_第十二章_轴对称练习题精选

合集下载

人教版八年级上第十二章轴对称测试题

人教版八年级上第十二章轴对称测试题

第十二章 轴对称单元测试题一、选择题(每小题5分,其25分)1.下列四个图案中,轴对称图形的个数是( )2.下列命题中,不正确的是( )(A)关于直线对称的两个三角形一定全等. (B)两个圆形纸片随意平放在水平桌面上构成轴对称图形.(C)若两图形关于直线对称,则对称轴是对应点所连线段的垂直平分线.(D)等腰三角形一边上的高、中线及这边对角平分线重台.3.下列四个图案中.具有一个共有性质则下面四个数字中,满足上述性质的一个是( ) (A)6 (B)7 (C)8 (D)94.等腰三角形的一个内角是50。

,则另外两个角的度数分别是( )(A) 65°,65°. (B) 50°,80°. (C) 65°,65°或50°,80°. (D) 50°,50°. 5.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是( )(A) 9cm (B) 12cm (C) 1215cm cm 或 (D) 15cm .二、填空题(每小题5分,共20分)6.等腰三角形是 对称图形,它至少有 条对称轴.7.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是 .8.已知△ABC 是轴对称图形.且三条高的交点恰好是C 点,则△ABC 的形状是 .9.已知点A(一2,4),B(2,4),C(1.2),D(1-2),E(一3,1),F(3,1)是平面坐标系内的6个点,选择其中三个点连成一个三角形,剩下三个点连成另一个三角形,若这两个三角形关于y 轴对称,就称为一组对称三角形,那么,坐标系中可找出 组对称三角形. 10.如图,△ABC 中,AB=AC .∠A=36°,AB 的中垂线DE 交AC 于D ,交AB 于E.下述结论(1)BD 平分∠ABC ;(2)AD=BD=BC ;(3)△BDC 的周长等于AB+BC ;(4)D 是AC 中点,其中正确的命题序号是 .三、画一画11.(6分)以“○○,△△,_ _ _”(即两个圆,两个三角形,三条线段)为条件,画出一个有实际意义的对称图形.四、解答题12.(10分)在△ABC 中,∠C=90°,DE 垂直平分斜边AB ,分别交AB 、BC 于D 、E 。

课后练习题---第十二章:轴对称

课后练习题---第十二章:轴对称

⊙ 学校: 班级: 姓名: 考号 ⊙⊙……………⊙……………装…⊙……………订……⊙………线………⊙……………装…⊙……………订……⊙………线…………⊙……………⊙第十二章:轴对称---课本练习题1八 年 级 数 学 组1、AD ⊥BC ,BD=DC ,点C 在AE 的垂直平分线上,求证AB=AC=CE;DE=AB+BD、2、如图所示:AB=AC,MB=MC,求证:直线AM 垂直平分BC 。

3、如图所示:△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为13cm ,求:△ABC 的周长。

4、如图所示:△ABC 中,边AB ,BC 的垂直平分线交于点P , 求证:PA=PB=PC5、如图所示:某地由于居民增多,要在公路边增加一个公共汽车站,A ,B 是路边两个新建的小区,这个公共汽车站建在什么位置,能使两个小区到车站的路程一样长?6、电信部门要修建一座电视信号发射塔,如图所示,按设计要求,发射塔到两个城镇A ,B 的距离必须相等。

到两条高速公路m ,n 的距离也必须相等。

发射塔应修建在什么位置?在图上标出位置。

n7、如图所示:①作出与△ABC关于x轴对称的图形。

②作出与△ABC关于y轴对称的图形。

8、如图所示:A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。

L河9、如图:在△ABC中,AB=AD=DC,∠BAD=26°求∠B和∠C的度数。

10、如图:AD∥BC,BD平分∠ABC求证:AB=AD。

11、如图:五角星的五个角都是顶角为36°的等腰三角形,为了画出五角星,请你算出∠AMB的度数。

12、如图:∠A=∠B,CE∥DA,CE交AB于E。

求证:△CEB是等腰三角形⊙ 学校 班级 姓名: 考 ⊙⊙……………⊙……………装…⊙……………订……⊙………线………⊙……………装…⊙……………订……⊙………线…………⊙……………⊙第十二章:轴对称---课本练习题2八 年 级 数 学 组13、如图:点D ,E 在△ABC 的边BC 上,AB=AC ,AD=AE 求证:BD=CE14、如图:AB=AC ,∠A=40°,AB 的垂直平分线MN 交AC 于点D 。

