光伏系统方案设计详述

合集下载

并网光伏系统设计方案

并网光伏系统设计方案

并网光伏系统设计方案并网光伏系统设计方案1. 概述本文档旨在提供一种完整的设计方案,用于实现并网光伏系统。

该系统通过将光伏发电系统与电网相连接,实现对光伏电能的高效利用。

本文档将涵盖并网光伏系统的整体设计、组件选择和系统连接等方面的内容。

2. 设计目标本系统的主要设计目标包括:•提高光伏电能的有效利用;•实现光伏电能的平滑并网;•提供可靠的电能供应;•实现系统的安全运行。

3. 系统组成本并网光伏系统主要由以下组件组成:•光伏阵列:用于将太阳能转化为直流电能;•逆变器:将直流电转化为交流电,并对交流电进行电压和频率的调节;•电网连接器:用于将逆变器输出的交流电与电网相连接;•电能计量器:对系统的发电量和购电量进行计量;•监控系统:监测系统的运行状况,并提供实时数据。

4. 设计步骤设计并网光伏系统的步骤如下:4.1 光伏阵列设计光伏阵列的设计需要考虑以下因素:•太阳能辐射强度:根据所在地区的太阳能辐射数据,确定光伏阵列的装机容量;•阵列布局:根据光伏阵列的装机容量和场地条件,确定阵列的布局方式(如平面布置、斜面布置等);•组件选择:选择合适的光伏组件,考虑其转换效率、功率温度系数等性能指标;•连接方式:确定光伏组件之间的串并联连接方式,以确保系统的输出电压和电流适应逆变器的需求。

4.2 逆变器选择与设计逆变器的选择与设计需要考虑以下因素:•输出功率:根据光伏阵列的装机容量和预期的并网电压,确定逆变器的输出功率范围;•电压稳定性:选择具有较好电压稳定性的逆变器,以确保系统的输出电压在合理范围内;•频率调节:选择逆变器能够提供频率调节功能,以适应电网的需求;•保护功能:选择具有多重保护功能的逆变器,以确保系统的安全运行。

4.3 系统连接与调试系统连接与调试的步骤如下:•将光伏阵列的输出与逆变器的输入相连接;•将逆变器的输出与电网连接器相连接;•进行系统的初步调试,检查电流、电压等参数是否正常;•进行系统的安全性检查,确保系统的工作安全可靠。

