动态规划(一)

合集下载

动态规划例1求解下列整数规划的最优解

动态规划例1求解下列整数规划的最优解

例1 求解下列整数规划的最优解:()123123max 45634510..01,2,3,j j Z x x x x x x s t x j x =++++⎧⎪⎨=⎪⎩≤≥为整数.解 (1)建立动态规划模型:阶段变量:将给每一个变量j x 赋值看成一个阶段,划分为3个阶段,且阶段变量k=1,2,3. 设状态变量k s 表示从第k 阶段到第3阶段约束右端最大值,则10.j s = 设决策变量k x 表示第k 阶段赋给变量k x 的值(1,2,3)k =. 状态转移方程:2113223,4.s s x s s x =-=-阶段指标:111122223333(,)4,(,)5,(,)6.u s x x u s x x u s x x === 基本方程;()(){}()3113,2,1044()max ,()0.s k k k k k k k k k k x a f s u s x f s f s ++⎡⎤=⎢⎥⎢⎥⎣⎦⎧=+⎪⎨⎪=⎩≤≤ 其中1233,4, 5.a a a === (1) 用逆序法求解: 当3k =时,()(){}{}33333443330055max 6max 6,ssx x f s x f s x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=+=≤≤≤而{}[]30,1,2,3,4,5,6,7,8,9,10.s x ∈表示不超过x 的最大整数。

因此,当30,1,2,3,4s =时,30x =;当35,6,7,8,9s =时,3x 可取0或1;当310s =时,3x 可取0,1,2,由此确定()33.f s 现将有关数据列入表4.1中当时,有()(){}(){}22222332322220044max 5max 54,ssx x f s xf s xf s x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=+=+-≤≤≤≤而{}20,1,2,3,4,5,6,7,8,9,10s ∈。

所以当20,1,2,3s =时,20x =;当24,5,6,7s =时,201x =或;当28,9,10s =时20,1,2x =。

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)

动态规划——背包问题python实现(01背包、完全背包、多重背包)参考:⽬录描述:有N件物品和⼀个容量为V的背包。

第i件物品的体积是vi,价值是wi。

求解将哪些物品装⼊背包,可使这些物品的总体积不超过背包流量,且总价值最⼤。

⼆维动态规划f[i][j] 表⽰只看前i个物品,总体积是j的情况下,总价值最⼤是多少。

result = max(f[n][0~V]) f[i][j]:不选第i个物品:f[i][j] = f[i-1][j];选第i个物品:f[i][j] = f[i-1][j-v[i]] + w[i](v[i]是第i个物品的体积)两者之间取最⼤。

初始化:f[0][0] = 0 (啥都不选的情况,不管容量是多少,都是0?)代码如下:n, v = map(int, input().split())goods = []for i in range(n):goods.append([int(i) for i in input().split()])# 初始化,先全部赋值为0,这样⾄少体积为0或者不选任何物品的时候是满⾜要求dp = [[0 for i in range(v+1)] for j in range(n+1)]for i in range(1, n+1):for j in range(1,v+1):dp[i][j] = dp[i-1][j] # 第i个物品不选if j>=goods[i-1][0]:# 判断背包容量是不是⼤于第i件物品的体积# 在选和不选的情况中选出最⼤值dp[i][j] = max(dp[i][j], dp[i-1][j-goods[i-1][0]]+goods[i-1][1])print(dp[-1][-1])⼀维动态优化从上⾯⼆维的情况来看,f[i] 只与f[i-1]相关,因此只⽤使⽤⼀个⼀维数组[0~v]来存储前⼀个状态。

那么如何来实现呢?第⼀个问题:状态转移假设dp数组存储了上⼀个状态,那么应该有:dp[i] = max(dp[i] , dp[i-v[i]]+w[i])max函数⾥⾯的dp[i]代表的是上⼀个状态的值。

动态规划(生产和存储问题)

动态规划(生产和存储问题)

