间快速采集,可对各类薄膜的生长和工

艺过程进行实时监测,故已成为半导体行业重要的在线监测设备之一。

3、纳米技术是当今科技的发展热点,能精确测得纳米级薄膜厚度和

折射率的椭偏测量技术受到人们的高度重视和关注。

二、椭偏测厚仪发展概况:

1、椭偏测厚仪在我国起步较晚,70年代我国自行设计生产的椭偏

测厚仪只有“TP-77型椭偏测厚仪”和“WJZ型椭偏测厚仪”。基本上是手动测量,仅配一种入射角和衬底材料的薄膜(n,d)~(Ψ,Δ)函数表(如SiO2,70°入射角,波长632.8nm)。

2、90年代末,华东师大学研制并生产了“HST-1型”和“HST-2

型”多功能智能椭偏测厚仪。该仪器使用计算机技术,利用消光法自动完成,测量薄膜的厚度和折射率。

3、进入二十一世纪,国生产自动椭偏测厚仪的厂家逐渐多起来。如:

天津港东科技发展生产的“SGC-1型椭圆偏振测厚仪”、“SGC-2型自动椭圆偏振测厚仪”。天津拓普仪器生产的“TPY-1型椭圆偏

振测厚仪”和“TPY-2型自动椭圆偏振测厚仪”等。

现将目前国生产的几种自动椭圆偏振测厚仪,其性能指标等参数列表如下,供参考:

国几种“椭圆偏振测厚仪”的性能参数

三、 消光法测量薄膜和折射率的计算公式:

1. 在椭偏法测量中,为了简便,通常引入两个物理量——Ψ,Δ来

描述反射光偏振态的变化,它们与总反射系数p R (p 分量,

在入射面),s R (s 分量,在垂直于入射面)之间的关系,定义如下:

tan Ψi e ∆=p R /s R ————————— 偏振方程 ○

1 式中:Ψ,Δ —— 椭偏参数(均为角度度量)

Ψ —— 相对振幅衰减 Δ —— 相位移动之差

在固定实验条件下:~

1n 和~

3n 为已知,则Ψ=Ψ(d ,~

2n ),

Δ=Δ(d ,~

2n )

2122121i p p p i p p r r e R r r e δδ--+⋅=

+⋅⋅,2122121i s s s i s s r r e R r r e δ

δ

--+⋅=+⋅⋅

式中:2δ——相邻两光束的相位差,设膜厚为d ,光波长为λ,

则有:

122~~~22221122()d n Cos d n n Sin ππ

δϕϕλλ

=⋅⋅⋅=⋅⋅-⋅——— ○2

若:P-起偏角,A-检偏角

则:Ψ=A ,Δ=k ×180°+90°-2p (当0°≤p ≤°时,k=1;当135°≤

p ≤180°时,k=3)

综上:通过测得起偏角P 和检偏角A ,即可求得Ψ,Δ,还可反求d ,

~

2n 。

1) 对于透明膜,~

2n 只有实部,上述椭偏方程(复数方程)只有d ,

~

2n 两个未知数,由两个已知实测的Ψ,Δ原则上可解出d ,

~

2n ,但因得不到它们的解析式,需用计算机进行数据处理,求出数字解。

2)

如何求解未知衬底材料的复折射率~

3

n (~

3n =0n ik -)对于无膜样品,d=0,p R 和s R 的定义式可简化为:

~~

3113~

~

3113

p n Cos n Cos R n Cos n Cos ϕϕϕϕ⋅-⋅=

⋅+⋅,~~

1323~~

1323

s n Cos n Cos R n Cos n Cos ϕϕϕϕ⋅-⋅=

⋅+⋅

取~

1n =1(空气),可解出衬底材料的复折射率~

3n 的实部0n 和

虚部k 的解析式:

()()()222212*********tan 2112tan 4212Cos Sin Sin n k Sin Sin Cos Sin Sin Sin k n Sin Cos ϕϕϕϕϕϕϕϕϕ⎧⎡⎤

-⋅∆⎪⎢⎥=++⎪+⋅∆⎢⎥⎣⎦⎨⎪⋅⋅⋅∆=

⎪+⋅∆⎩

2. 数据处理:

令 2i x e δ-= ———————————————————— ○3 将○

3代入○1得: ()()()()

()()

()()

2212121212221212121211tan 11i i p p s s p

p s s p i i i s

s s p p p p s s r r e r r e r r x r r x R e R r r x r r x r r e r r e δδδ

δδϕ----+⋅+⋅⋅+⋅+⋅⋅⋅=

=

=

+⋅+⋅⋅+⋅⋅+⋅

展开后得到:20a bx c ++=

式中:

()1122tan i p s p s a r e r r r δ

ϕ=⋅⋅-⋅⋅ ()()

221122tan tan i i p s p s s p b r e r r r r e r δδϕϕ=⋅⋅-⋅⋅+⋅⋅-

11tan i s p c r e r δ

ϕ=⋅⋅-

求解得到两个复根

1

1102ia b x x e a --+==⋅

,22202ia b x x e a

---==⋅

由○

3式知x 的模应该为1,在1x ,2x 中选取模更接近1的一个(另一个舍去),则x=0ia

x e

-⋅,代入○

1○2可得:

a

d =

—————————————— ○

4 3. 迭代法求解:

根据实验测得的Ψ和Δ比较准确,误差可以忽略不计,x 的模0x 偏离1的主要原因是由于所给的2n 的初值与实际值有较大的偏差引起的,所以可将01x -的大小作为衡量误差大小的一个标志量。于是,可以任意给一个初值20n ,将2n 进行多次迭代近似计算,直到01x -小于某个指定的误差δ(例如,取δ=0.00001)为止,即:

01x -<δ —————————————— ○

5 此时的2n 就是实际的薄膜折射率,由○

4式可同时得到薄膜厚度d 。 4. 求薄膜的真实厚度:

需指出的是,上述测得的薄膜厚度均为小于一个周期时的值,

相关文档
最新文档