光伏工程管理系统设计方案

光伏工程管理系统设计方案

光伏工程管理系统设计方案1.引言随着可再生能源的发展,光伏发电作为清洁能源的一种重要形式,得到了广泛的应用和推广。

光伏发电工程管理对于保障项目的顺利实施,提高发电效率和经济效益具有重要意义。

因此,建立一套完善的光伏工程管理系统是十分必要的。

本文拟针对光伏工程管理系统进行设计和研究,以期提高管理效率和提升工程质量。

2.系统架构设计光伏工程管理系统包括了项目计划、进度管理、成本管理、质量管理、安全管理、文档管理等模块。

系统架构分为前端和后台两部分,前端可以是Web端或者移动端,后台包括数据库、服务器等。

系统采用B/S(浏览器/服务器)架构,用户只需通过浏览器即可访问系统,无需进行安装和配置。

3.功能模块设计(1)项目计划模块1)项目立项:包括项目命名、负责人指派、项目管理团队组建等。

2)项目任务分解:将整个项目分解成若干子任务,并进行任务分配和时限规划。

3)资源管理:对项目所需的人力、物力、财力等资源进行统一管理和分配。

(2)进度管理模块1)进度跟踪:对项目进度进行实时监控,及时发现问题并采取措施调整。

2)进度报表:生成项目进度报表,及时向相关人员汇报项目进展情况。

(3)成本管理模块1)成本控制:对项目预算进行控制,确保项目成本在可接受范围内。

2)成本台账:记录项目各阶段的成本支出情况,为成本分析和预测提供数据支持。

(4)质量管理模块1)质量控制:建立质量检查标准和流程,确保项目各阶段的施工质量符合要求。

2)质量评估:对项目质量进行定期评估,找出问题并改进。

(5)安全管理模块1)安全监控:对施工现场及设备进行24小时实时监控,发现安全隐患及时排除。

2)事故记录:记录项目施工过程中发生的安全事故,进行事故原因的分析和改进。

(6)文档管理模块1)合同管理:对项目相关合同进行记录和管理。

2)档案管理:对项目各阶段的相关文件、资料进行存档和备份。

4.系统技术选型(1)前端采用HTML5、CSS3、JavaScript等技术实现页面展示和交互功能。

光伏系统设计技术方案

光伏系统设计技术方案

光伏系统设计技术方案一、引言光伏系统是一种利用太阳能直接转换为电能的系统。

随着太阳能市场的不断发展和成熟,光伏系统在可再生能源领域的应用越来越广泛。

本文将介绍一种基于光伏系统的设计技术方案,以实现高效率、高稳定性和长寿命的光伏系统。

二、设计目标1.提高光伏系统的转换效率;2.提高光伏系统的稳定性和可靠性;3.增加光伏系统的寿命。

三、系统组成1.太阳能电池板:选择高效率的太阳能电池板,如多晶硅电池或单晶硅电池。

采用优质材料和制造工艺,以提高太阳能电池板的转换效率和寿命。

2.逆变器:采用高效率、低功耗的逆变器,将直流电转换为交流电。

逆变器应具备智能电网接入功能,能够自动监测电网电压和频率,实现电网并网,以提供给其他用户使用。

3.电池储能系统:设计并安装电池储能系统,用于储存多余的电能,以供夜间或低负荷时段使用。

电池的选择应考虑容量、充放电效率和寿命等因素。

同时,应配备智能管理系统,进行充放电控制和状态监测。

4.MPPT充电控制器:采用最大功率点跟踪(MPPT)充电控制器,以确保太阳能电池板始终在最佳工作点工作,最大程度地提高光伏系统的转换效率。

5.直流-直流转换器:引入直流-直流转换器,用于将太阳能电池板输出的直流电转换为适用于特定负载的直流电。

转换器应具备高效率和稳定性,以减少能量损耗和负载波动。

四、系统优化1.设计合理的光伏阵列布局:根据实际工程条件和环境限制,合理布置太阳能电池板,以充分利用可用的太阳能资源。

优化光伏阵列的方向、倾角和间距,以最大程度地提高光伏系统的发电效率。

2.温度控制:采取适当的措施,如自然通风或风扇冷却,控制太阳能电池板的温度。

高温会导致电池板效率降低和寿命缩短。

通过温度控制,可以降低光伏系统的温度,提高系统整体性能和寿命。

3.故障监测与预警:安装故障监测与预警系统,及时发现和处理光伏系统中的异常情况。

系统应设有报警功能和远程监控,方便操作和维护人员进行实时监测和发现故障。

光伏系统设计

光伏系统设计

光伏系统设计一、导语随着传统能源日益紧缺,新能源的开发与利用得到世界各国的广泛关注。

我国的能源与环境问题严重,作为可再生能源的太阳能发电技术得到了重视。

并且伴随国家投入的不断增大、生产制造技术的不断革新,其成本也在不断下降。

本期将详细讲述使用太阳能发电的光伏发电系统,是如何快速设计出来的。

二、系统软件设计内容和目的光伏发电系统的设计可以分为软件设计和硬件设计,我们先来看看软件设计。

软件设计包括负载的功率、用电量的统计和计算,太阳能电池方阵面辐射量的计算,组件、蓄电池用量的计算和二者之间相互匹配的优化设计等。

其主要目的,就是计算出系统在全年内能够可靠工作所需的太阳能电池组件和蓄电池的数量。

同时要注意协调系统工作的最大可靠性和系统成本两者之间的关系,在满足系统工作的最大可靠性基础上尽量地减少系统成本。

光伏系统硬件设计包括负载类型的确定和限制,太阳能电池组件和蓄电池的选型,电池方阵支架的设计等。

主要目的是根据实际情况选择合适的硬件设备包括太阳电池组件的选型,支架设计,逆变器的选择,电缆的选择,控制测量系统的设计,防雷设计和配电系统设计等。

在进行系统设计的时候需要综合考虑系统的软件和硬件两个方面。

三、光伏系统软件设计方法光伏系统分为独立系统、并网系统和混合系统,不同类型的系统,软件设计的内容也不一样。

其中,并网系统是目前发展最快的太阳能光伏应用方式,下文将以并网光伏系统为例,介绍软件设计的方法。

1.设计前数据获取在进行软件设计前,需要先了解并获取一些基本数据:光伏系统现场的地理位置,包括地点、纬度、经度和海拔;该地区的气象资料,包括逐月的太阳能总辐射量、直接辐射量以及散射辐射量,年平均气温和最高、最低气温,最长连续阴雨天数,最大风速以及冰雹、降雪等特殊气象情况等。

2.确定最佳倾角选择最佳倾角能更好地接收太阳辐射,需要根据实际情况进行考虑。

如太阳电池组件安装地点的限制,组件倾角的选择还需要考虑美观度。

需要根据情况对倾角进行小范围的调整,而且这种调整不会导致太阳辐射吸收的大幅降低。

分布式光伏发电系统设计方案

分布式光伏发电系统设计方案

分布式光伏发电系统设计方案随着能源环保意识的提高和光伏技术的不断发展,分布式光伏发电系统成为当今的热点话题。

本文将介绍一种分布式光伏发电系统的设计方案。

一、项目概述分布式光伏发电系统是指将光伏电池板分布在城市中的各个建筑物上,通过光伏组件将太阳能转换为电能,供给周围的建筑物使用,并将多余的电能通过电网逆向供给电网。

该系统能够有效利用建筑物的空间,减少能源浪费,降低能源消耗。

二、系统设计1.光伏组件选择选择高效率的光伏组件是一个关键步骤。

可以选择单晶硅、多晶硅、PERC等高效的光伏组件,并根据实际情况确定组件的类型和功率。

2.安装设计根据建筑物的结构和朝向进行安装设计。

首先,在建筑物的南面和屋顶上安装光伏组件,以最大限度地利用太阳能。

同时,还可以考虑在遮挡影响较小的其他方位上进行安装,以增加发电量。

3.逆变器选择逆变器是将光伏组件产生的直流电转换为交流电的关键设备。

根据系统的容量和实际需求选择逆变器的类型和功率。

同时需要考虑逆变器的质量和可维护性。

4.电网连接将发电系统与电网连接是实现分布式光伏发电的重要一环。

需要选择合适的电网连接设备,并确保系统与电网的安全连接,防止逆变器损坏或电网过载。

5.电能管理系统为了实现对光伏发电系统的监控和管理,需要设计电能管理系统。

该系统可以实时监测光伏发电系统的发电情况、功率输出以及电网连接状况等。

并通过网络传输数据,实现对系统的远程监控和控制。

三、经济效益分析1.发电收益2.节约能源成本通过光伏发电系统自发电,可以减少购买电能的成本,节约能源支出。

3.政府补贴政策根据国家和地方的政策,分布式光伏发电系统可能享受相关的补贴政策,进一步提高项目的经济效益。

四、环境效益分析1.减少二氧化碳排放通过分布式光伏发电系统的建设,可以减少使用传统能源带来的温室气体排放,减少对环境的影响。

2.节约资源3.增加清洁能源比例五、总结通过以上的设计方案,可以实现分布式光伏发电系统的建设,促进可再生能源的利用,减少对传统能源的依赖,同时也提高了电力供给的可靠性和可持续性。