动态规划(生产和存储问题)一、动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。

20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。

1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。

动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。

例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。

二、动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。

通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。

阶段变量一般用k=1.2….n.表示。

1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。

它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。

通常还要求状态是可以直接或者是间接可以观测的。

描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。

变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。

用X(k)表示第k阶段的允许状态集合。

n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。

动态规划算法0-1背包问题课件PPT

动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。

(完整版)动态规划问题常见解法

(完整版)动态规划问题常见解法

(完整版)动态规划问题常见解法动态规划问题常见解法一、背包问题1. 0/1背包问题0/1背包问题是动态规划中的经典问题,解决的是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化。

常见的解法有两种:记忆化搜索和动态规划。

记忆化搜索是一种自顶向下的解法,通过保存子问题的解来避免重复计算,提高效率。

动态规划是一种自底向上的解法,通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。

2. 完全背包问题完全背包问题是在背包容量固定的情况下,如何选择物品放入背包,使得总价值最大化,且每种物品可以选择任意个。

常见的解法有两种:记忆化搜索和动态规划。

记忆化搜索和动态规划的思路和0/1背包问题相似,只是在状态转移方程上有所不同。

二、最长公共子序列问题最长公共子序列问题是指给定两个序列,求它们之间最长的公共子序列的长度。

常见的解法有两种:递归和动态规划。

递归的思路是通过分别考虑两个序列末尾元素是否相等来进一步缩小问题规模,直至问题规模减小到边界情况。

动态规划的思路是通过填表格的方式记录每个子问题的解,最终得到整个问题的最优解。

三、最短路径问题最短路径问题是指在加权有向图或无向图中,求解从一个顶点到另一个顶点的最短路径的问题。

常见的解法有两种:Dijkstra算法和Bellman-Ford算法。

Dijkstra算法是通过维护一个距离表,不断选择距离最短的顶点来更新距离表,直至找到目标顶点。

Bellman-Ford算法是通过进行多次松弛操作,逐步缩小问题规模,直至找到目标顶点或发现负权环。

总结:动态规划是一种解决最优化问题的常见方法,它通过分组子问题、定义状态、确定状态转移方程和填表格的方式,来得到整个问题的最优解。

在解决动态规划问题时,可以采用记忆化搜索或者动态规划的策略,具体选择哪种方法可以根据问题的特点和优化的需要来决定。

五大常见算法策略之——动态规划策略(DynamicProgramming)

五大常见算法策略之——动态规划策略(DynamicProgramming)

五⼤常见算法策略之——动态规划策略(DynamicProgramming)Dynamic Programming Dynamic Programming是五⼤常⽤算法策略之⼀,简称DP,译作中⽂是“动态规划”,可就是这个听起来⾼⼤上的翻译坑苦了⽆数⼈,因为看完这个算法你可能会觉得和动态规划根本没太⼤关系,它对“动态”和“规划”都没有太深的体现。

举个最简单的例⼦去先浅显的理解它,有个⼤概的雏形,找⼀个数组中的最⼤元素,如果只有⼀个元素,那就是它,再往数组⾥⾯加元素,递推关系就是,当你知道当前最⼤的元素,只需要拿当前最⼤元素和新加⼊的进⾏⽐较,较⼤的就是数组中最⼤的,这就是典型的DP策略,将⼩问题的解保存起来,解决⼤问题的时候就可以直接使⽤。

刚刚说的如果还是感觉有点迷糊,不⽤慌,下⾯⼏个简单的⼩栗⼦让你明⽩这句话的意思。

第⼀个数是1,第⼆个数也是1,从第三个数开始,后⾯每个数都等于前两个数之和。

要求:输⼊⼀个n,输出第n个斐波那契数。

还是我们上节讨论递归与分治策略时候举的第⼀个例⼦——Fibonacci数列问题,它实在太经典了,所以将其反复拿出来说。

我们如果深⼊分析⼀下上节说过的递归⽅法解决Fibonacci数列,就会发现出现了很多重复运算,⽐如你在计算f(5)的时候,你要计算f(4)和f(3),计算f(4)⼜要计算(3)和f(2),计算f(3),⼜要计算f(2)和f(1),看下⾯这个图对f(3)和f(2)进⾏了重复运算,这还是因为5⽐较⼩,如果要计算f(100),那你可能要等到天荒地⽼它还没执⾏完(⼿动滑稽),感兴趣的朋友可以试试,反正我已经试过了。

public static int fibonacci(int n){//递归解法if(n == 1) return 1;else if(n == 2) return 1;else return fibonacci(n - 1) + fibonacci(n - 2);}上⾯就是递归的解法,代码看着很简单易懂,但是算法复杂度已经达到了O(2^n),指数级别的复杂度,再加上如果n较⼤会造成更⼤的栈内存开销,所以⾮常低效。