【试题】八年级数学上册第12章轴对称图形单元综合检测试题含解析新版新人教版

【试题】八年级数学上册第12章轴对称图形单元综合检测试题含解析新版新人教版

【关键字】试题第12章《轴对称图形》一、选择题1.下列标志中,可以看作是轴对称图形的是()2.正方形对称轴的条数是()A.1B.1C.1D.13.点P(2,-5)关于x轴对称的点的坐标为A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5)4.如图,直线CD是线段AB的笔直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A.6B.5C.4D.35.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()6.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°7.在等腰△ABC中,AB=AC,其周长为,则AB边的取值范围是()A.<AB<B.<AB<C.<AB<D.<AB<10cm8.从一个等腰三角形纸片的底角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的底角等于()A.72°B.C.144°D.72°,或9.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA 的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()cmB.5.5C.6.5D.710.如图所示,已知△ABC和△ADE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AG与BD交于点F,连结OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论个数()A.1个B.2个C.3个D.4个二、填空题11.如图,在Rt△ABC中,∠ABC=90°,AC=10cm,点D为AC的中点,则BD=___cm.12.如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B=___.13.已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为___.14.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E,∠A=30°,AB=8,则DE的长度是___.15.如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=___.16.如图,在△ABC中,按以下步骤作图:①分别以点B、C为圆心,以大于BC的长为半径作弧,两弧相交于M、N两点;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为___.17.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距___m.18.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是___.三、解答题19.在平面直角坐标系中,已知点A(-3,1),B(-1,0),C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.20.如图,△ABC与△DEF关于直线l对称,请用无刻度的直尺,在下面两个图中分别作出直线l.21.如图,在等边△ABC中,AB=2,点P是AB边上任意一点(点P可以与点A重合),过点P作PE⊥BC,垂足为E,过点E作EF⊥AC,垂足为F,过点F作FQ⊥AB,垂足为Q,求当BP的长等于多少时,点P与点Q重合?22.如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC 的中点,连结EF交CD于点M,连接AM.(1)求证:EF=AC.(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.23.如图,O为△ABC内部一点,OB=3,P、R为O分别以直线AB、直线BC为对称轴的对称点.(1)请指出当∠ABC在什么角度时,会使得PR的长度等于7?并完整说明PR的长度为何在此时会等于7的理由.(2)承(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度是小于7还是会大于7?并完整说明你判断的理由.24.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数.(2)若CD=2,求DF的长.26.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点.(2)将如图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形.(3)将如图1中△BCE绕点旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.27.如图,△ABC 中,AB =AC ,∠A =36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC ) (1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是___度和___度. (2)在图2中画2条线段,使图中有4个等腰三角形.(3)继续按以上操作发现:在△ABC 中画n 条线段,则图中有___个等腰三角形,其中有___个黄金等腰三角形.28.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连结DC ,以DC 为边在BC 上方作等边△DCF ,连结AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其它作法与(1)相同.猜想AF 与BD 在(1)中的结论是否仍然成立? (3)深入探究: Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在其上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何等量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 运动至等边△ABC 边BA 的延长线上运动时,其它作法与图③相同.Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.参考答案: 一、1.D.点拨:A 、不是轴对称图形,不符合题意;B 、不是轴对称图形,不符合题意;C 、不是轴对称图形,不符合题意;D 、是轴对称图形,符合题意.故应选D .2.D.3.B.点拨:把点P (2,-5)的纵坐标-5改成它的相反数5,即可得到点P 关于x 轴对称点的坐标.4.B.点拨:由根据线段垂直平分线性质可以直接判断线段PA 与线段PB 的长度相等.5.B.点拨:按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到图形B .故应选B .6.B.点拨:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,∴∠ADE =∠B =50°,∵∠A =26°,∴∠ADE =180°-50°-26°=104°;再由折叠可知:∠AED =∠A ′ED =104°,∴∠AEA ′=360°-104°-104°=152°.7.B.点拨:∵在等腰△ABC 中,AB =AC ,其周长为20cm ,∴设AB =AC =x ,则BC =20-2x cm ,∴2x >20-2x ,且20-2x >0,解得5cm <x <10cm.故应选B .8.D.点拨:如图,等腰三角形ABC 中,因为AB =AC ,所以∠ABC =∠C ,设顶角为α、底角为β,则根据三角形三内角和为180°,得α+2β=180.此时,由于过B 点画直线交AC 于D ,则△ADB 与△BDC 都是等腰三角形,若AD =DB =BC ,则β=2α,α+2β=180°,解得α=36°,β=72°;若AD =DB ,BC =DC ,则β=3α,α+2β=180°,解得α=7180,β=7540 .所以原等腰三角形纸片的底角等于72°,或5407⎛⎫ ⎪⎝⎭.故应选D . F D C B A 图① F D C B A 图② F D C B A 图③ F ′ F AC F ′D 图④B D A DC B A E M N图1 D C B A E M N 图2 DC B A E M N 图3 图1 C B A E F 图2 C B A E 图3C B A9.A.点拨:∵点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,∴PM =MQ ,PN =NR .∵PM =2.5cm ,PN =3cm ,MN =4cm ,∴RN =3cm ,MQ =2.5cm ,NQ =MN -MQ =4-2.5=1.5(cm ),则线段QR 的长为:RN +NQ =3+1.5=4.5(cm ).故应选A .10.D.点拨:因为BC =AC ,∠BCD =∠ACE =120°,CD =CE ,所以△BCD ≌△ACE ,从而得①AE =BD 是正确的;又因为△BCD ≌△ACE ,所以∠FBC =∠GAC ,根据BC =AC ,∠BCF =∠ACG =60°,得△BCF ≌△ACG ,所以②AG =BF 是正确的;由△BCF ≌△ACG ,得CF =CG ,而∠FCG =60°,所以∠CGF =∠CFG =∠FCG =60°,所以③FG ∥BE 是正确的;如图,过C 作CM ⊥BD 于M ,CN ⊥AE 于N ,易得△BCM ≌△CAN ,所以CM =CN ,所以④∠BOC =∠EOC 是正确的.故应选D .二、11.5. 12.90°.点拨:因为△ABC 与△A ′B ′C ′关于直线l 对称,∠C ′=60°,所以∠C ′=∠C =60°,在△ABC 中,因为∠A =30°,所以∠B =180°-30°-60°=90°. 13.10.点拨:由角平分线的性质及题中已知条件可得PD =PE ,又因为PD =10,所以PE =10.14.2.点拨:∵D 为AB 的中点,AB =8,∴AD =4,∵ DE ⊥AC 于点E ,∴∠DEA =90°,∵∠A =30°,∴DE =12AD =2; 15.15°.点拨:∵折叠该纸片,使点A 落在点B 处,折痕为DE ,∴EA =EB ,∴∠EBA =∠A .又∵AB =AC ,∠A =50°,∴∠B =65°,∠EBA =50°,∴∠CBE =15°.16.105°.点拨:由①的作图可知CD =BD ,∴∠DCB =∠B =25°,∴∠ADC =50°.又∵CD =AC ,∴∠A =∠ADC =50°,∴∠ACD =80°,∴∠ACB =80°+25°=105°.17.200.点拨:由条件,得∠ABC =90°+30°=120°,∠BAC =90°-60°=30°,所以∠ACB =180°-∠ABC -∠BAC =180°-120°-30°=30°,所以∠ACB =∠BAC ,所以BC =AB =200,即B 、C 两地相距200m.18.(12)n -1·75°.点拨:∵A 1B =CB ,∠B =30°,∴∠C =∠BA 1C =12(180°-∠B )=75°,又∵A 1A 2=A 1D ,∴∠A 1A 2D =∠A 1DA 2=12∠DA 1C =12×75°(三角形外角等于不相邻两内角之和)=2112-×75°=2112-⎛⎫ ⎪⎝⎭×75°;同样,∵A 2A 3=A 2E ,∴∠A 2A 3E =∠A 2EA 3=12∠DA 2A 1=12×12×75°=14×75°=3112-×75°=3112-⎛⎫ ⎪⎝⎭×75°;同理,∠A 3A 4F =∠A 3FA 4=12∠EA 3A 2=4112-⎛⎫ ⎪⎝⎭×75°;…第n 个三角形中以A n 为顶点的内角度数是112n -⎛⎫ ⎪⎝⎭×75°. 三、19.如图,△ABC 就是所求的三角形,A ,B ,C 三点关于y 轴的对称点分别为A ′(3,1),B ′(1,0),C ′(2,-1),△A ′B ′C ′就是△ABC 关于y 轴对称的图形. 20.如图1和2所示中的直线l 21.设BP =x ,在Rt △PBE 中,∠BPE Rt △G F O D C B AE M NEFC中,∠FEC=30°,所以FC=12EC=1-14x,所以AF=2-FC=2-(1-14x)=1+14x,同理,AQ=12AF=12+18x,当点P与点Q重合时,有BP+AQ=2,即x+(12+18x)=2,解得x=43,故当BP=43时,点P与点Q重合.22.(1)证明:∵CD=CB,E为BD的中点,∴CE⊥BD,∴∠AEC=90°.又∵F为AC的中点,∴EF=12AC.(2)∵∠BAC=45°,∠AEC=90°,∴∠ACE=∠BAC=45°,∴AE=CE.又∵F为AC的中点,∴EF⊥AC,∴EF为AC的垂直平分线,∴AM=CM,∴AM+DM=CM+DM =CD.又∵CD=CB,∴AM+DM=BC.23.(1)∠ABC=90°时,PR=7.证明:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=312,RB=OB=312,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=∠ABC=90°,∴点P、B、R三点共线,∴PR=2×312=7.(2)PR的长度是小于7.理由:∠ABC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×312=7,∴PR<7.24.(1)①②、①③.(2)选①②证明如下:在△BOE和△COD中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,∴△BOE≌△COD(AAS),∴BO=CO,∠OBC=∠OCB,∴∠EOB+∠OBC =∠DOC+∠OCB,即∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.25.(1)∵三角形ABC为等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°-∠EDC=30°.(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形,∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.26.(1)∵点M为DE的中点,∴DM=ME.∵AD∥EN,∴∠ADM=∠NEM,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点.(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠CAN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45+∠MEN+∠BED=∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN 为等腰直角三角形,∴(2)中的结论是否仍然成立.27.(1)如图1所示.∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度.(2)画法不惟一.如,如图2所示.四个等腰三角形分别是:△ABE,△BCE,△BEF,△CEF.(3)如图3所示.当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.28.(1)AF=BD.证明:因为△ABC和△DCF均是等边三角形,所以∠ACB=∠DCF,所以∠ACB-∠ACD=∠DCF-∠ACD,即∠BCD=∠ACF.在△BDC和△AFC中,BC=AC,∠BCD=∠ACF,DC=FC,所以△BDC≌△AFC,所以AF=BD.(2)仍然成立.证法同(1).(3)Ⅰ:AF+BF′=AB.证明:由(1)可证AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,所以AF+BF′=AB.Ⅱ.在Ⅰ中的结论不成立,新结论是:AF-BF′=AB.证明:同(1)可证△BDC≌△AFC,所以AF=BD,同理可证△ADC≌△BF′C,所以BF′=AD,因为BD-AD=AB,所以AF-BF′=AB.此文档是由网络收集并进行重新排版整理.word可编辑版本!。