光伏系统设计方案

光伏系统设计方案

光伏系统设计方案一、系统的组成部分:1.光伏电池板:负责将太阳能光转化为直流电能的关键部件。

2.逆变器:将直流电转化为交流电,并输出到电网或直接供电给负载设备。

3.支架与跟踪系统:用于安装和支撑光伏电池板,并根据太阳光角度进行精确跟踪,提高光伏电池的发电效率。

4.电池储能设备:可选部件,用于储存多余的电能,以便在夜间或低光照条件下供电。

二、工作原理及关键技术:当太阳能光照射到光伏电池板上时,光子的能量被电池中的半导体材料吸收,并激发出电子-空穴对。

这些电子-空穴对产生微弱的电流,通过连接在电池板上的金属导线流动,形成直流电。

逆变器将直流电转化为交流电,并通过电网输送到负载设备上供电。

关键技术包括:1.光伏电池的材料选择:常见的光伏电池材料包括单晶硅、多晶硅、非晶硅、铜铟镓硒等。

在选择材料时,需要考虑电池的效率、成本和可靠性等因素。

2.光伏电池板的布局和朝向选择:为了最大化发电效率,光伏电池板应以合适的角度安装,使其能够充分接收到阳光。

3.跟踪系统的设计:通过跟踪系统,可以实现光伏电池板在整个日照周期内始终朝向太阳光,提高发电效率。

4.逆变器的设计:逆变器是将直流电转化为交流电的关键设备,其设计需要考虑电能质量、输出功率和效率等因素。

三、系统设计原则:1.综合整体效益:在设计过程中,要综合考虑系统的发电效率、经济性以及环保性,以实现最佳的整体效益。

2.合理匹配电池板和逆变器:在选择光伏电池板和逆变器时,要考虑其功率、电压和电流等参数,以确保匹配并提高系统的效率。

3.安全可靠:系统设计中要考虑对系统的保护措施,如过电流保护、过温保护和防雷保护等,以确保系统的安全运行。

4.可维护性:尽量选择可靠性高、维护成本低的设备,并合理布局,方便检修和维护。

总之,光伏系统设计方案是将太阳能光转化为电能的关键步骤。

通过合理选择光伏电池板、逆变器和跟踪系统,并遵循安全可靠、经济环保的设计原则,可以实现高效发电,并为可持续发展做出贡献。

光伏系统设计范文

光伏系统设计范文

光伏系统设计范文一、引言光伏系统是利用太阳能光电转换技术,将太阳辐射能转化为电能的一种设备。

随着能源危机和环境污染问题的日益突出,光伏系统被广泛应用于家庭、商业甚至工业领域。

为了更好地利用太阳能,并提高系统的效率和可靠性,本文将介绍一个典型的光伏系统设计方案。

二、系统组成及架构本光伏系统设计采用光伏组件、逆变器、蓄电池和控制系统四个主要组成部分。

光伏组件用于转化太阳能为电能,逆变器将直流电能转化为交流电能,蓄电池用于存储电能,控制系统用于监测和控制整个系统的运行。

系统架构如下:1.光伏组件:采用多个太阳能电池板进行串并联连接,以提高系统的输出功率。

2.逆变器:将光伏组件输出的直流电能转化为交流电能,并保证输出的电压和频率符合用户需求。

3.蓄电池:存储光伏系统输出的电能,以便在光照不足或停电时提供供电。

4.控制系统:通过传感器监测光照强度、电池容量等参数,根据需要控制光伏系统的运行状态,实现光伏发电的最优化运行。

三、系统设计要点1.太阳能电池板选择:选用效率较高的多晶硅太阳能电池板,以提高系统的能量转换效率。

2.逆变器选择:选择具有良好性能和高效转换率的逆变器,以确保输出的交流电能质量和稳定性。

3.蓄电池选择:根据系统负载需求和预计的停电时间选择适当容量的蓄电池,以保证系统的可靠性和稳定性。

4.控制系统设计:利用传感器实时监测光照强度、电池容量等参数,根据设定的策略控制光伏系统的运行状态,以最大限度地提高系统的能量利用率。

四、系统运行与维护1.系统运行:光伏组件吸收太阳辐射能并转化为电能,逆变器将直流电能转化为交流电能供电给用户。

同时,充电控制系统将多余的电能充入蓄电池进行存储,以备不时之需。

2.系统维护:定期清洗和检查太阳能电池板,以确保充分的光照吸收和高效的能量转换;定期检查蓄电池的容量和状态,保证系统在停电时能够正常运行。

五、结论本文介绍了一个典型的光伏系统设计方案,该方案采用光伏组件、逆变器、蓄电池和控制系统四个主要组成部分,旨在提高太阳能利用效率和系统的可靠性。

光伏发电系统设计方案

光伏发电系统设计方案

光伏发电系统设计方案I. 引言光伏发电系统利用太阳能将光能转化为电能,是一种清洁、可再生能源的利用方式。

本文将提供一个光伏发电系统的设计方案,包括组件选型、系统布置、电池储能以及系统控制等方面的内容。

II. 组件选型1. 光伏组件光伏组件是光伏发电系统的核心部件,其质量和性能直接影响系统的发电效率。

在选型时需考虑组件的功率、转换效率、耐久性和质保期等因素,以确保系统长期稳定运行。

同时,要根据实际可利用光照资源和发电需求,确定合适的组件数量和配置方式。

2. 逆变器逆变器是光伏发电系统将直流电转换为交流电的装置。

在选型时需考虑逆变器的功率和效率,以及其对系统安全和稳定运行的保护功能。

合适的逆变器应能适应组件功率范围,并具备过载保护、过压保护和短路保护等功能。

III. 系统布置1. 组件安装光伏组件的布置方式应充分利用可用的安装场地,并考虑组件的角度和朝向,以最大程度吸收太阳光。

在实际安装过程中,应注意组件间的间距和阴影问题,确保各组件之间不会互相影响发电效率。

2. 电缆布线电缆布线要合理规划,减少功率损耗和安全隐患。