动态规划(完整)

动态规划(完整)

(3) 决策、决策变量
所谓决策就是确定系统过程发展的方案,
决策的实质是关于状态的选择,是决策者
从给定阶段状态出发对下一阶段状态作出
的选择。
用以描述决策变化的量称之决策变量, 和状态变量一样,决策变量可以用一个数, 一组数或一向量来描述.也可以是状态变量
的函数,记以 xk xk (sk ) ,表示于 k 阶段状
动态规划的分类:
• 离散确定型 • 离散随机型 • 连续确定型 • 连续随机型
动态规划的特点:
• 动态规划没有准确的数学表达式和定义 精确的算法, 它强调具体问题具体分析,
依赖分析者的经验和技巧。
• 与运筹学其他方法有很好的互补关系, 尤 其在处理非线性、离散性问题时有其独 到的特点。
通常多阶段决策过程的发展是通过状态的一系列变换来 实现的。一般情况下,系统在某个阶段的状态转移除与本阶 段的状态和决策有关外,还可能与系统过去经历的状态和决 策有关。因此,问题的求解就比较困难复杂。而适合于用动 态规划方法求解的只是一类特殊的多阶段决策问题,即具有 “无后效性”的多阶段决策过程。
4 6
C1
3
B2 3
4T
3 3
C2
阶段指标函数:
vk sk , xk cskxk
5
A3
B3
过程指标(阶段递推)函数:
fk(sk ) min
vk (sk , xk )
fk
1
(sk
1 )
k= 4
f4 (C1) = 3, f4 (C2) = 4
2
k=3
f3(B1)=min{1+f4(C1)=4*, 4+f4(C2)=8}=4
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。

动态规划——背包问题1:01背包

动态规划——背包问题1:01背包

动态规划——背包问题1:01背包背包问题是动态规划中的⼀个经典题型,其实,也⽐较容易理解。

当你理解了背包问题的思想,凡是考到这种动态规划,就⼀定会得很⾼的分。

背包问题主要分为三种:01背包完全背包多重背包其中,01背包是最基础的,最简单的,也是最重要的。

因为其他两个背包都是由01背包演变⽽来的。

所以,学好01背包,对接下来的学习很有帮助。

废话不多说,我们来看01背包。

01 背包问题:给定 n 种物品和⼀个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装⼊背包的物品,使得装⼊背包中的物品的总价值最⼤?第⼀眼看上去,我们会想到贪⼼(背包问题还不会QAQ)。

⽤贪⼼算法来看,流程是这样的:1.排序,按价值从⼤到⼩排序2.选价值尽可能⼤的物品放⼊。

但是,贪⼼做这题是错的。

让我们举个反例:n=5,C=10重量价值第⼀个物品:105第⼆个物品:14第三个物品:23第四个物品:32第五个物品:41⽤贪⼼⼀算。

答案是5,但正解是⽤最后4个,价值总和是10.那将重量排序呢?其实也不⾏。

稍微⼀想就想到了反例。

我们需要借助别的算法。

贪⼼法⽤的是⼀层循环,⽽数据不保证在⼀层循环中得解,于是,我们要采⽤⼆层循环。

这也是背包的思想之⼀。

来看背包算法:1.⽤⼆维数组dp [ i ] [ j ],表⽰在⾯对第 i 件物品,且背包容量为 j 时所能获得的最⼤价值⽐如说上⾯的那个反例:dp [ 1 ] [ 3 ] = 4 + 3 = 7.2.01背包之所以叫“01”,就是⼀个物品只能拿⼀次,或者不拿。

那我们就分别来讨论拿还是不拿。

(1)j < w[i] 的情况,这时候背包容量不⾜以放下第 i 件物品,只能选择不拿dp [ i ] [ j ] = dp [ i - 1 ] [ j ];(2)j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更⼤的价值。