轴对称测试题及答案

轴对称测试题及答案

轴对称测试题及答案Revised on November 25, 2020DCBA新人教版八年级数学上册第十二章轴对称测试题及答案一、 选择题(本大题共12小题,每小题2分,共24分)1.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线. A. 3个 B. 4个 C. 5个 D. 6个2.下列说法正确的是( )A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC 与△DEF 成轴对称,则△ABC ≌△DEFD.点A ,点B 在直线L 两旁,且AB 与直线L 交于点O ,若AO =BO ,则点A 与点B关于直线L 对称 3.如图所示是一只停泊在平静水面的小船,它的“倒影”应是图中的( )4.在平面直角坐标系中,有点A (2,-1),点A 关于y 轴的对称点是( ) A.(-2,-1) B.(-2,1) C.(2,1) D.(1,-2)5.已知点A 的坐标为(1,4),则点A 关于x 轴对称的点的纵坐标为( ) A. 1 B. -1 C. 4 D. -46.等腰三角形是轴对称图形,它的对称轴是( )A.过顶点的直线B.底边上的高C.底边的中线D.顶角平分线所在的直线. 7.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( ) A.(4,1) B.(4,-1) C.(-4,1) D.(-4,-1) 8.已知点P (1,a )与Q (b ,2)关于x 轴成轴对称,又有点Q (b ,2)与 点M (m ,n )关于y 轴成轴对称,则m -n 的值为( )A. 3B.-3C. 1D. -19.等腰三角形的一个内角是50°,则另外两个角的度数分别为( )第14题°,65° °,80° °,65°或50°,80° °,50°10.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角为( ) A. 30° B. 150° C. 30°或150° °11.等腰三角形底边长为6cm ,一腰上的中线把它的周长分成两部分的差为2cm ,则腰长为( )A. 4cmB. 8cmC. 4cm 或8cmD. 以上都不对12.已知∠AOB =30°,点P 在∠AOB 的内部,点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,则P 1、O 、P 2三点构成的三角形是( )A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形 二、填空题:(本大题共8小题,每小题3分,共24分)13.等边三角形是轴对称图形,它有 条对称轴. A 1B 1C 1与△ABC 关于y 轴对称,那么点A 的对应点A 1的是 .16.已知∠AOB =30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则PQ = .17.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为 .18.点P (1,2)关于直线y =1对称的点的坐标是 ;关于直线x =1对称的的坐标是 .19.三角形三内角度数之比为1∶2∶3,最大边长是8cm ,则最小边的长是 . 20.在△ABC 和△ADC 中,下列3个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC.将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题 :21题⑵BEDCBAPDCBAPE DCB A .三、解答题:(本大题共52分)21.(每小题5分,共10分)作图题:(不写作法,保留作图痕迹)⑴ 如图,已知线段AB 和直线L ,作出与线段AB 关于直线L 对称的图形.⑵ 已知∠AOB 和C 、D 两点,求作一点P ,使PC =PD ,且P 到∠AOB 两边的距离相等.22.(5B (-1,0),C (-4,3).⑴求出△ABC 的面积.⑵ 在图形中作出△ABC 关于y 轴的对称图形△A 1B 1C 1. ⑶ 写出点A 1,B 1,C 1的坐标.23.(5分)如图所示,梯形ABCD 关y 轴对称,点A 的坐标为(-3,3),点B 的坐标为(-2,0).⑴ 写出点C 和点D 的坐标; ⑵ 求出梯形ABCD 的面积.24.(5分)如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm.求△ABC 的周长.25.(6分)如图,D 是等边三角形ABC 内一点,DB =DA ,BP =AB ,∠DPB =∠DBC.求证:∠BPD =30°.26.(8分)如图,△ABC 为任意三角形,以边AB 、AC为边分别向外作等边三角形ABD 和等边三角形ACE ,连接CD 、BE 并且相交于点P.求证:⑴CD =BE. ⑵∠BPC =120°NMF E CB AED CB A27.(6分)下面有三个结论:⑴等腰三角形两底角的平分线的交点到底边两端的距离相等.⑵等腰三角形两腰上中线的交点到底边两端的距离相等.⑶等腰三角形两腰上的高的交点到底边两端的距离相等.请你任选一个结论进行证明.28.(7分)如图,在△ABC中,AB=AC,∠A=120°,BC=6,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,求证:BM=MN=NC.参考答案和提示:一、选择题:;;;;;;;;;;;;二、填空题:13. 3;14.(-1,3);15. 4点40分;16. 2;17. 4cm2;18.(1,0),(1,2);19.4cm;20.等腰三角形的顶角平分线和底边上的中线重合.三、解答题:21.略;22.⑴=×5×3=(平方单位);⑵略;⑶A1(1,5),B1(1,0);C1(4,3).23.⑴C(2,0),D(3,3).⑵=(4+6)×3=15(平方单位).24.∵DE是线段AC的垂直平分线∴AD=CD∵△ABD的周长为13cm∴AB+BC=13cm∵AE=3cm∴AC=2AE=6cm. ∴△ABC的周长为:AB+BC+AC=19cm.25.连接CD,并延度CD交AB于E,证CE垂直平分AB,可得∠DCB=30°再证△BDC≌△BDP即可.26.略;27.略28.连接MA、NA,证明:MA=NA=MN.。

