平面机构的自由度及其计算中英文对照

合集下载

平面机构的自由度

平面机构的自由度

3.计算机构自由度的几个特殊情况
小结 ◆ 复合铰链
存在于转动副处
正确处理方法:复合铰链处有m个构件 则有(m-1)个转动副
◆局部自由度
常发生在为减小高副磨损而将滑动摩擦 变成滚动摩擦所增加的滚子处。
正确处理方法:计算自由度时将局部自 由度减去。
◆ 虚约束
存在于特定的几何条件或结构条件下。
正确处理方法:将引起虚约束的构件和 运动副除去不计。
分析: 每个平面自由构件:3个自由度 每个平面低副:引入2个约束 每个平面高副:引入1个约束 设平面机构有n个活动构件,
在未用运动副联接之前共有3n 个自由度; 有Pl个低副和Ph个高副:引入 (2 Pl +Ph)约束
平面机构的自由度计算公式:F=3n-(2 pl + ph)=3n-2 pl - ph
B 、 B’有一 处为虚约束
A 、 A’有一 处为虚约束
没有虚约束
3.计算机构自由度的几个特殊情况
4)机构运动过程中, 某 两构件上的两点之间的 距离始终保持不变, 将此 两点以构件相联, 则将带 入1个虚约束。
5)某些不影响机构运动的 对称部分或重复部分所带 入的约束为虚约束。
3.计算机构自由度的几个特殊情况
▲两个构件组成在几处构成转动 副且各转动副的轴线是重合的。
▲两构件在几处接触而
构成移动副且导路互相 平行或重合。
只有一个运动副起约束作 用,其它各处均为虚约束;
3.计算机构自由度的几个特殊情况
3)若两构件在多处相接触构成平面高副,且各接触点 处的公法线重合或平行,则只能算一个平面高副。若 公法线方向相交,将提供2个约束。
实例分析1:计算图示直线机构自由度
解解:FF==33nn-2-2plp–l p–hph ==33××77--22××6-100=-90=1

06_平面机构自由度计算

06_平面机构自由度计算

i 1
目录
1 2 3 4
机构自由度的概念 平面机构自由度计算公式
自由度计算实例
小结
小结
机构自由度 机构具有确定运动时的独立运动参数 机构具有确定运动的条件
原动件数 = F > 0
机构自由度计算公式
F = 3 n – 2 PL - PH
F 3 n 3或 g

g
i 1
f iF 3n g
目录
1 2 3 4
机构自由度的概念 平面机构自由度计算公式
自由度计算实例
小结
自由度计算实例
铰链四杆机构
2
B
3 1
C
n=3 pL =4 pH =0
A
4
D
F F 3n -pP 3 3 2 4 0 1 = 3n -p 2P 2 L L HH
F 3n g
空间自由构件:f = 6 平面自由构件:f = 3
约束度c :运动副对构件独立运动所加的限制程度
完全约束的空间构件:c = 6 完全约束的平面构件:c = 3
Maxwell原理:任一构件或运动副的自由度与约束度之和为6。
f+c=6
机构自由度的概念
构件的自由度及运动副的约束

g
fi 3 4 5 5 1 2
i 1
自由度计算实例
凸轮机构
3 2
n=2
pL =2
1
pH =1
F F3= n3 22 pP pH nH 3 2 2 2 1 1 LL - P
F 3n g