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
动态规划算法的应用
一、动态规划的概念
近年来,涉及动态规划的各种竞赛题越来越多,每一年的 NOI 几乎都至少有一道题目需要用动态 规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推 和建模上了。
要了解动态规划的概念,首先要知道什么是多阶段决策问题。 1. 多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一 个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则 称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而 就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略 不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在 预定的标准下达到最好的效果. 2.动态规划问题中的术语 阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段 数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用 k 表示。此外, 也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许 有无穷多个决策时,阶段变量就是连续的。
解决方法:
我们尝试从正面的思路去分析问题,如上例,不难得出一个非常简单的递归过程 : f1:=f(i-1,j+1); f2:=f(i-1,j); if f1>f2 then f:=f1+a[i,j] else f:=f2+a[i,j]; 显而易见,这个算法就是最简单的搜索算法。时间复杂度为 2n,明显是会超时的。分析一下搜索 的过程,实际上,很多调用都是不必要的,也就是把产生过的最优状态,又产生了一次。为了避免浪 费,很显然,我们存放一个 opt 数组:Opt[i, j] - 每产生一个 f(i, j),将 f(i, j)的值放入 opt 中,以 后再次调用到 f(i, j)的时候,直接从 opt[i, j]来取就可以了。于是动态规划的状态转移方程被直观地 表示出来了,这样节省了思维的难度,减少了编程的技巧,而运行时间只是相差常数的复杂度,避免 了动态规划状态转移先后的问题,而且在相当多的情况下,递归算法能更好地避免浪费,在比赛中是 非常实用的.

最优控制动态规划1

最优控制动态规划1

6-2 离散最优控制问题
设控制系统的状态方程为
式中x(k)是k时刻的几维状态向量,u(k)是k时刻的p维容许控制向量,设系 统在每一步转移中的性能指标为F[x(k),u(k)]
如在u(0)的作用下
在u(1)的作用下
对N级决策过程
性能指标
要求选择控制序列 根据最优性原理
使性能指标达到极小
解上述递推方程,即可获得最优控制序列。
例6-1 设一阶离散系统的状态方程为
初始条件为x(0),控制变量u不受约束,性能指标为
求最优控制u*(t),使J达最小,为简便起见,设N=2 解 设在u(0)、u(1)作用下,系统状态为x(0)、x(1)、x(2) 先考虑从x(1)到x(2)的情况,控制为u(1)
再考虑从x(0)到x(1)的情况,控制为u(0)
2. 动态规划的基础是最优性原理。这个原理告诉 我们:在多级最优决策中,不管初始状态是什么 ,余下的决策对此状态必定构成最优决策。根据 这个原理,动态规划解决多级决策问题(包括离 散系统最优控制)是从最后一级开始倒向计算的 。
3. 连续系统的动态规划可导出哈密顿——雅可 比——贝尔曼方程,这个方程一般只能有数值 解。从它可推演出极小值原理,不过要假定 , 二次连续可微。
图6-2 最优性原理示意图
动态规划的特点:
一是它从最后一级反向计算; 二是其将一个N级决策问题化为N个单级决策问题 。 好处:将一个复杂问题化为多个简单问题加以求解 。
最优性原理
贝尔曼的最优性原理可叙述如下: “一个多级决策问题的最优决策具有这样的性质:当 把其中任何一级及其状态作为初始级和初始状态时, 则不管初始状态是什么,达到这个初始状态的决策是 什么,余下的决策对此初始状态必定构成最优策略。 ”

矩阵连乘问题动态规划[1]

矩阵连乘问题动态规划[1]

矩阵连乘问题【问题】:矩阵链乘问题:给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2...,n-1。

如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。

【解题】:这里我采用的是动态划分算法:设计动态规划算法的步骤。

(1)找出最优解的性质,并刻划其结构特征。

(2)递归地定义最优值。

(3)以自底向上的方式计算出最优值。

(4)根据计算最优值时得到的信息,构造最优解(由子结构的最优解得到原先大问题的最优解)。

【解题关键】:将一系列相乘的矩阵(Ai....Aj)划分为两部分;即(AiA i+1...A k)(A k+1A k+2....Aj),k的位置要保证左边括号和右边括号相乘的消耗最小。