轴对称证明题

轴对称证明题

第十二章-轴对称证明题(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第十二章.......轴对称1..已知,如图....D.恰好在...BC......OB..的对称点..A.关于直线..........A.在.y.轴上,...BC..⊥.x.轴于点...C.,点......1.-.11..,在直角坐标系中,点上,点...OED...的度数....=.35..°,求∠......O.关于直线....OBC...E.与点....BC..对称,∠2..已知:如图...AB..........2.-.3.,线段求作:线段......MN.........AB..的垂直平分线作法:...图.2.-.3.3..已知:如图...M.、.N......及两点..ABC......2.-.4.,∠求作:点...两边的距离相等............ABC....P.,使得..P.点到∠...PM..=.PN..,且作法:...图.2.-.4.4..已知点...l.上运动时,点.......................B.,当点...P.在直线....A.在直线...l.外,点...P.为直线...l.上的一个动点,探究是否存在一个定点P.与.A.、.B.两点的距离总相等.如果存在,请作出定点...................B.;若不存在,请说明理由.............图.2.-.5.5..如图...2.-.6.,.AD ..为∠..BAC ...的平分线,.....DE .. ⊥.AB ..于.E .,.DF ..⊥.AC ..于.F .,那么点....E .、.F .是否关于....AD ..对称?若对称,请说.........明理由.....图.2.-.6.综合、运用、诊断........6..已知:如图......3.-.7.,.A .、.B .两点在直线.....l .的同侧,点.....A .'.与.A .关于直线....l .对称,连接.....A .'.B .交.l .于.P .点,若...A .'.B .=.a ... (.1.)求..AP ..+.PB ..;. (.2.)若点...M .是直线...l .上异于...P .点的任意一点,求证:..........AM ..+.M .B .>.AP ..+.PB ....7..已知:....A .、.B .两点在直线.....l .的同侧,试分别画出符合条件的点...............M ... (.1.)如图...3.-.8.,在..l .上求作一点.....M .,使得|.... AM ..-.BM .. |最小;.... 作.(.3.)如图...3.-.10..,在..l .上求作一点.....M .,使得...AM ..+.BM ..最小....图.3.-.10.. 8..(..1.)如图...3.-.11..,点..A .、.B .、.C .在直线...l .的同侧,在直线.......l .上,求作一点......P .,使得四边形......APBC ....的周长最小;......图.3.-.11..(.2.)如图..P.在点........P.、.Q.(点..Q.的左..A.、.B.在直线...3.-.12..,已知线段.....a.,点...l.的同侧,在直线.......l.上,求作两点侧)且.........PQ..=.a.,四边形....的周长最小.....APQB图.3.-.12..9..(..OB..边上求作一点......P.,在....PMQ.........Q.,使得Δ....AOB..1.)已知:如图......3.-.13..,点..M.在锐角∠.....OA..边上求作一点...的内部,在的周长最小;......图.3.-.13..(.2.)已知:如图....P.到点..M.的距离与点......P.,使得点.....P.到.......3.-.14..,点..M.在锐角∠.....OB..边上求作一点....AOB...的内部,在OA..边的距离之和最小..........图.3.-.14..10...已知:如图..2.,∠..4......D.、.E.两点,∠..3.=∠....1.=∠......6.-.5.,Δ..ABC...中,..BC..边上有求证:△....ABC..........是等腰三角形.图.6.-.5.11...已知:如图....AD..=.AE..........5.-.2.,Δ..AB..=.AC..,.D.、.E.在.BC..边上,且..ABC...中,求证:...BD..=.CE....图.5.-.2.12...已知:如图....AC..=.BC..=.BD..,.AD..=.AE..,.DE..=.CE..,.......5.-.3.,.D.、.E.分别为...AB..、.AC..上的点,求∠..B.的度数.....图.5.-.3.13...已知:如图......5.-.4.,Δ..ABC ...中,..AB ..=.AC ..,.D .是.AB ..上一点,延长......CA ..至.E .,使..AE ..=.AD ....试确定...ED ..与.BC ..的位置关系,并证明你的结论...............图.5.-.4.拓展、探究、思考........14...已知:如图......5.-.5.,.Rt ..Δ.ABC ...中,∠...BAC ...=.90..°,.AB ..=.AC ..,.D .是.BC ..的中点,....AE ..=.BF .... 求证:(....1.).DE ..=.DF ..;(..2.)Δ..DEF ...为等腰直角三角形..........图.5.-.5.15...在平面直角坐标系中,点............P . (.2.,.3.),..Q . (.3.,.2.),请在....x .轴和..y .轴上分别找到......M .点和..N .点,使四边形......PQMN ....周长最小......(.1.)作出...M .点和..N .点... (.2.)求出...M .点和..N .点的坐标......16...已知:如图..AB..=.AC..,.E.在.CA..的延长线上,......ED..⊥.BC.......中,..ABC......6.-.6.,Δ求证:...AE..=.AF....图.6.-.6.17...已知:如图...ABC...交.CD..于.E.,交...=.90..°,.CD..⊥.AB..于.D.,.BF..平分∠..AC..于.F......ACB......6.-.7.,Δ..ABC...中,∠求证:...CE..=.CF....图.6.-.7.18...如图....AP..、.BQ..分别为∠...BC..、.CA..上,并且...、∠......BAC...=.60..°,∠...6.-.8.,在△...AB..C.中,∠...BAC..ACB...=.40..°,.P.、.Q.分别在ABC.........的角平分线,求证:...BQ..+.AQ..=.AB..+.BP....图.6.-.8.19...如图...6.-.9.,若......构成等腰直角三角形,问这样的..............C.点有几..A.、.B.是平面上的定点,在平面上找一点...............C.,使Δ...ABC个?并在图........C.点的位置......6.-.9.中画出20...如图...分割为三个三角形,并.........................ABC....ABC...6.-.10..,对于顶角∠......A.为.36..°的等腰Δ...,请设计出三种不同的分法,将Δ且使每个三角形都是等腰三角形................图.6.-.10..21...已知:如图..EAC......B.=∠...,.EF..⊥.AD..于.F.....BAC...的平分线,∠......7.-.8.,.AD..是∠求证:........EF..平分∠...AEB图.7.-.8.22...已知:如图...(∠...的外角..ACD...ACB........)的平分线...中,...ABC......7.-.9.,在Δ..CE..是角平分线,......EG..∥.BC..,交..AC..边于..F.,交∠于.G.,探究线段.....EF..与.FG..的数量关系并证明你的结论..............图.7.-.9.23...如图...............AM..∥.BN..,请按以下步骤画图并回答....7.-.10..,过线段........AM..,.BN..,使....AB..的两个端点作射线(.1.)画∠..AEB............E.,∠...是什么角?..NBA...MAB...、∠...的平分线交于点(.2.)过点...E .任作一线段交......AM ..于点..D .,交..BN ..于点..C ..观察线段.....DE ..、.CE ..,有什么发现?请证明你的猜想................(.3.)试猜想....AD ..,.BC ..与.AB ..有什么数量关系?........图.7.-.10..24...已知:如图......7.-.11..,Δ..ABC ...中,..AB ..=.AC ..,∠..A .=.100...°,.BE ..平分∠...B .交.AC ..于.E ...(.1.)求证:....BC ..=.AE ..+.BE ..;.(.2.)探究:若∠......A .=.108...°,那么...BC ..等于哪两条线段长的和呢?试证明之..................25...已知:如图......8.-.4.,Δ..ABC ...和Δ..BDE ...都是等边三角形.........(.1.)求证:....AD ..=.CE ..;.(.2.)当..AC ..⊥.CE ..时,判断并证明.......AB ..与.BE ..的数量关系.......图.8.-.4.26...如图...CD..=.CE..,连接...DE..并延长至点....BC..、.AC..上,且..EF..=......F.,使...8.-.5.,已知Δ.......D.、.E.分别在边....ABC...是等边三角形,AE..,连接...AF..、.BE..和.CF....(.1.)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;..............................(.2.)求证:....AF..=.BD....图.8.-.5.27...已知:如图...=.30..°,∠..B.=.90..°.求..CD..的长.....,∠..BAD...,.CD..∥.AB..,.BC..=.6cm......8.-.6.,四边形....中,....ABCD...BAD..AC..平分∠______........图.8.-.6.28...(.........OAB...和等边三角..1.)如图.....AD..的同侧作等边三角形............AO..和.DO..为边在线段..O.是线段...8.-.7.,点...AD..的中点,分别以形.OCD...的大小;...AEB.......,连接...AC..和.BD..,相交于点.....E.,连接...BC..,求∠图.8.-.7.(.2.)如图....OAB...O.旋转(△..OCD...不....和△...绕着点...........OCD...8.-.8.,△...固定不动,保持△..OAB...的形状和大小不变,将△........OCD能重叠),求∠.......的大小........AEB图.8.-.8.29...已知:如图...BA..到.E.,使...CE..、.DE.............BC..到.D.,延长..AE..=.BD..,连接...为等边三角形,延长..ABC......8.-.9.,△求证:...CE..=.DE....图.8.-.9.30...已知:如图...A.=∠..C.=.60..°,.CD..=.2.AD..,.AB..=.4.....B.=.90..°,∠....中,∠......8.-.10..,四边形....ABCD(.1.)在..PC..+.PD..最小;...P.,使.....求作点..AB..边上图.8.-.10..(.2.)求出(....1.)中.......PC..+.PD..的最小值.31.如图,△ABC中,边AB、BC的垂直平分线交于点O,(1)求证:PA=PB=PC.(2)点P 是否也在边AC 的垂直平分线上由此你还能得出什么结论32、.如图:△ABC 和△ADE 是等边三角形.证明:BD=CE.33、如图,△ABC 中,D 、E 分别是AC 、AB 上的点,BD 与CE 交于点O.给出下列四个条件:①∠EBD=∠DCO ;②∠BEO=∠CDO ;③BE=CD ;④OB =OC.(1)上述四个条件中,哪两个条件可判定△ABC 是等腰三角形(用序号写出所有情形); (2)选择第(1)小题中的一种情形,证明△ABC 是等腰三角形.34.如图,P 在∠AOB 内;点M ,N 分别是点P 关于AO ,BO 的对称点,且与AO 、BO 相交点E 、F ,若∆PEF 的周长为15,求MN 的长.N POM F EB A35.如图(5)所示,在△ABC 中,∠C=90°,DE 垂直平分AB ,交AB 于E ,交 BC 于D ,∠1=21∠2,求∠B 的度数。