应根据实际需求选择合适的电缆规格和截面积,以确保电能的传输效率和安全性。

此外,应注意电缆与其他设备的距离和防护措施,以防止损坏和意外事故的发生。

IV. 电池储能系统1. 动力电池在光伏发电系统中引入电池储能可以解决不可控因素和负荷需求不匹配的问题。

对于大型光伏电站,可使用锂离子电池等动力电池进行储能。

电池的容量应根据实际负荷需求和光伏发电效率选择,并配备相应的充电和放电控制系统。

2. 储能控制系统光伏发电系统需要一个储能控制系统来监控和控制电池的充电和放电过程。

储能控制系统应具备多种保护功能,如过充保护、过放保护和温度保护等,以确保电池的安全性和寿命。

V. 系统控制1. 监测与调度系统光伏发电系统应有监测与调度系统,用于实时监测和管理系统的性能和运行状态。

该系统可包括数据采集、数据传输和远程控制等功能,以实现对系统的远程监测和优化调整。

光伏系统的设计说明

光伏系统的设计说明

光伏系统的设计说明光伏系统设计说明一、项目背景随着能源危机的加剧和环境保护的意识不断增强,光伏系统作为一种清洁、可再生能源的代表,得到了广泛的应用和发展。

为了实现对电能的有效利用和减少对传统能源的依赖,本设计旨在搭建一套高效可靠的光伏系统,并详细介绍其设计及实施方案。

二、设计目标本光伏系统设计的目标是:利用太阳能高效地发电,满足区域内的电力需求,并减少对传统能源的依赖。

三、设计内容1.硬件配置:根据现场实际情况,选择合适的光伏组件、逆变器、控制器、电池和电缆等设备,并合理布置装置的空间位置和安装方式,确保系统运行稳定可靠。

光伏组件:选择标称功率大小合适的太阳能光伏组件,以获得尽可能高的发电效果。

同时,根据区域的气候条件和光照强度,选择适合的光伏组件类型(单晶硅、多晶硅或薄膜)。

逆变器:选择高效率、高可靠性的逆变器,能将光伏组件产生的直流电转换成交流电,并与电网连接或为负载供电。

控制器:选择智能控制器,能够实时监测光伏组件的状态和充放电情况,并对系统进行简单的调节和控制。

电池:根据负载需求和光照强度变化情况,选择合适的电池容量,保证系统在夜间或阴天能够正常供电。

2.系统布置:根据现场空间条件和日照方向,合理布置光伏组件,使其能够充分接受太阳辐射。

同时,合理布置电池的位置,便于日常维护和管理。

3.电路设计:根据负载需求和光伏组件的容量,设计相应的电路,确保系统运行的安全可靠。

其中包括光伏组件与逆变器之间的连接电路、逆变器与电池之间的连接电路、电池与负载之间的供电电路等。

4.监测与控制系统:配备可靠的光伏系统监测与控制系统,实时监测光伏组件的功率输出、逆变器的运行状态、电池的电压和电流情况等,通过远程控制和调整来保证系统的正常运行。

5.安全保护:采取相应的安全措施,如防雷、防雨、防护暴露性的安装设备、防尘等,以确保系统的长期安全运行。

四、实施方案1.调研分析:首先,对项目区域的光照强度、气候条件和负载需求进行详细调研和分析,为系统设计提供可靠的依据。

太阳能光伏系统设计方案

太阳能光伏系统设计方案

太阳能光伏系统设计方案一、引言随着全球对清洁能源需求的增长和环境保护的呼喊,太阳能光伏系统作为一种可再生能源形式备受关注。

本文将详细介绍太阳能光伏系统的设计方案,着重讨论组件选择、布局设计和电气连接等关键要点。

二、组件选择1. 太阳能电池板太阳能电池板是光伏系统的核心部件,直接负责将太阳光转化为电能。

在选择太阳能电池板时,应考虑以下因素:(1)高转换效率:太阳能电池板的效率越高,单位面积收集到的太阳能就越多。

(2)良好的耐久性:太阳能电池板要能够承受各种气候条件和环境压力,具有长寿命和稳定性。

(3)合适的尺寸与功率:根据实际需求确定太阳能电池板的尺寸和功率,确保系统输出电能满足需求。

2. 逆变器逆变器是将太阳能电池板输出的直流电转换为交流电的装置。

逆变器的选择应注意以下几点:(1)高转换效率:逆变器的转换效率越高,系统的整体效率就越高。

(2)稳定性和可靠性:逆变器应具有良好的稳定性,能够适应电网波动和各种负载条件。

(3)适当的容量:根据太阳能电池板的总功率确定逆变器的容量,以保证系统正常运行。

三、布局设计1. 太阳能电池板的安装太阳能电池板的安装应考虑以下几点:(1)朝向:确保太阳能电池板的朝向能够最大程度地接收到光线,提高能源收集效率。

(2)倾角:根据所在地的纬度选择太阳能电池板的倾角,使其能够在不同季节接收到最大光照。

(3)阴影遮挡:避免太阳能电池板被周围建筑物或树木遮挡,影响能源收集效果。

2. 电气连接太阳能光伏系统的电气连接应遵循以下原则:(1)并联连接:将太阳能电池板通过逆变器并联连接到电网,以实现与电网的互联。

(2)保护装置:在电气连接中配置适当的安全保护装置,包括过流保护器、短路保护器等,以确保系统的安全运行。

(3)调度装置:根据实际需要,安装合适的调度装置,以实现太阳能电池板和电网之间的优化能量调配。

四、系统效益评估对于太阳能光伏系统的设计方案,除了上述的组件选择、布局设计和电气连接等关键要素外,还需要进行系统效益评估。

户用光伏发电系统设计方案

户用光伏发电系统设计方案

户用光伏发电系统设计方案一、户用光伏概述户用光伏发电系统是一种利用太阳能产生电能的装置,它主要由太阳能电池组件(通常放置在家中的屋顶或其他适合的位置)、太阳能充放电控制器、蓄电池组、逆变器和负载等部分组成。