【思路】:这里我采用两种方法来实现:(1)用三重for循环来实现:根据主对角线的方向及其右边与之平行的对角线方向,由上至下,从左到右分别求出C[i][j]的值,后面要求的值都可以根据前面所求的的值来求。

C[i][j]代表矩阵链Ai..Aj相乘的最小消耗。

其中:c[i][i]=0,i=1,2,....n求解的顺序如下:C[1][2],C[2][3],C[2][3],...,C[N-1][N],C[1][3],C[2][4]....C[N-2][N]..........C[N][N]最后得到的C[N][N]的值就是我们所求的。

(2)备忘录方法(即递归算法):将整个矩阵链分成两部分,然后在分别对两边的子矩阵链递归调用算法。

【程序代码】:两种方法都在其中:#include<iostream.h>#include<stdlib.h>#include<limits.h>#include<time.h>#define MAX_VALUE 100#define N 201 //连乘矩阵的个数(n-1)#define random() rand()%MAX_VALUE //控制矩阵的行和列的大小int c[N][N], s[N][N], p[N];int matrixchain(int n) //3个for循环实现{ for(int k=1;k<=n;k++)c[k][k]=0;for(int d=1;d<n;d++)for(int i=1;i<=n-d;i++){ int j=i+d;c[i][j]=INT_MAX;for(int m=i;m<j;m++){ int t=c[i][m]+c[m+1][j]+p[i-1]*p[m]*p[j];if(t<c[i][j]){c[i][j]=t;s[i][j]=m;}}}return c[1][n];}void Print(int s[][N],int i,int j) // 输出矩阵连乘积的计算次序{ if(i==j)cout<<"A"<<i;else{cout<<"(";Print(s,i,s[i][j]); // 左半部子矩阵连乘Print(s,s[i][j]+1,j); //左半部子矩阵连乘cout<<")";}}int lookupchain(int i,int j) //备忘录方法{if(c[i][j]>0)return c[i][j];if(i==j)return 0;int u=lookupchain(i,i)+lookupchain(i+1,j)+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){int t=lookupchain(i,k)+lookupchain(k+1,j)+p[i-1]*p[k]*p[j];if(t<u){u=t;s[i][j]=k;}}c[i][j]=u;return u;}void main(){srand((int)time(NULL));for(int i=0;i<N;i++) // 随机生成数组p[],各个元素的值的范围:1~MAX_VALUE p[i]=random()+1;clock_t start,end;double elapsed;start=clock();//cout<<"Count: "<<matrixchain(N-1)<<endl; //3重for循环实现cout<<"Count: "<<lookupchain(1,N-1)<<endl; //备忘录方法end=clock();elapsed=((double)(end-start));///CLOCKS_PER_SEC;cout<<"Time: "<<elapsed<<endl;Print(s,1,N-1); //输出矩阵连乘积的计算次序cout<<endl;}【总结】:两种算法的时间复杂度均为o(n3),,随着数据量的增多,备忘录方法消耗的时间越长;我觉得是由于递归算法,随着数据量增大,调用函数的次数也增大,语句被执行的时间也越多,因此调用函数消耗的时间也增多。

非线性规划和动态规划.

非线性规划和动态规划.

模型建立 设该容器的底边长和高分别为 x1 , x2
则问题的数学模型为
min f ( X ) 40 x1x2 20 x12
1x212xx12x
12 2 2
x1
2

68

x1
,
x
2

0
在LINGO中求解: min=40*x1*x2+20*x1^2; x1^2*x2=12; 12*x1*x2+2*x1^2<=68; 得到x1=2.690416,x2=1.657839,min

7
,决策点为D2
f
3
C 3


min
C3D1 C3D 2

f f
4 4
D1 D2

3 3*
min

3

4


6
,决策点为D1
第二阶段,由Bj到Cj分别均有三种选择,即:
B1C1 f3C1
7 6
f2 B1
min B1C2
线性规划:lindo/lingo 非线性规划:lingo 二次规划:lingo 整数规划:lindo/lingo 0-1整数规划:lindo/lingo
第四节 动态规划 (Dynamic Programming)
动 态 规 划 是 1951 年 由 美 国 数 学 家 贝 尔 曼 ( Richard Bellman)提出,它是解决一类多阶段决策问题的优化方法, 也是考察问题的一种途径,而不是一种算法(如LP单纯形法 )。因此它不象LP那样有一个标准的数学表达式和明确定义 的一组规则,而必须对具体问题进行具体分析处理。