第12章《轴对称》好题集(08):12.1 轴对称

第12章《轴对称》好题集(08):12.1 轴对称

第12章《轴对称》好题集(08):12.1 轴对称第12章《轴对称》好题集(08):12.1轴对称第12章《轴对称》好题集(08):12.1轴对称菁优网第12章《轴对称》好题集(08):12.1轴对称填空题211.一个汽车牌照号码在水中的倒影为,则该车牌照号码为_________.212.在一张卡片上写有一个汉字,将卡片垂直于水平镜面放置在镜子前方时,镜子显示的像如图所示,则卡片上的汉字是_________.213.小明从镜子里看见镜子对面的钟表里的时间就是2点30分后,实际时间为_________点_________分后.214.小明照镜子时看到对面墙上挂的电子表在镜子里显示的时间是215.例如图就是某小车车牌号在水中的倒影,则这辆车的车牌号就是_________,实际是_________.216.在一张纸上写下着一串数,在镜子中成如图所示的形状,则纸上写下的数为_________.217.下图是在镜子中看到的一个号码,它的实际号码是_________.218.小明从镜子中看见身后墙上贴有一串数字,这串成数字实际必须就是_________.若某一串数字在水中的倒影就是例如图,则这串成数字就是_________.219.小明从镜子里看到镜子对面电子钟的像,如图所示,实际时间是_________220.张同学就是一个nba爱好者,周末的一天他在家里做作业,一次他走跌看见墙上镜面里的钟如图所示,那他过_________分钟可以回去看看9:30的一场火箭vs骑士.2021-2021菁优网菁优网222.观察上图中的图片,请说出图中小亮衣服上的数字是:_________.答疑题223.(2021?益阳)如图,平面上的四边形abcd是一只“风筝”的骨架,其中ab=ad,cb=cd.(1)九年级王云同学观察了这个“风筝”的骨架后,他认为四边形abcd的两条对角线ac⊥bd,垂足为e,并且be=ed,你同意王云同学的判断吗?_________;(2)设立对角线ac=a,bd=b,用含a,b的式子则表示四边形abcd的面积为_________224.(2021?岳阳)如图,已知de垂直平分ab,分别交ab、bc于d、e两点,ae平分∠bac,∠b=30°,be=4,则ac=_________.225.例如图,△abc中,∠bac=110°,ab的垂直平分线交bc于点d,ac的垂直平分线交bc于点e,bc=10cm.(1)则△ade的周长为_________cm;(2)则∠dae的度数为_________度.2021-2021菁优网菁优网227.如图,在△abc中,bc边上的垂直平分线de交bc于点d,交ac于点e,△abc的周长为18厘米,△abe的周长为10厘米,则bd的长为_________厘米.228.例如图,在△abc中,∠abc=2∠c.ac的垂直平分线分别交bc,ac于点d,e,则ab_________cd.229.如图,在△abc中,dm、en分别垂直平分ac和bc,交ab于m、n,(1)若△cmn的周长为18cm,则ab=_________cm.(2)若∠mcn=48°,则∠acb=_________度.230.如图所示:△abc的周长为24cm,ab=10cm,边ab的垂直平分线de交bc边于点e,像距为d,△aec的周长为_________cm.231.如图,在△abc中,∠c=90,de是ab的垂直平分线,∠cae=∠b+30°,则∠aeb的度数为_________度.232.如图所示,在△abc中,de就是边ab的垂直平分线,交ab于e,交ac于d,相连接bd.(1)若∠abc=∠c,∠a=50°,则∠dbc的度数为_________度.(2)若ab=ac,且△bcd的周长为18cm,△abc的周长为30cm,则be的短为_________cm.2021-2021菁优网菁优网233.已知,如图,在△abc中,ab<ac,bc边上的垂直平分线de交bc于点d,交ac于点e,ac=8,△abe的周长为14,则ab的长为_________.234.未知:例如图,在△abc中,ed垂直平分ab,∠ebc=24°,∠c=72°,则∠a=_________度.235.在△abc中,ab=ac,ab的垂直平分线交ab于n,交bc的延长线于m,∠a=40度.(1)则∠m的度数为_________度;(2)若将∠a的度数改为80°,其余条件不变,则∠m=_________度;(3)你发现了怎样的规律试证明;(4)将(1)中的∠a改成钝角,(3)中的规律仍设立吗若不设立,应当怎样修正?236.如图,在△abc中,∠c=90°点d在bc上,de垂直平分ab,且de=dc,则∠b=_________度.237.例如图,在△abc中,ab=ac,∠a=30°,de垂直平分ac于e,相连接cd,则∠dcb=_________度.2021-2021菁优网。

轴对称整章知识点+复习试题[含答案解析]

轴对称整章知识点+复习试题[含答案解析]

m CA B P 图3图2mC A B第十二章 轴对称知识点总结 我保证认真独立地完成今天的作业!签名:____________一、知识梳理1、轴对称图形____________________ ____________________________ 这条直线叫做________________。

互相重合的点叫做________________。

轴对称_______________________________________________ _ 这条直线叫做________________。

互相重合的点叫做________________。

2、轴对称图形与轴对称的区别与联系:区别________________________________________________。

联系________________________________________________。

3、轴对称的性质:_______________________________________________。

_______________________________________________。

4、线段的垂直平分线定义:________________________________________________如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。

5、线段的垂直平分线性质:_______________________________________________。

如图3,∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。

∴PA=PB 。

6、等腰三角形定义:___________________________________________:7、等腰三角形性质:___________________________________________:___________________________________________:8、等腰三角形判定。

第十二章 轴对称复习测验

第十二章  轴对称复习测验

第 1 页 共 2 页(第7题图)C(第8题图)x第十二章 轴对称复习测验班别:_____________姓名:_____________学号:_______成绩:_____________ 一、选择1、下列图形中不是轴对称图形的是( )(A ) (B ) (C ) (D )2、在平面直角坐标系中,点P (-3,2)关于x 轴的对称点P ′在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限3、对于坐标平面上的点P (3,2)和点Q (-3,2),下列说法中正确的有( ) ①关于x 轴对称;②关于y 轴对称;③两点相距6个单位;④点Q 向右平移6个单位后称到点P 处.A 、①③④B 、②③④C 、①③④D 、①②④ 4、下列三角形:①有两个角等于︒60的三角形;②有一个角等于︒60的等腰三角形;③三个外角都相等的三角形;④三条边都相等的三角形. 其中是等边三角形的有( )A 、①②③B 、①②④C 、①③D 、①②③④ 二、填空5、点P (-1,3)关于y 轴的对称点坐标是_______________.6、若等腰三角形的顶角为︒120,腰长是10,则底边上的高是_______________.7、如图,DE 是△ABC 中AC 边的垂直平分线,若BC=12cm , AB=16cm ,则△EBC 的周长为______________cm. 三、作图8、在边长为1单位的正方形网格中建立如图所示的直角坐标系,△ABC 的各个顶点都在格点上,另一个△A`B`C`与△ABC 关于y 轴对称. (1)写出△A`B`C`的各个顶点的坐标: A`_________,B`_________,C`_________; (2)画出△A`B`C`.第 2 页 共 2 页(第9题图)M BA(第10题图)l(第11题图)(第12题图)(第13题图)C9、如图,在直线MN 是找一点P ,使它 10、如图,画出△ABC 关于直线l 的 到点A 、点B 的距离相等.四、解答题11、如图,在△ABC 中,AB<AC ,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,AC=8,△ABE 的周长为14,求AB 的长.12、如图,在等腰△ABC 中,AB=AC ,D 、E 、F 分别在AB 、BC 、AC 上,且BD=CE ,BE=CF ,求证:点E 在DF 的垂直平分线上.13、在△ABC 中,AB=AC ,BC=BD=AD ,求∠A 的度数.。

八年级(初二)上册数学第十二章轴对称测试题(附答案)

八年级(初二)上册数学第十二章轴对称测试题(附答案)