当阳光照射到太阳能电池板上时,太阳能被转换为电能,然后通过充放电控制器分配给蓄电池组存储,或者在无光照条件下,由蓄电池组供电给直流负载,再通过逆变器转换为我们日常使用的交流电,供给家中的电器使用。

户用光伏系统可以是独立的,也可以是并网的,后者允许系统与公共电力网络相连,从而实现能量的多向流动二、户用光伏优势1.减损耗降花费光伏电源处于用户侧,发电供给当地负荷,视作负载,可以有效减少对电网供电的依赖,减少线路损耗,同时节省用户的用电花费,余量上网以及全额上网可获得收益。

2.低门槛建设门槛低,充分利用已有建筑,可以将光伏电池同时作为建筑材料,有效减少光伏电站的占地面积。

3.独立运行与智能电网和微电网的有效接口,运行灵活,适当条件下可以脱离电网独立运行。

4.绿色环保屋顶安装光伏电站,不仅起到隔热降温、美观的效果,还能够创造绿色收益。

三、户用光伏设计方案在建筑屋顶安装光伏发电系统设计应符合构件的各项物理性能要求,根据当地的特点,作为建筑构件的光伏发电组件应采取相应的防冻、防冰雪、防过热、防雷、抗风、防火、防腐蚀等技术措施。

1.光伏组件与光伏方阵设计光伏组件的类型、数量、安装位置等应当根据建筑屋顶设计确定,光伏方阵应结合太阳能辐射度、风速、雨水、积雪等气候条件及建筑朝向、屋顶结构等因素进行设计。