g
fi 3 2 3 2 1 1 2 1

《机械设计基础》课件 第1章 平面机构的自由度和速度分析

《机械设计基础》课件  第1章 平面机构的自由度和速度分析
机构运动简图和原机构具有相同的运动特性。
13
§1-2 平面机构运动简图
机构示意图 —— 不按比例绘制
三、机构运动简图的作用
是机构分析和设计的工具
四、机构中构件的分类
分为三类:
1)固定构件(机架):用来支承活动构件的构件。在研究机构
中活动构件的运动时,常以固定构件作为参考坐标系;
2)原动件(主动件):运动规律已知(外界输入)的构件;
61
3. 直动从动件凸轮机构
求构件2的速度?
62
课后作业:
5、7、9、11、13、15
63
1
1
1
2)移动副
17
§1-2 平面机构运动简图
3)高副:应画出接触处的曲线轮廓
18
§1-2 平面机构运动简图
六、机构运动简图中构件的表示方法
轴、杆
机架
永久连接
固定连接,如轴和齿轮
19
§1-2 平面机构运动简图
参与组成两转动副的构件
一个转动副+一个移动副的构件
参与组成三个转动副的构件
20
§1-2 平面机构运动简图
4
3
2
2
1
4
32
§1-3 平面机构的自由度★
平面机构自由度:
所有活动构件相对于机架所能具有的独立运动数目之和。
作用:
讨论机构具有确定运动的条件。
C
C
D
B
A
B
D
A
E
F
33
§1-3 平面机构的自由度★
一、平面机构自由度计算公式
1. 每个低副引入两个约束,使构件失去两个自由度
34
2. 每个高副引入一个约束,使构件失去一个自由度

3-3 平面机构自由度的计算

3-3 平面机构自由度的计算

F3122 1 即引入了一个约束,但这个约束对机构的运动不起实际约 束作用,为虚约束。去掉虚约束后
F3n2pLpH33241
第十五页,编辑于星期二:二十二点 三十八分。
4)如果用转动副联接的是两构件上运动轨迹相重合的点,则该联接将
引入1个虚约束。
B2
E
C
1
4
3
A
F
D
3
D 2B
1
5
A4
C
平行四边形机构 构件2和4在E点轨迹重合
2
C
1
12
K
L
A D 3 E
4
F
5
第二十五页,编辑于星期二:二十二点 三十八 分。
去除虚约束和局部自由度后机构为:
复合铰链
H
6
G
5
7
8I J
2
D E 3
KF
4
n=8;pL=11; pH=1 F= 3n-2pL -pH=3×8-2×11-1=1
B
C1 A
第二十六页,编辑于星期二:二十二点 三十八 分。
处理方式:在计算机构自由度时,局部自由度应当舍弃不计。
(avi)
设想将滚子与从动件焊成一体
第十一页,编辑于星期二:二十二点 三十八分。
3. 虚约束(Void Constrain)
机构中有些约束所起的限制作用可能是重复的,这种对机构运 动不起独立限制作用的重复约束称为虚约束。
处理方式:计算自由度时应去掉引入虚约束的构件(或运动链部分) 和运动副。
超静定桁架
1)若机构自由度F0,则机构不能动;
第四页,编辑于星期二:二十二点 三十八分。
C
2
3
1 1

第3章平面机构的自由度计算分解

第3章平面机构的自由度计算分解
F=3n-2PL-PH:=3×7-2×9-1=2 此机构的自由度为2,有两个原动件。
平面机构的结构分析
43 2 C5 D
B1 A
8
67
E n =7 Pl = 10 F = 3×7–2×10 = 1
下一页
平面机构的结构分析
3.2.5 计算机构自由度的实用意义 1.判定机构运动设计方案是否合理 2.改进不合理的运动方案使其具有确定的相对运动 3.判断测绘的机构运动简图是否正确
平面机构具有确定运动的条件: 1)机构自由度数 F≥1; 2)原动件数目等于机构自由度数F。
平面机构的结构分析
3.2.4 计算机构自由度时应注意的几种情况
先看例子:按照之前的算法下图机构的自由度为
F =3n-2PL-PH
=3×10-2×13-2 =2
为什么?
平面机构的结构分析
1.复合铰链 两个以上构件在同一轴线处用转动副连接,就形成了
惯性筛机构
平面机构的结构分析
2.局部自由度
机构中个别构件不影响其它构件运动,即对整个机构运动无 关的自由度。
处理办法:在计算自由度时,拿掉这个局部自由度,即可将滚 子与装滚子的构件固接在一起。
3
n=3 PL=3 PH=1
C
C
3 n=2 PL=2 PH=1
F=3x3-2x3-1x1=2图
计算平面机构自由度 (F=3n-2PL-PH)
机构具有确定运动的条件 F>0(F=原动件个数)
复合铰链 局部自由度
虚约束
转动副:沿轴向和垂直于轴向的移动均受到 约束,它只能绕其轴线作转动。所 以,平面运动的一个转动副引入两 个约束,保留一个自由度。
移动副: 限制了构件一个移动和绕平面的 轴转动,保留了沿移动副方向的 相对移动,所以平面运动的一个 移动副也引入两个约束,保留一 个自由度。