第十二章 轴对称一、填空题(每小题2分,共20分)1、 等腰三角形是 对称图形,它至少有 条对称轴.2、等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为 _______________ .3、已知△ABC 是轴对称图形.且三条高的交点恰好是C 点,则△ABC 的形状是 ___________.4、直线y=kx+4与坐标轴围成的三角形是等腰三角形,则k=5、已知点P(一3,2),点P 关于X 轴的对称点坐标为 ____6、Rt △ABC 中,∠ACB=90°,CD 是高,∠A=30°,BD=5cm ,则AB=7、观察上图中的图片,请说出图中小亮衣服上的数字是:8、如果等腰三角形一腰上的高与腰的夹角为30°,则该三角形的顶角的度数为 9、已知点A(一2,4),B(2,4),C(1,2),D(-1,2),E(一3,1),F(3,1)是平面坐标系内的6个点,选择其中三个点连成一个三角形,剩下三个点连成另一个三角形,若这两个三角形关于y 轴对称,就称为一组对称三角形,那么,坐标系中可找出 ____________组对称三角形.10、小强拿了一张正方形的纸如图(1),沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是 二、选择题(每小题3分,共18分)第6B ADC12、下列命题中,不正确的是( )(A)关于直线对称的两个三角形一定全等.(B)两个大小一样的圆形纸片随意平放在水平桌面上构成轴对称图形. (C)若两图形关于直线对称,则对称轴是对应点所连线段的垂直平分线. (D)等腰三角形一边上的高、中线及这边对角平分线重台.13、将长方形ABCD 沿折痕EF 折叠,使CD 落在GH 的位置,若∠BGH=55°,则∠HEF=( ) (A)55° (B) 65°(C)72.5 (D)75° 12、等腰三角形的一个内角是50。

人教版八年级数学上册 第十二章轴对称测试题

人教版八年级数学上册 第十二章轴对称测试题

第十二章 《轴对称》测试题一、选择题(每小题4分,共40分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D : 2、点M (1,2)关于x 轴对称的点的坐标为( )A :(-1,-2)B :(-1,2)C :(1,-2)D :(2,-1) 3、下列图形中对称轴最多的是( )A :等腰三角形B :正方形C :圆D :线段 4、已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )A :2 ㎝B :4 ㎝C :6 ㎝D :8㎝ 5、下列说法正确的是( )A :等腰三角形的高、中线、角平分线互相重合B :顶角相等的两个等腰三角形全等C :等腰三角形的两个底角相等D :等腰三角形一边不可以是另一边的二倍 6、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对7、如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米, 则∆EBC 的周长为( )厘米A :16B :18C :26D :28 8、如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ) A :90° B : 75° C :70° D : 60° 9、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ) A :75°或15° B :75° C :15° D :75°和30° 10、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论: ①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ) A :1个 B :2个 C :3个 D :4个 二、填空题(每小题4分,共40分)CEBDAl OCBDACAFE11、在数字0、2、4、6、8中是轴对称图形的是 ; 12、等腰三角形一个底角是30°,则它的顶角是__________度;13、等腰三角形的一边长是6,另一边长是3,则周长为________________;14、等腰三角形的一内角等于50°,则其它两个内角各为 ;15、如图:在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则AB= ㎝;16、如图:从镜子中看到一钟表的时针和分针,此时的实际时刻是________; 17、如图:点P 为∠AOB 内一点,分别作出P 点关于OA连接P 1P 2交OA 于M ,交OB于N ,P 1P 2=15,则△PMN18、点E (a,-5)与点F (-2,b )关于y 轴对称,则b= ;19、等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 ; 20、如图:是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC,AB=8m,∠A=30°,则DE 等于 ; 三、解答题(共70分)21、(5分)如图:A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送 到A 、B 两地,问该站建在河边什么地方,•可使所修的渠 道最短,试在图中确定该点(保留作图痕迹) 22、(5分)如图:某地有两所大学和两条相交叉的公路, (点M ,N 表示大学,AO ,BO 表示公路).现计划修建 一座物资仓库,希望仓库到两所大学的距离相等,到 两条公路的距离也相等。

八年级上册数学第十二章轴对称试卷

八年级上册数学第十二章轴对称试卷

(A) (B (C)(D)第十二章 轴对称测试 2一、填空题1.长方形的对称轴有_________________条.2.等腰三角形的对称轴最多有___________条.3.如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD 的周长为13cm,则△ABC 的周长为____________.4.观察字母A 、E 、H 、O 、T 、W 、X 、Z ,其中不是轴对称的字母是______________.5.(-2,1)点关于x 轴对称的点坐标为__________.6.等腰三角形的顶角为x 度,则一腰上的高线与底边的夹角是___________度.7.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将两个空白的小正方形涂黑,使它成为轴对称图形.8.如图,四边形ABCD 沿直线l 对折后互相重合,如果AD ∥BC,有下列结论: ①AB ∥CD ②AB=CD ③AB ⊥BC ④AO=OC 其中正确的结论是_______________.(把你认为正确的结论的序号都填上) 二、选择题9.下列图形:①角②两相交直线③圆④正方形,其中轴对称图形有 ( ) (A)4个 (B)3个 (C)2个 (D)1个10.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是 ( ) (A)圆 (B)正方形 (C)长方形 (D)等腰梯形11.点(3,-2)关于x 轴的对称点是 ( ) (A )(-3,-2) (B )(3,2) (C )(-3,2) (D )(3,-2) 12.下列平面图形中,不是轴对称图形的是 ( )13.下列英文字母属于轴对称图形的是 ( ) (A) N (B) S (C) H (D) KABCDlO ABDCE14.下列图形中对称轴最多的是( )(A)圆(B)正方形(C)等腰三角形(D)线段15.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确...的是 ( )(A)∠B=∠C (B)AD⊥BC (C)AD平分∠BAC (D)AB=2BD三、解答题(每题8分,共40分)16.如图,(1)在直线l上找一点,使PA=PB. (2)作线段AB的中垂线EF(3)作∠AOB的角平分线OC(4)要在公路MN上修一个车站P,使得P向A,B两个地方的距离和最小,请在图中画出P的位置。

第12章 轴对称单元复习卷(含答案)

第12章 轴对称单元复习卷(含答案)