2.光伏支架设计光伏支架基础应按承载能力极限状态和正常使用极限状态进行设计,使用年限不应小于屋顶分布式光伏设计使用年限,且不应小于25 年。

3.防雷与接地设计光伏防雷设计应分为建筑部分防雷系统设计和电气部分防雷系统设计,并遵守相关设计规定。

光伏方阵应设置接地网,并充分利用支架基础金属构件等自然接地体,接地连续、可靠,工频接地电阻应满足相关接地要求。

光伏发电设计方案

光伏发电设计方案

光伏发电设计方案一、引言光伏发电作为近年来备受关注的清洁能源之一,在能源领域具有广阔的应用前景。

为了促进清洁能源的发展,本文将针对光伏发电的设计方案进行研究与讨论。

二、光伏发电原理光伏发电利用太阳光的辐射能将其转化为电能。

太阳光照射到光伏电池上,激发电池内的光生电荷,形成正负电荷分离。

电荷的分离产生电压,从而形成电流。

通过适当的电路连接和光伏组件的布局,可以实现光伏发电系统的输出。

三、设计方案一:分布式光伏发电系统分布式光伏发电系统是将光伏组件安装在建筑物屋顶或其他地面空闲区域的一种方式。

该方案具有以下优势:1. 空间利用率高:通过充分利用建筑物屋顶或地面空闲区域,可以实现光伏系统的大规模安装,提高能源利用效率。

2. 储能与供电稳定性:分布式光伏发电系统可以与储能设备结合,将多余的电能储存起来,以供夜间或阴天的使用,从而提高供电的稳定性。

3. 环境友好:光伏发电系统不会产生污染物和温室气体,对环境友好,有助于减缓气候变化。

四、设计方案二:集中式光伏发电系统集中式光伏发电系统是将大规模的光伏组件集中安装在一个区域内的一种方式。

该方案具有以下优势:1. 建设成本低:集中式光伏发电系统可以通过规模效益降低建设成本,并且便于维护和管理。

2. 电能输送效率高:由于光伏组件集中安装,电能输送的损耗较小,可以提高输电效率。

3. 实施监控与管理:集中式光伏发电系统可以通过建立监控和管理系统,对光伏组件进行实时监测和维护,提高系统的可靠性和稳定性。

五、设计方案三:光伏与储能系统结合光伏与储能系统的结合是将光伏发电系统与储能设备相结合,以实现电能的存储和调配。

该方案具有以下优势:1. 能源存储:通过储能设备的加入,可以将多余的电能储存起来,以备不时之需,解决光伏发电在夜间或阴天供电不足的问题。

2. 调配灵活:光伏与储能系统结合后,电能的供应可以更加灵活,根据需求进行调配,满足不同场景的用电需求。

3. 可再生能源的最大化利用:光伏与储能系统结合可以最大化利用太阳能资源,提高可再生能源的比例,减少对传统能源的依赖。

光伏发电系统设计方案

光伏发电系统设计方案

光伏发电系统设计方案一、引言随着能源需求的日益增长以及环境保护的压力,可再生能源逐渐成为全球能源行业的主要发展方向之一。

光伏发电作为可再生能源的重要组成部分,具有无污染、可再生、广泛分布和价格稳定等优势,被广泛应用于各个领域。

本文将对光伏发电系统的设计方案进行探讨,旨在提供一个高效、稳定和可持续发展的光伏发电系统。

二、系统组成光伏发电系统主要由光伏组件、逆变器、电池组和监控系统等部分组成。

1. 光伏组件光伏组件是光伏发电系统的核心部分,其作用是将太阳光转化为电能。

通常采用的光伏组件为硅基太阳能电池板,通过光的吸收和转换来产生电能。

在设计中,需要考虑光伏组件的安装角度、面积和布局等因素,以实现最大的光电转换效率。

2. 逆变器逆变器是将直流电能转换为交流电能的装置,是光伏发电系统中的重要环节。

逆变器可以将光伏组件发出的直流电能转换为交流电能,以满足用户的电能需求。

在设计中,需要考虑逆变器的功率、效率和可靠性等因素,以确保系统的稳定运行。

3. 电池组电池组是光伏发电系统的能量储存部分,用于存储光伏组件发出的多余电能。

在光伏发电系统设计中,电池组的选择和配置非常重要,包括类型、容量和充放电效率等因素。

合理设计电池组可以在夜间或阴雨天等无光条件下持续供电。

4. 监控系统监控系统用于实时监测光伏发电系统的运行状态,包括光伏组件的发电量、逆变器的工作状态和电池组的电量等。

通过监控系统可以及时发现和解决系统故障,提高系统的可靠性和安全性。

三、系统设计要点在光伏发电系统设计过程中,需要考虑以下几个关键要点。

1. 日照条件日照条件是影响光伏发电系统发电效率的重要因素。

在设计中需要充分考虑所在地的太阳辐射强度、日照时间和太阳仰角等因素,选择合适的光伏组件类型和安装角度,以实现最大的发电效率。

2. 系统容量光伏发电系统容量的确定需要综合考虑用户的用电需求和系统的发电能力。

通过对用户用电负荷的分析,确定光伏发电系统的容量,并在系统设计中充分考虑用户的用电峰谷差异,以确保系统能够满足用户的需求。

光伏系统总体设计方案

光伏系统总体设计方案

一、光伏系统总体设计与发电量计算光伏系统总体方案设计主要包括:光伏组件选型、光伏阵列运行方式选择、逆变器选型、光伏方阵和子方阵设计以及年上网电量计算等。

二、光伏组件选型三、太阳能电池概述太阳能光伏系统中最重要的是电池,是收集阳光的基本单位。

大量的电池合成在一起构成光伏组件。

太阳能光伏电池主要有:晶体硅电池(包括单晶硅Mono-Si、多晶硅Multi-Si、带状硅Ribbon/Sheet-Si)、非晶硅电池(a-Si)、非硅光伏电池(包括硒化铜铟CIS、碲化镉CdTe)。

目前市场生产和使用的太阳能光伏电池大多数是用晶体硅材料制作的;薄膜电池中非晶硅薄膜电池占据薄膜电池大多数的市场。

从产业角度来划分,可以把太阳能光伏电池划分为硅基电池和非硅电池,硅基电池已较佳的性价比和成熟的技术,占据了绝大多数的市场份额。

(1)晶体硅光伏电池晶体硅仍是当前太阳能光伏电池的主流,多晶硅电池的生产主要有两种方法,一种是通过浇铸、定向凝固的方法,制成多晶硅的晶锭,再经过切割、打磨等工艺制成多晶硅片,进一步印刷电级、封装,制成电池。

浇铸方法制造多晶硅片不需要经过单晶拉制工艺,消耗能源较单晶硅电池少,并且形状不受限制,可以做成适合光伏组件布置的方形:除不需要单晶拉制工艺外,制造单晶硅电池的成熟工艺都可以在多晶硅电池的制造中得到应用。

另一种方法是在单晶硅衬底上采用化学气相沉积(VCD)等工艺形成无序分布的非晶态硅膜,然后通过退火形成较大的晶粒,以提高发电效率。

多晶硅电池的效率能够达到13~18%,低于单晶硅电池的水平。

单晶硅电池是最早出现,工艺最为成熟的太阳能光伏电池,也是大规模生产的硅基太阳能电池中效率最高的。

单晶硅电池是将硅单晶进行切割、打磨制成单晶硅片,在单晶硅片上经过印刷电极、封装流程制成的,现代半导体产业中成熟的拉制单晶、切割打磨以及印刷刻版、封装等技术都可以在单晶硅电池生产中直接应用。