动态规划课程心得体会(2篇)

动态规划课程心得体会(2篇)

第1篇一、引言动态规划(Dynamic Programming,简称DP)是一种在计算机科学、数学、经济学等领域广泛应用的方法。

通过将复杂问题分解为子问题,并利用子问题的最优解来构建原问题的最优解,动态规划能够有效地解决许多看似复杂的问题。

在我国高校的计算机科学、软件工程等相关专业中,动态规划是重要的课程之一。

本人在学习动态规划课程的过程中,收获颇丰,以下是我对动态规划课程的心得体会。

二、课程概述动态规划课程主要介绍了动态规划的基本概念、原理、算法和应用。

课程内容主要包括以下几个方面:1. 动态规划的基本概念:介绍了动态规划的定义、特点、适用范围等。

2. 动态规划的原理:讲解了动态规划的核心思想,即最优子结构、子问题重叠和边界条件。

3. 动态规划的算法:介绍了动态规划的基本算法,如自顶向下、自底向上、记忆化搜索等。

4. 动态规划的应用:结合实际案例,讲解了动态规划在图论、算法设计、最优化问题等领域的应用。

三、学习心得1. 动态规划的基本概念与原理在学习动态规划课程之前,我对动态规划的了解仅限于表面,对其原理和应用并不十分清楚。

通过课程学习,我对动态规划有了更深入的认识。

动态规划的核心思想是将复杂问题分解为子问题,并利用子问题的最优解来构建原问题的最优解。

这种思想在解决实际问题中具有很高的价值。

2. 动态规划的算法与技巧动态规划算法有多种实现方式,如自顶向下、自底向上、记忆化搜索等。

在学习过程中,我深刻体会到了这些算法的优缺点,以及在不同场景下的适用性。

同时,课程中还介绍了一些动态规划的技巧,如状态压缩、滚动数组等,这些技巧在解决实际问题时非常有用。

3. 动态规划的应用动态规划在许多领域都有广泛的应用,如图论、算法设计、最优化问题等。

在学习过程中,我通过实际案例了解了动态规划在各个领域的应用,并学会了如何将动态规划应用于实际问题。

4. 动态规划与其他算法的比较在学习动态规划的过程中,我还学习了贪心算法、分治算法等其他算法。

10. 贪心与动态规划(一)

10. 贪心与动态规划(一)

Table moving (room 30 to room 50) and (room 60 to room 90) Possible (room 11 to room 12) and (room 14 to room 13)
Reason No part of corridor is shared No part of corridor is shared
room 1 room 3 room 5 … room 397 room 399
corridor
room 2
room 4
room 6

room 398
room 400
9/49
The floor has 200 rooms each on the north side and south side along the corridor. Recently the Company made a plan to reform its system. The reform includes moving a lot of tables between rooms. Because the corridor is narrow and all the tables are big, only one table can pass through the corridor. Some plan is needed to make the moving efficient. The manager figured out the following plan: Moving a table from a room to another room can be done within 10 minutes. When moving a table from room i to room j, the part of the corridor between the front of room i and the front of room j is used. So, during each 10 minutes, several moving between two rooms not sharing the same part of the corridor will be done simultaneously. To make it clear the manager illustrated the possible cases and impossible cases of simultaneous moving. 10/49