第十二章 轴对称单元复习卷一、选择题(每题5分,共25分)1.下列图形中,不是..轴对称图形的是( )2.如图,ABC ∆与A B C ∆'''关于直线l 对称,则B ∠的度数为( ) A.30B.50C.90D.1003.等腰三角形的一个内角是50,则另外两个角的度数分别是( ) A.65,65B.50,80C.65,65或50,80D.50,504.已知点A (-1,-4),B (-1,4),则( )A.A 、B 关于x 轴对称B.A 、B 关于y 轴对称C.直线AB 平行于x 轴D.直线AB 垂直于y 轴5.如图,点P 为AOB ∠内一点,分别作出P 点关于OA 、OB 的对称点12,P P ,连接12P P 交OA 于点M ,交OB 于点N ,1215PP =,则PMN ∆的周长为( ) A.14 B.15 C.16 D.17二、填空题(每题5分,共25分)6.观察字母A 、E 、H 、O 、T 、W 、X 、Z,其中不是轴对称的字母是 .7.如图,已知AC BC =,PC AB ⊥,连接PA 和PB ,则PA PB .(填“>”,“<”,“=”) 8.等腰三角形的一个外角是80,则这个三角形的三个内角分别为 . 9.如图,已知在ABC ∆中,90C ∠=,60B ∠=,10AB cm =,则BC = .10.如图,ABC ∆中,AB AC =,36A ∠=,AB 的中垂线DE 交AC 于D ,交AB 于E ,下述结论(1)BD 平分ABC ∠;(2)AD BD BC ==;(3)BDC ∆的周长等于AB BC +;(4)D 是AC 中点,其中正确的命题序号是 .ABCD第2题 第5题 第7题 第9题 第10题三、解答题(共50分)11.(12分)如图,在1010⨯的方格中,一个小正方形的边长为1个单位.先将ABC ∆向下平移4个单位得到111A B C ∆,再以直线l 为对称轴将111ABC ∆作轴反射得到222A B C ∆,请在所给的方格纸中依次作出111A B C ∆和222A B C ∆.12.(12分)如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹及简要说明)13.(12分)如图,ABC ∆中,AB AC =,30C ∠=,AB AD ⊥,2AD cm =,求BC 的长.14.(14分)如图,点B C D 、、在同一条直线上,ABC ∆和CDE ∆都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,(1)求证:BCE ∆≌ACD ∆;(2)求证:FHC ∆是等边三角形.参考答案一、选择题(每题5分,共25分)1.下列图形中,不是..轴对称图形的是( A )2.如图,ABC∆与A B C ∆'''关于直线l 对称,则B ∠的度数为( D )A.30 B.50 C.90 D.1003.等腰三角形的一个内角是50,则另外两个角的度数分别是( C ) A.65,65B.50,80C.65,65或50,80D.50,504.已知点A (-1,-4),B (-1,4),则( A ) A.A 、B 关于x 轴对称 B.A 、B 关于y 轴对称 C.直线AB 平行于x 轴D.直线AB 垂直于y 轴5.如图,点P 为AOB ∠内一点,分别作出P 点关于OA 、OB 的对称点12,P P ,连接12P P 交OA 于点M ,交OB 于点N ,1215PP =,则PMN ∆的周长为( B ) A.14 B.15 C.16 D.17二、填空题(每题5分,共25分)6.观察字母A 、E 、H 、O 、T 、W 、X 、Z,其中不是轴对称的字母是 Z .7.如图,已知AC BC =,PC AB ⊥,连接PA 和PB ,则PA = PB .(填“>”,“<”,“=”) 8.等腰三角形的一个外角是80,则这个三角形的三个内角分别为 100,40,40.ABCD第2题 第5题 第7题 第9题 第10题lABC 1A 1C 2B 2A 2C 9.如图,已知在ABC ∆中,90C ∠=,60B ∠=,10AB cm =,则BC = 5cm .10.如图,ABC ∆中,AB AC =,36A ∠=,AB 的中垂线DE 交AC 于D ,交AB 于E ,下述结论(1)BD 平分ABC ∠;(2)AD BD BC ==;(3)BDC ∆的周长等于AB BC +;(4)D 是AC 中点,其中正确的命题序号是 (1)、(2)、(3) . 三、解答题(共50分)11.(12分)如图,在1010⨯的方格中,一个小正方形的边长为1个单位.先将ABC∆向下平移4个单位得到111A B C ∆,再以直线l 为对称轴将111ABC ∆作轴反射得到222A B C ∆,请在所给的方格纸中依次作出111A B C ∆和222A B C ∆.∴如图所示,111A B C ∆和222A B C ∆就是所求作的三角形.12.(12分)如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹及简要说明)解:如图,作点A 关于河岸a 的对称点A ',连接AB ', 交河岸a 于点C ,则抽水站应建在C 处,可使所 修的渠道最短.13.(12分)如图,ABC ∆中,AB AC =,30C ∠=,AB AD ⊥,2AD cm =,求BC 的长. 解:∵AB AC = ∴30B C ∠=∠= 又∵AB AD ⊥ ∴24BD AD == ∵AB AC =∴180BAC B C ∠=-∠-∠ 120=∵AB AD ⊥ ∴90BAD ∠=∴DAC BAC BAD ∠=∠-∠12090=-30=∴DAC C ∠=∠ ∴2DC AD ==∴BC BD DC =+42=+6()cm =aA'A BC14.(14分)如图,点B C D 、、在同一条直线上,ABC ∆和CDE ∆都是等边三角形.BE 交AC 于F ,AD 交CE 于H ,(1)求证:BCE ∆≌ACD ∆;(2)求证:FHC ∆是等边三角形.证明:(1)∵ABC ∆和CDE ∆都是等边三角形 ∴AC BC =,CD CE =, 60ACB DCE ∠=∠=又∵B C D 、、在同一直线上 ∴60ACE ∠= ∴120BCE ACD ∠=∠= 在BCE ∆与ACD ∆中BC ACBCE ACD CE CD=⎧⎪∠=∠⎨=⎪⎩ ∴BCE ∆≌()ACD SAS ∆ (2)∵BCE ∆≌ACD ∆∴EBC DAC ∠=∠ 在AHC ∆与BFC ∆中 60DAC EBCAC BCACH BCF ⎧∠=∠⎪=⎨⎪∠=∠=⎩ ∴AHC ∆≌()BFC ASA ∆ ∴HC FC=又∵60ACE ∠= ∴FHC ∆是等边三角形。

八年级数学上轴对称课堂同步练习题

八年级数学上轴对称课堂同步练习题

学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线…………………罗平轻松学习辅导中心13年初中生周末辅导同步讲座数学八年级上册-第十二章轴对称-第一节轴对称一、单选题 (选择一个正确的选项)1 、下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是( )A 、B 、C 、D 、2 、下列图形中,既是轴对称图形又是中心对称图形的是( ) A 、矩形 B 、等边三角形 C 、平行四边形 D 、等腰梯形3 、下列说法中正确的是( )①对称轴上没有对称点;②如果△ABC 与△A ′B ′C ′关于直线L 对称,那么S △ABC=S △A ′B ′C ′;③如果线段AB=A ′B ′,直线L 垂直平分AA ′,则AB 和A ′B ′关于直线L 对称;④射线不是轴对称图形.A 、②B 、①④C 、②④D 、②③ 4 、下图是轴对称图形的( )A 、B 、C 、D 、5 、下列图案中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个 6 、下列各组点关于y 轴对称的是( ) A 、(0,10)与(0,-10) B 、(-3,-2)与(3,-2) C 、(-3,-2)与(3,2) D 、(-3,-2)与(-3,2)7 、下面4个汽车标志图案中,不是轴对称图形的是( )A 、B 、C 、D 、8 、已知点A (-1,-4),B (-1,4),则( )A 、A 、B 关于x 轴对称 B 、A 、B 关于y 轴对称C 、直线AB 平行于x 轴D 、直线AB 垂直于y 轴9 、点A (-3,2)关于原点对称的点是B ,点B 关于y 轴对称的点是C ,则点C 的坐标是( ) A 、(3,-2) B 、(3,2) C 、(-3,-2) D 、(-3,2) 10 、P (4,-3)关于x 轴对称点的坐标是( ) A 、(4,3) B 、(-4,-3) C 、(-4,3) D 、(-3,4)11 、直角坐标系中,与点M (2,-3)关于y 轴对称的点是( ) A 、(2,3) B 、(-2,-3) C 、(-2,3) D 、(-3,2)12 、以下多边形中,既是轴对称图形又是中心对称图形的是( ) A 、正五边形 B 、矩形 C 、等边三角形 D 、平行四边形 13 、下列结论与式子正确的是( ) A 、(-a )3=a 3 B 、不等式组5040x x >⎧⎨+≥⎩的解集为0<x≤4C 、平行四边形是轴对称图形D 、三角形的中位线等于第三边的一半14 、在平行四边形、矩形、菱形和等腰梯形中,既是轴对称图形,又是中心对称图形的有( )A 、1个B 、2个C 、3个D 、4个 15 、下列说法中,正确的有( )个①两个轴对称图形对应点连线的垂直平分线就是它们的对称轴; ②两个图形关于某直线对称,对称点一定在直线的两旁; ③关于某直线对称的两个三角形一定是全等三角形; ④有三条对称轴的三角形是等边三角形. A 、1个 B 、2个 C 、3个 D 、4个16 、如图,在边长为1的正方形网格中,将△ABC 向右平移两个单位长度得到△A ′B ′C ′,则与点B ′关于x 轴对称的点的坐标是( )学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线…………………A 、(0,-1) B 、(1,1) C 、(2,-1) D 、(1,-2)17 、已知点P (x+y ,x-y )与点Q (5,1)关于x 轴成轴反射,则有( ) A 、x=3,y=2 B 、x=2,y=3 C 、x=-3,y=-2 D 、x=-2,y=-3 18 、下列汽车品牌标识中,不是轴对称图形的是( )A 、B 、C 、D 、19 、直角坐标系里,若△ABC 关于原点O 对称的三角形是△A 1B 1C 1,关于y 轴对称的三角形是△A 2B 2C 2,则△A 1B 1C 1与△A 2B 2C 2的关系是( )A 、关于x 轴对称B 、关于y 轴对称C 、关于原点轴对称D 、以上都不是 20 、如图案是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个第二节 作轴对称图形【典型例题】例1. 如图是由两个等边三角形组成的图形,它是轴对称图形吗?如果不是,请移动其中一个三角形,使它与另一个三角形一起组成轴对称图形,有几种移法?(至少画四种,相同类型的算一种),怎样移动才能使所构成的图形具有尽可能多的对称轴?例2. 如图所示,C 是线段AB 的垂直平分线上的一点,垂足为D ,则下列结论中正确的有( ) ①AD =BD ; ②AC =BC ; ③∠A =∠B ; ④∠ACD =∠BCD ; ⑤∠ADC =∠BDC =90°A. 2个B. 3个C. 4个D. 5个例3. 写出下列各点关于x 轴和y 轴对称的点的坐标。