大规模生产的单晶硅电池效率可以达到14~20%。

光伏主要施工方案设计

光伏主要施工方案设计

光伏主要施工方案设计1. 概述光伏系统是利用太阳能光辐射发电的一种新能源利用方式。

作为可再生能源的代表之一,光伏系统的施工方案设计至关重要。

本文将介绍光伏系统主要施工方案的设计要点。

2. 光伏系统布局设计光伏系统的布局设计主要包括光伏组件的安装位置确定和位移布局。

在确定安装位置时,需要考虑太阳光照射角度、阴影遮挡和周围环境的影响。

同时,光伏组件的布局应该合理,以提高系统整体效率。

2.1 光伏组件安装位置确定光伏组件的安装位置应尽可能选择在无遮挡和无阴影的地方,以确保光照的充分利用。

另外,光伏组件的安装位置应考虑到维修操作的便捷性,以方便后期维护。

2.2 光伏组件位移布局在光伏组件的位移布局中,应避免组件之间的阴影遮挡,以免影响整个光伏系统的发电效果。

一种常用的位移布局方式是采用等间距排列,以提高整个系统的均衡性。

3. 光伏组件安装方案设计光伏组件的安装方案设计主要涉及组件的支架选择和安装角度的确定。

3.1 支架选择选择合适的支架可以提供良好的机械支撑和稳定性,并且便于组件的安装和维修。

在选择支架时,需要考虑光伏组件的重量、环境适应性和抗风能力。

3.2 安装角度确定光伏组件的安装角度对太阳光照射效果有很大影响。

一般情况下,光伏组件的安装角度应与地理纬度相对应,以最大程度地接收阳光照射。

此外,还需考虑光伏组件的倾斜角度,以避免积水和雪覆盖影响发电效率。

4. 电缆布线方案设计光伏系统的电缆布线方案设计是确保系统连接可靠和安全运行的重要环节。

合理布线能减小电缆损耗、降低系统故障率。

4.1 电缆选用在光伏系统的电缆选用中,应选择符合系统额定工作电压和电流要求的电缆。

同时,还需考虑电缆的抗UV、耐腐蚀和耐高温等特性。

4.2 电缆布线方式常用的电缆布线方式包括明敷和暗敷两种。

明敷即电缆暴露在外表面进行敷设,适用于电缆长度短、维护方便的情况。

暗敷即电缆通过管道或槽道进行敷设,适用于电缆长度长、保护要求高的情况。

太阳能光伏系统设计方案

太阳能光伏系统设计方案

太阳能光伏系统设计方案太阳能光伏系统设计方案步骤一:需求分析首先,我们需要对太阳能光伏系统的需求进行分析。

这包括了系统的规模,即需要发电的功率大小,以及电力需求的时间和地点。

还需确定系统的可靠性要求、使用寿命、维护成本和其他特殊要求等。

根据这些需求,我们可以制定出合适的设计方案。

步骤二:光伏电池板选型在选择光伏电池板时,需要考虑其效率、耐候性、可靠性和成本等因素。

高效率的光伏电池板可以在相对较小的面积上产生更多的电能,而耐候性和可靠性则可以确保系统在各种环境条件下稳定运行。

综合考虑这些因素,我们选择了适合需求的光伏电池板。

步骤三:逆变器选型逆变器是将光伏电池板所产生的直流电能转换为交流电能的关键设备。

在选型时,需考虑逆变器的效率、输出功率、保护功能和可靠性等。

高效率的逆变器可以最大限度地提高光伏电池板所产生的电能利用率。

同时,保护功能可以保证系统在过载、短路和其他故障情况下的安全运行。

步骤四:支架和安装方式选择支架的选择应考虑光伏电池板的安装角度和方向,以最大程度地接收太阳辐射。

此外,还需考虑支架的稳定性和耐久性,以确保系统长期稳定运行。

根据安装地点的特点,我们选择了适合的支架和安装方式。

步骤五:电缆和连接器设计电缆和连接器是将光伏电池板、逆变器和电网连接在一起的重要组成部分。

在设计时,需考虑电缆的导电能力、耐候性和安全性。

连接器的选择应保证良好的接触性能和防水防尘功能,以及方便的安装和维护。

同时,还需保证系统的电气安全和防雷措施。

步骤六:系统监控和维护在太阳能光伏系统设计方案中,系统监控和维护也是非常重要的一环。

通过系统监控,可以实时监测光伏电池板的发电情况、逆变器的运行状态和电池组的存储电量等。

这有助于及时发现和解决故障,并提高系统的可靠性和运行效率。

此外,定期的维护保养也可以延长系统的使用寿命。

步骤七:系统验收和运行最后,进行系统的验收和运行。

在验收过程中,需要检查所有设备的安装质量和电气连接,确保系统符合设计要求和相关标准。

光伏储能系统设计方案

光伏储能系统设计方案

光伏储能系统设计方案光伏储能系统已成为可持续发展领域中的关键技术之一。

它以太阳能作为能源源泉,将光能转换为电能并进行储存,能够提供可靠的电力供应。

本文将提供一个光伏储能系统设计方案,以满足能源需求,并促进可再生能源的利用。

一、系统概述本光伏储能系统设计方案旨在提供可靠且持续的电力供应。

系统由光伏发电系统、储能系统和逆变器三个主要部分组成。

光伏发电系统负责将太阳能转化为直流电能,储能系统用于储存电能,逆变器则负责将储存的直流电能转换为交流电能,以满足电力需求。

二、光伏发电系统设计光伏发电系统是整个光伏储能系统的核心部分。

系统设计应考虑以下几个因素:1. 太阳能电池板选择:根据实际需求和预算,选择高效率、稳定性好的太阳能电池板。

常见的太阳能电池板类型包括单晶硅、多晶硅和薄膜太阳能电池板。

2. 光伏组件布置:合理布置太阳能电池板,使其充分接收阳光。

考虑安装角度和方向,以最大化太阳能的吸收。

3. 电池组、控制器和其他设备:选择适当容量的电池组和控制器,以确保系统的稳定性和可靠性。

其他相关设备如开关装置、接线盒等也需要按照规范选用。

三、储能系统设计储能系统的设计是确保光伏储能系统提供可靠电力供应的关键。

以下是储能系统设计所需注意的要点:1. 储能电池选择:目前常用的储能电池包括铅酸电池、锂离子电池和钠硫电池。

根据需求和可行性,选择适合的储能电池类型。

2. 储能设备布局:合理布置储能设备,考虑到空间利用和系统运行效率。

确保设备安全可靠,并且易于维护。

3. 储能系统管理:通过合理的电池管理系统,确保储能电池的充放电过程和性能监控。

及时处理电池故障并进行维护,以延长电池寿命。

四、逆变器设计逆变器是将储能系统储存的直流电能转换为交流电能的核心装置。

逆变器设计应考虑以下几个方面:1. 逆变器类型选择:根据需求选择合适的逆变器类型,包括中央式逆变器和微逆变器两种常见类型。

中央式逆变器适用于大型系统,微逆变器适用于小型系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏系统电池方阵设计方案由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。

利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。

一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。

在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。

但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。

在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。

方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。

如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。

至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。

方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。

在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。

一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。

但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。

对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。

对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。

特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。

方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。

对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。

以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。

在我国主要城市的斜面辐射参数表中可知纬度和倾斜角的对应关系:哈尔滨45.68(纬度)------48.68(倾斜角)、长春43.90(纬度)------44.90(倾斜角)、沈阳41.77(纬度)-----40.77(倾斜角),根据此数据可推算出牡丹江129.6(经度)44.585(纬度)----46.355(倾斜角)。

以上是估算值,方位角和倾斜角可通过Meteonorm气象资料软件和Pvsyst进行优化设计. (镜泊小镇地点经度128.96和纬度44.07)3.阴影对发电量的影响一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。

因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。

针对这种情况,我们要对理论计算值进行校正。

通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。

如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。

另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。

有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,则:R =L2/L1 =ctgA×cosB此式应按冬至那一天进行计算,因为,那一天的阴影最长,且冬至时角9:00的45度、太阳赤纬-23.5度,牡丹江纬度44.585,计算后得A=10.48度B=41.259度;因此此时的倍率R=4.06227。