算法设计与分析_第3章_动态规划1

算法设计与分析_第3章_动态规划1
8
引言
分治技术的问题
子问题是相互独立的
Why?
问题:
如果子问题不是相互独立的,分治方法将重复 计算公共子问题,效率很低,甚至在多项式量 级的子问题数目时也可能耗费指数时间
解决方案:动态规划
用表来保存所有已解决子问题的答案 不同算法的填表格式是相同的
9
引言
最优化问题
Why?
可能有多个可行解,每个解对应一个 值,需要找出最优值的解。
MATRIX-MULTIPLY(A, B) 1 if columns[A] ≠ rows[B] 2 then return “error: incompatible dimensions” 3 else for i ← 1 to rows[A] 4 for j ← 1 to columns[B] 5 C[i, j] ← 0 6 for k ← 1 to columns[A] 7 C[i, j]←C[i, j]+A[i, k]·B[k, j] 8 return C
(A1 (A2 (A3 A4))) , (A1 ((A2 A3) A4)) , ((A1 A2) (A3 A4)) , ((A1 (A2 A3)) A4) , (((A1 A2) A3) A4).
15
矩阵连乘问题
采用不同的加括号方式,可导致不同的、 甚至及其富有戏剧性差别的乘法开销
设有四个矩阵A,B,C,D,它们的维数分别 是: A=50×10 B=10×40 C=40×30 D=30×5 总共有五种完全加括号的方式: (A((BC)D)) ——16000 (A(B(CD))) ——10500 ((AB)(CD)) ——36000 (((AB)C)D) ——87500 ((A(BC))D) ——34500

运筹学课程07-动态规划(胡运权 清华大学)

运筹学课程07-动态规划(胡运权 清华大学)
u k , ,u n
Vk ,n (sk , uk , sk 1 , uk 1 , , sn1 )
可递推
k [ sk , uk , Vk 1, n ( sk 1 , uk 1 , , sn 1 )]
指标函数形式: 和、 积
NEUQ
原过程的一个后部子过程: 对于任意给定的k(1 ≤ k≤n),从第k段到第n段的过 程称为原过程的一个后部子过程
阶段4
本阶段始点 (状态) D1 D2 本阶段各终点(决策) E 10 6 10 6 到E的最短距离 本阶段最优终点 (最优决策) E E
NEUQ
分析得知:从D1 和 D2 到E的最短路径唯一。
NEUQ
第三阶段:有三个始点C1,C2,C3,终点有D1,D2,对始点 和终点进行分析和讨论分别求C1,C2,C3到D1,D2 的最短路 径问题:
NEUQ
动态规划 Dynamic Programming
不要过河拆桥 追求全局最优
本章内容
多阶段决策过程的最优化 动态规划的基本概念和基本原 理 动态规划方法的基本步骤 动态规划方法应用举例
NEUQ
NEUQ
一、多阶段决策过程的最优化
示例1(工厂生产安排):
某种机器可以在高、低两种负荷下生产。高负荷生产
NEUQ
示例3 (连续生产过程的控制问题):
一般化工生产过程中,常包含一系列完成
生产过程的设备,前一工序设备的输出则是后
一工序设备的输入,因此,应该如何根据各工
序的运行工况,控制生产过程中各设备的输入 和输出,以使总产量最大。
示例4、最短路径问题
NEUQ
给定一个交通网络图如下,其中两点之间的数字表示距离 (或花费),试求从A点到G点的最短距离(总费用最小)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 动态规划解决的问题必须包含最优子结构,即 可以由(n-1)的最优推导出n的最优
动态规划算法的4个步骤: 1. 状态的定义和最优解的结构特性. (一维,二维,三维数组) 2. 状态转移方程书写
3. 以自底向上(最底层次的子问题向高层书写)的方法来计算 最优解结果
4. 从计算得到的解来构造一个最优解.
动态规划适用条件: 最优子结构:一个最优化策略具有这样的性质,不论过 去状态和决策如何,对前面的决策所形成的状态而言, 余下的诸决策必须构成最优策略。简而言之,一个最优 化策略的子策略总是最优的。
无后效性:它以前各阶段的状态无法直接影响它未来的 决策,而只能通过当前的这个状态。换句话说,每个状 态都是过去历史的一个完整总结。
例题一. 斐波纳契数列F(n)
步骤1:定义状态:F[n]表示在数列中第n项的值; 步骤2:状态转移方程:
F(n) =
1 F(n-1) + F(n-2)
(n = 0 或 1) (n > 1)
步骤3:以自底向上的方法来计算最优解
n F(n) 0 1 1 1 2 2 3 3 4 5 5 8 6 13 7 21 8 34 9 55 10 89
动态规划(一)
认识动态规划
目前背景:
动态规划的各种竞赛题越来越多,每年NOI几乎都至 少有一道题目需要用动态规划的方法来解决。
动态规划算法通常用来解决最优化问题。这些问题可 能存在多个解,每个解具有一个值。我们希望找到一 个具有最优(最大或最小)值的解。在动态规划算法 中,主要关心:找到一个最优解和求出最优解的值, 而不是找出所有的最优解。
步骤4பைடு நூலகம்在数组中分析构造出问题的解;
递归和动态规划的比较
见:递归与动规的比较.cpp
数字三角形
教材P158例题9-1 贪心:每步选最大数走
×
递归:函数f(int i,int j)表示从点(i,j)出发的最大和
产生很多重叠子问题
浪费时间 递推和记忆化搜索:d[i][j]表示从点(i,j)出发的最大和
动态规划的入门:
斐波纳契数列f(n):
F(n)= 1
(n = 0 or n=1)
(n
7 8
F(n)=F(n-1) + F(n-2)
n F ( n)
0 1 2 3 4 5 6
> 1)
9 10
Dp动态规划 和 递归的比较 相同点: 关系式
时间上:动态规划快,递归太慢
动态规划概念和思想:.
概念:
这就保证了当我们解决一个特殊的子问题时, 可以利用 比它更小的所有可利用的 子问题的解.我们把这种方法 叫做动态规划 算法思想: 将待求解的问题分解成若干个子问题,并存储子问题的 解而避免计算重复的子问题,并由子问题的解得到原问题的 解。 动态规划算法通常用于求解具有某种最优性质的问题
例二:排队买票问题
一场演唱会即将举行。现有n个歌迷排队买票,一个人买一张, 而售票处规定,一个人每次最多只能买两张票。假设第i位歌迷 买一张票需要时间Ti(1≤i≤n),队伍中相邻的两位歌迷(第j 个人和第j+1个人)也可以由其中一个人买两张票,而另一位 就可以不用排队了,则这两位歌迷买两张票的时间变为Rj,假 如Rj<Tj+Tj+1,这样做就可以缩短后面歌迷等待的时间,加快 整个售票的进程。现给出n, Tj和Rj,求使每个人都买到票的最 短时间和方法
输入:从输入文件中读入数据,数据文件包含三行: (1)第一行为一个整数N (0<N<=200) (2)第二行N个整数TI (0<TI<100) (3)第三行N-1个整数RI (0<RI<100) 输出: 输出到文件。 售票总时间。 样例输入:7 5432144 734224 样例输出:14
分析:
3
4
5