八年级数学上册 第12章《轴对称》习题精选2 新人教版-最新学习文档

八年级数学上册 第12章《轴对称》习题精选2 新人教版-最新学习文档

第12章《轴对称》(测试时间90分钟,测试总分100分)一、选择题(每题3分,共30分)2. 点M(1,2)关于x轴对称的点的坐标为()A:(-1,-2) B:(-1,2) C:(1,-2) D:(2,-1)3.下列图形中对称轴最多的是( )A:等腰三角形 B:正方形 C:圆 D:线段4.已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为()A:2 ㎝ B:4 ㎝ C:6 ㎝ D:8㎝5.下列说法正确的是( )A:等腰三角形的高、中线、角平分线互相重合 B:顶角相等的两个等腰三角形全等C:等腰三角形的两个底角相等 D:等腰三角形一边不可以是另一边的二倍6.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A:11cm B:7.5cm C:11cm或7.5cm D:以上都不对7.如图:DE是∆ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则∆EBC的周长为()厘米A:16 B:18 C:26 D:288.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()A:90° B: 75° C:70° D: 60°9.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A:75°或15° B:75° C:15° D:75°和30°10.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC 其中正确的结论有()A:1个 B:2个 C:3个 D:4个二、填空题(每题3分,共18分)11.等腰三角形的一边长是6,另一边长是3,则周长为________________;12.等腰三角形的一内角等于50°,则其它两个内角各为;13.如图:在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12㎝,则AB= ㎝; 14.如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接CEBDAlOCB DACA FECBAP1MBP1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为;15.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为;16.如图:是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8m,∠A=30°,则DE等于;三、解答题(17题6分,18题~19题每题7分,20题~23题8分,共52分)17.(6分)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12章《轴对称》训练题
1.角是轴对称图形,其对称轴是________________________.
2.点M(-2,1)关于x轴对称点N的坐标是_____________.
3.等腰三角形的周长为30cm,一边长是12cm,则另两边的长分别是_____.4.如图,在△ABC中,AB=AC=14cm,边AB的中垂线交AC于D,且△BCD的周长为24cm,则BC=__________.
5.在△ABC中,AB=AC=10cm,∠A=60°,则BC=________.
6.如图,在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,若AD=2,则AC=_____,BA=______.7.一个等腰三角形的一个外角等于110°,则这个三角形的三个内角分别是________________.
8.点(2,5)关于直线x=1的对称点的坐标为__________.
9.已知点A(x,-4)与点B(3,y)关于y轴对称,那么x+y的值为_______.10.若3230
-+-=,则P(-a,b)关于y轴的对轴点P′的坐标是(_______)。

a b
11.下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有()A、2个B、3个C、4个D、5个12.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()
A、21:10
B、10:21
C、10:51
D、12:01
14.平面内点A(-1,2)和点B(-1,6)的对称轴是(
A、x轴
B、y轴
C、直线y=4
D、直线x=-1
15.将一等边三角形剪去一个角后,∠BDE+∠CED等于()
A、120°
B、240°
C、300°
D、1360°
16.等腰三角形底边上的高等于腰的一半,则它的顶角度数为()
A、60°
B、90°
C、100°
D、120°
17.在下列说法中,正确的是()
A、如果两个三角形全等,则它们必是关于直线成轴对称的图形
B、如果两个三角形关于某直线成轴对称,那么它们是全等三角形
C、等腰三角形是关于底边中线成轴对称的图形
D、一条线段是关于经过该线段中点的直线成轴对称的图形
18.把一张长方形的纸沿对角线折叠,则重合部分是()
A、直角三角形
B、长方形
C、等边三角形
D、等腰三角形
19.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形
的关系为()A、关于x轴成轴对称图形B、关于y轴成轴对称图形
C、关于原点成中心对称图形
D、无法确定
20.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;
•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线
也是这条腰上的高的等腰三角形.其中是等边三角形的有()个
A、1个
B、2个
C、3个
D、4个
B A 22.如图,已知线段AB 的端点B 在直线 l 上(AB 与 l 不垂直)请在直线 l 上另找一点
C ,使△ABC 是等腰三角形,这样的点能找几个?请你找出所有符合条件的点.
23.如图,在△ABC 中,AB =AC , ∠BAC =100°,MP 、NQ 分别垂直平分AB 、AC ,求∠1,∠2的度数.
24.如图,已知△ABC ,∠CAE 是△ABC 的外角,在下列三项中:①AB =AC ;②AD 平分∠CAE ;③AD ∥BC .选择两项
为题设,另一项为结论,组成一个真命题,并证明.
25.如图,AB =AE ,∠B =∠E ,BC =ED ,点F 是CD 的中点. (1)求证: AF ⊥CD (2)若连结BE ,请你直接写出三个新的结论(无需证明)
26.已知:如图,△ABC ,△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ,
(1)△A 1B 1C 1 和△A 2B 2C 2 各顶点坐标为:
A 1( , );
B 1( , );
C 1( , );A 2( , );
B 2( , );
C 2( , ).
(2)在图中画出△A 1B 1C 1 和△A 2B 2C 2。

27.△ABC 中,AB=AC ,DE 是AB 的垂直平分线,AB=8,BC=4,∠A=36°, 求∠DBC 的度数和△BDC 的周长.
28. 在Rt △ABC 中,∠C =90°,DE 是AB 的垂直平分线,且∠BAD ∶∠BAC A
B C D E
Q P N M C B A
1 2 A C D A B l
=1∶3,求∠B 的度数.
29.已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.
30.如图,某船在上午11点30分在A 处观测岛B 在东偏北30o ,该船以10/时的速度向东航行到C 处,再观测海岛在东偏北60o ,且船距海岛40海里.
(1)求船到达C 点的时间;
(2)若该船从C 点继续向东航行,何时到达B 岛正南的D 处?
31,如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .
32,如图,△ABC 中,AB=AC, △ABC 的两条中线BD 、CE 交于O 点,求证:OB=OC. 33.如图所示,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线,交BC 的延长线于点F ,连结AF . 求证:∠BAF=∠ACF .
34.如图所示,EFGH 是一矩形的弹子球台面,有黑、•白两球分别位于A 、B B A
E
D C
两点的位置上,试问:怎样撞击白球,使白球先撞击边EF•反弹后再击中黑球?
35. 如图所示,一牧人带马群从A 点出发,先到草地边缘MN 放牧,再带马群到河边缘PQ 去给马饮水,试问:•牧人应走哪条路线才能使总路程最短?
36.如图所示,F 、C 是线段BE 上的两点, A 、D 分别在线段QC 、RF 上, AB=DE ,BF=CE ,∠B=∠E ,QR ∥BE .求证:△PQR 是等腰三角形.
37.如图, ∠DEF =36°,AB=BC=CD=DE=EF ,求∠A
38.如图,已知点B,C,D 在同一条直线上,△ABC 和△CDE 都是等边三角形,BE
交AC 于F ,AD 交CE 于H ,(1) 求证:△BCE ≌△ACD (2) 求证:CF=CH
39.如图,在等边△ABC 中,延长AC 到D ,以BD 为一边作等边△BDE ,连接AE ,求证:AD=AE+AC.
40.如图所示,∠B=90°,AD=AB=BC ,DE ⊥AC.求证BE=DC.
A Q N M P
Q R F E D C B A F E D C
B A D C
D。

相关文档
最新文档