例如:方阵的上边缘的高度为h1,下边缘的高度为h2,则:方阵之间的距离D=(h1-h2)×R。

当纬度较高时,方阵之间的距离加大,相应地设置场所的面积也会增加。

对于有防积雪措施的方阵来说,其倾斜角度大,因此使方阵的高度增大,为避免阴影的影响,相应地也会使方阵之间的距离加大。

通常在排布方阵阵列时,应分别选取每一个方阵的构造尺寸,将其高度调整到合适值,从而利用其高度差使方阵之间的距离调整到最小。

具体的太阳电池方阵设计,在合理确定方位角与倾斜角的同时,还应进行全面的考虑,才能使方阵达到最佳状态。

太阳能发电系统原理光伏系统设计光伏系统设计1引言经过光伏工作者们坚持不懈的努力,太阳能电池的生产技术不断得到提高,并且日益广泛地应用于各个领域。

特别是邮电通信方面,由于近年来通信行业的迅猛发展,对通信电源的要求也越来越高,所以稳定可靠的太阳能电源被广泛使用于通信领域。

而如何根据各地区太阳能辐射条件,来设计出既经济而又可靠的光伏电源系统,这是众多专家学者研究已久的课题,而且已有许多卓越的研究成果,为我国光伏事业的发展奠定了坚实的基础。

笔者在学习各专家的设计方法时发现,这些设计仅考虑了蓄电池的自维持时间(即最长连续阴雨天),而没有考虑到亏电后的蓄电池最短恢复时间(即两组最长连续阴雨天之间的最短间隔天数)。

这个问题尤其在我国南方地区应引起高度重视,因为我国南方地区阴雨天既长又多,而对于方便适用的独立光伏电源系统,由于没有应急的其他电源保护备用,所以应该将此问题纳入设计中一起考虑。

本文综合以往各设计方法的优点,结合笔者多年来实际从事光伏电源系统设计工作的经验,引入两组最长连续阴雨天之间的最短间隔天数作为设计的依据之一,并综合考虑了各种影响太阳能辐射条件的因素,提出了太阳能电池、蓄电池容量的计算公式,及相关设计方法。

2影响设计的诸多因素太阳照在地面太阳能电池方阵上的辐射光的光谱、光强受到大气层厚度(即大气质量)、地理位置、所在地的气候和气象、地形地物等的影响,其能量在一日、一月和一年内都有很大的变化,甚至各年之间的每年总辐射量也有较大的差别。

太阳能电池方阵的光电转换效率,受到电池本身的温度、太阳光强和蓄电池电压浮动的影响,而这三者在一天内都会发生变化,所以太阳能电池方阵的光电转换效率也是变量。

蓄电池组也是工作在浮充电状态下的,其电压随方阵发电量和负载用电量的变化而变化。

蓄电池提供的能量还受环境温度的影响。

太阳能电池充放电控制器由电子元器件制造而成,它本身也需要耗能,而使用的元器件的性能、质量等也关系到耗能的大小,从而影响到充电的效率等。

负载的用电情况,也视用途而定,如通信中继站、无人气象站等,有固定的设备耗电量。

而有些设备如灯塔、航标灯、民用照明及生活用电等设备,用电量是经常有变化的。

设计者的任务是:在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、气象、地形和地物等),设计的太阳能电池方阵及蓄电池电源系统既要讲究经济效益,又要保证系统的高可靠性。

某特定地点的太阳辐射能量数据,以气象台提供的资料为依据,供设计太阳能电池方阵用。

这些气象数据需取积累几年甚至几十年的平均值。

地球上各地区受太阳光照射及辐射能变化的周期为一天24h。

处在某一地区的太阳能电池方阵的发电量也有24h的周期性的变化,其规律与太阳照在该地区辐射的变化规律相同。

但是天气的变化将影响方阵的发电量。

如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好。

设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据。

由于一个地区各年的数据不相同,为可靠起见应取近十年内的最小数据。

根据负载的耗电情况,在日照和无日照时,均需用蓄电池供电。

气象台提供的太阳能总辐射量或总日照时数对决定蓄电池的容量大小是不可缺少的数据。

对太阳能电池方阵而言,负载应包括系统中所有耗电装置(除用电器外还有蓄电池及线路、控制器等)的耗量。

方阵的输出功率与组件串并联的数量有关,串联是为了获得所需要的工作电压,并联是为了获得所需要的工作电流,适当数量的组件经过串并联即组成所需要的太阳能电池方阵。

3蓄电池组容量设计太阳能电池电源系统的储能装置主要是蓄电池。

与太阳能电池方阵配套的蓄电池通常工作在浮充状态下,其电压随方阵发电量和负载用电量的变化而变化。

它的容量比负载所需的电量大得多。

蓄电池提供的能量还受环境温度的影响。

为了与太阳能电池匹配,要求蓄电池工作寿命长且维护简单。

(1)蓄电池的选用能够和太阳能电池配套使用的蓄电池种类很多,目前广泛采用的有铅酸免维护蓄电池、普通铅酸蓄电池和碱性镍镉蓄电池三种。

国内目前主要使用铅酸免维护蓄电池,因为其固有的“免”维护特性及对环境较少污染的特点,很适合用于性能可靠的太阳能电源系统,特别是无人值守的工作站。

普通铅酸蓄电池由于需要经常维护及其环境污染较大,所以主要适于有维护能力或低档场合使用。

碱性镍镉蓄电池虽然有较好的低温、过充、过放性能,但由于其价格较高,仅适用于较为特殊的场合。

(2)蓄电池组容量的计算蓄电池的容量对保证连续供电是很重要的。

在一年内,方阵发电量各月份有很大差别。

方阵的发电量在不能满足用电需要的月份,要靠蓄电池的电能给以补足;在超过用电需要的月份,是靠蓄电池将多余的电能储存起来。

所以方阵发电量的不足和过剩值,是确定蓄电池容量的依据之一。

同样,连续阴雨天期间的负载用电也必须从蓄电池取得。

所以,这期间的耗电量也是确定蓄电池容量的因素之一。

因此,蓄电池的容量BC计算公式为:BC=A×QL×NL×TO/CCAh(1)式中:A为安全系数,取1.1~1.4之间;QL为负载日平均耗电量,为工作电流乘以日工作小时数;NL为最长连续阴雨天数;TO为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2;CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。

相关文档
最新文档