3-3 平面机构自由度的计算概述

3-3 平面机构自由度的计算概述

三、机构具有确定运动的条件
什么情况下机构具有确定的运动呢?
n=2, pL=3, pH=0
n=3, pL=5, pH=0 F=3n-2pL-pH =3×3-2×5=-1 超静定桁架
F=3n-2pL-pH
=3×2-2×3=0 刚性桁架 结论:
1)若机构自由度F0,则机构不能动;
2 1
n=3, pL=4, pH=0
4)如果用转动副联接的是两构件上运动轨迹相重合的点,则该联接将 引入1个虚约束。
B 1 A F 平行四边形机构 构件2和4在E点轨迹重合 2 E C 3 4 3 D D 2 B 1 5 4 C
A
椭圆仪机构 构件1和2在B点轨迹重合
附加的构件4和其两端的转动副E、F以及附加的构件1和 其两端的转动副A、B提供的自由度 F3122 1 即引入了一个约束,但这个约束对机构的运动不起实际 约束作用,为虚约束。去掉虚约束后 F 3n2pLpH33241
B
1 2 A F 3 5
D 4
E 7 G 8 K
6
J
9
C
3 2
H
I
局部自由度
B 1 2 A C H I F 3 5 D 4 E 7 G 8
复合铰链 虚约束
K
6
J
9
去除虚约束和局部自由度后机构为:
复合铰链
B
1
3
5
D 4
E 6 7 K
2
A
J
F G
8
C
n=8;pL=11; pH=1
F= 3n-2pL-pH=3×8-2×11-1=1
因此,机构具有确定运动的条件是:自由度F>0且机构的原 动件数等于机构的自由度数。

平面机构(运动链)自由度计算辅导

平面机构(运动链)自由度计算辅导

平面机构(运动链)自由度计算辅导运动链是指若干个构件通过运动副连接而成的系统。

运动链自由度计算主要解决的问题是:1、运动链的可动性;2、运动链运动的确定性,即运动链成为机构的条件。

一、平面机构(运动链)自由度:㈠、计算公式:F=3n-2P L-P H⑴式中:F—机构(运动链)自由度;n—机构(运动链)中的运动构件数;P L—机构(运动链)中低副数,包括移动副和转动副; P H—机构(运动链)中的高副数。

㈡、公式用途:运动链类型:⑴、固定运动链:组成运动链的构件之间没有相对运动。

如桥梁、钢结构支架等。

⑵、可动运动链:①、运动不确定的可动运动链:运动链可动,但运动链中构件的运动不能确定。

②、具有确定运动的运动链及机构。

运动链中构件的具有确定性。

1、判别运动链能否运动(运动链可动性分析):⑴、当F﹥0 运动链能运动,即运动链是可动的。

⑵、当F≦0 运动链不动,即运动链为固定运动链。

例:判别下面运动链的可动性:图示:n=3,P L=4,P H=1 。

F=3n-2P L-P H =3×3-2×4-1=0运动链不可动。

图示:n=4,P L=5,P H=1 。

F=3n-2P L-P H =3×4-2×5-1=1﹥0运动链可动。

2、判别运动链是否成为机构:运动链的运动确定性分析。

⑴、当F≦0 运动链不可动,此种运动链不能成为机构;⑵、当F﹥0 运动链可动:①、若F﹥原动件数,运动链不能成为机构;②、若F=原动件数,运动链运动确定,运动链成为机构;③、若F﹤原动件数,运动链不能成为机构。