i… n-2 n-1
i
步骤2:状态转移方程:
步骤3:以自底向上的方法来计算最优解
小结:
1.动态规划是一种算法策略, 它采用了两个主要的设计方法: 表格化 - 利用数组存储中间计算环节 自底向上 - 从最底层子问题开始, 逐步上升计算, 最后 得到问题的解 2.动态规划主要适用于一类所谓的“最优化”问题, 即求最 大(或最小)值. 当分析问题的性质, 满足如下二点时, 就可采 用动态规划策略求解: 最优子结构 - 问题的一个最优解中包含着子问题的一 个最优解. 重叠子问题 – 求解问题的解时要反复计算若干个子问 题. 同理, 求解各个子问题时又要反复计算若干子子问 题, 这些子子问题可能是新产生的, 也可能是重复产生 的.
重叠子问题:动态规划将原来具有指数级时间复杂度的 搜索算法改进成了具有多项式时间复杂度的算法。其中 的关键在于解决冗余,这是动态规划算法的根本目的。 动态规划实质上是一种以空间换时间的技术,它在实现 的过程中,不得不存储产生过程中的各种状态,所以它 的空间复杂度要大于其它的算法。
dp特征:
1. 动态规划一般解决最值(最优,最大, 最小,最长……)问题; 2. 动态规划解决的问题一般是离散的,可 以分解(划分阶段)的;
1
2
如果前i个人买票的最优买票方式一确定, 比如第i-1个人买一张票,则前i-1个人的 买票方式也一定是最优的。即问题的最 优解包含子问题的最优解。 步骤1:用F(i)表示前i个人买票的最优方 式,即所需最短时间;现在要决定F(i)需要 考虑两种情况:
n min (1)第i个人的票自己买 (2)第i个人的票由第i-1个人买
相关文档
最新文档