结论:运动链成为机构的条件:F﹥0,且F等于机构原动件数。

㈢、机构自由度计算时应注意的问题:1、复合铰链及其处理方法:⑴、概念:复合铰链:多个构件(含固定件)在同一处形成两个或两个以上转动副,该处成为复合铰链。

⑵、处理方法:P L=m-1,m为该处构件数(含固定件)。

⑶、常见形式:①、②、③、④、例:计算下面运动链自由度,说明要使运动链成为机构需要几个原动件。

平面机构自由度计算

平面机构自由度计算

平面机构虚约束的分析机构是由若干构件组成的,是实现机械预期运动的装置,这些“预期运动”都是在原动件的驱动下实现的,而其原动件的数目必须等于它的自由度。

由此可见,准确计算机构的自由度对于正确分析和设计机构至关重要。

在各种实际机构中,为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,往往要多增加一些构件与运动副(1)这些运动副中往往包括虚约束。

在计算平面机构自由度时,最常用的公式是契贝舍夫公式,简称契氏公式(2):W=3n-2P L-P H现计算下图所示机构的自由度:可知,n=4, P L=6, P H=0,所以W=3*4-2*6=0显然答案是错误的,原动件个数是1。

这是因为该机构中出现了虚约束。

所谓虚约束,笔者认为就是指不产生约束的约束,也即是所引入的构件由于几何尺寸满足一定的规律,不会对所在机构产生约束。

在机构自由度计算中.产生虚约束的情况有4种情况(3):(1)如果将机构的某个运动副拆开,机构被拆开的两部分在原联接点的运动轨迹仍相互重合,则产生虚约束。

(2)在机构运动过程中,如果某两构件上两点之间的距离始终保持不变.那么,若将此两点以构件相连,则因此而引入的约束必为虚约束。

(3)如果两构件在几处接触而构成移动副,且各接触处两构件的相对运动方向一致;或者两构件在几处配合而构成转动副,且各配合处的轴线重合,则只应考患一处运动副引入的约束,其他各处为虚约束。

(4)机构中对运动不起作用的对称部分亦是虚约束。

笔者认为,在分析机构是否含有虚约束时,最好的方法是先分析该构件的功能,特别是“可疑”构件的作用,然后试着去掉该构件,看该机构还能否实现所期待的功能,因为引入虚约束的目的是为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,且不影响机构的运动规律。

例如以上机构的虚约束的作用是约束下面的导杆在水平方向运动,如果去掉E,,该机构的运动规律并没有发生改变,就可以断定E,是虚约束。

在机械设计中,虚约束往往是“点睛之笔”,它能够使机械变得更加科学、实用。

《平面机构自由度》课件

《平面机构自由度》课件
局部自由度对整体自由度的影响
在计算平面机构自由度时,需要考虑局部自由度对整体自由度的影响。如果忽略 了局部自由度,可能会导致自由度计算错误。
平面机构自由度计算中的注意事项
01
正确理解约束和自由度的关系
约束和自由度是相对的概念,一个约束可以减少一个自由度。在计算自
由度时,需要正确识别和计算约束的数量。
02
注意机构的连接方式
机构的连接方式会影响其运动性质和自由度的数量。例如,不同连接方
式的连杆机构会有不同的自由度数。
03
考虑机构的实际工作状态
在某些情况下,机构在特定的工作状态下可能表现出不同的自由度数。
因此,在计算平面机构自由度时,需要考虑其实际工作状态。
04
平面机构自由度在机械设 计中的应用
机构运动分析中的应用
未来研究的方向与展望
01
02
03
04
发展更为精确、高效的平面机 构自由度计算方法,以适应各 种复杂机构的自由度分析需求

深入研究平面机构自由度与机 构性能之间的关系,为机构优
化设计提供理论依据。
探索平面机构自由度的实验验 证方法,提高研究的可重复性
和可推广性。
将平面机构自由度的研究成果 应用于实际工程中,促进相关
用提供理论支持。
平面机构自由度的研究有助于 推动机构学理论的完善和发展 ,促进相关领域的技术进步和
创新。
当前研究的不足与挑战
平面机构自由度的计算方法仍不够完善,对于某 些复杂机构的自由度分析仍存在困难。
平面机构自由度与机构性能之间的关系尚不明确 ,需要进一步深入研究。
平面机构自由度的实验验证方法有待发展,以提 高研究的可靠性和实用性。
分类

平面机构自由度2

平面机构自由度2

1、两构件组成多个导路平行的移动副时, 只有一个移动副起作用,其余为虚约束。
2、两构件在多处配合而构成转动副,且 转动副轴线重合,只能算一个转动副。
3、两构件在多处接触而构成高副时,若 各接触点公法线重合,则只能算一个高副。
注意:两构件在多处接触组成高副时,但各 接触点公法线方向并不重合,这时高副将 提供两个约束。
例1-1 n=3 PL =4 PH =0
F=3n—2 PL—PH =3*3—2 *4—0 =1
机构自由度与原动件数目相等。
例1-2 n=4 PL =5 PH =1
F=3n—2 PL—PH =3*4—2estion:是不是所有机构的自由度数目都与 原动件数目相等? 答:机构自由度是机构所具有独立运动的数目。 机构由三部分组成: 机架 从动件 原动件:一个原动件只具有一个独立的运动 因此,机构的自由度必定与原动件数目相等。
2、局部自由度 (local degree of freedom, redundant degree of freedom)
n=3 PL =3 PH =1 F=3n—2 PL—PH =3*3—2 *3—1 =2
理论上,机构需具有两个原动件。 实际上,机构只需要一个原动件。 理论与实际出现了矛盾。 原因就在滚子上。 实际上,滚子转动的快慢或是否转动,不影响 从动件的运动规律。滚子的作用是将滑动摩擦 转变为滚动摩擦。 因此,滚子的自由度与输出构件运动无关, 属局部自由度。
4、机构中传递运动不起独立作用的对称部分。
n=7
PL =9
PH =1
F=3n—2 PL—PH =3*7—2 *9—1 =2
一、平面机构自由度的计算公式 机构由构件和运动副组成。 构件提供自由度:假设机构中共有n个活动的构件, 那么构件所带来的自由度为3n。 运动副提供约束:一个低副,提供两个约束; 一个高副,提供一个约束。

平面机构的自由度

平面机构的自由度

平面机构的自由度
(2) 确定活动构件数和各类运动副数。
由图可知, 机构中构件1、 2、 3、 4、 5、 6和7为活
动构件, 因此活动构件数n=7。
机构中运动副的情况是: 铰链A、 B、 D和E处各有一
个转动副, 铰链C为复合铰链, 此处有两个转动副, 构
件2与5、 构件4与8、 构件5与6以及构件7与8之间各
(a)
图5-12 复合铰链
3 2
(b)
2.局部自由度 局部自由度是指机构中某些构件的局部独立运动, 它并不 影响其他构件的运动。例如图5-14(a)中,凸轮机构中 构件4的滚子主要是为减小摩擦,减少磨损,因此为局部 自由度,在计算机构自由度时,应转换为图5-14(b)进 行计算,才能正确得到结论。
机械设计基础
有一个移动副。 所以机构中的低副PL=10; 机构中没 有高副, PH=0。
机械设计基础
Machine Design Foundation
(3) 计算机构的自由度。 由式(5 - 1)得
F=3n-2PL-PH=3×7-2×10-0=1
平面机构的自由度
返回
机械设计基础
图5-16-行星齿轮机构
机械设计基础
Machine Design Foundation
平面机构的自由度
解:该机构从受力角度考虑布置三个行星齿轮,其中有 两个(如齿轮2‘和2“)对传递运动不起独立作用,引 入了两个虚约束。
因此该机构活动构件数n=4,低副数PL=4(转动副A、 B和复合铰链C),高副数PH=2(齿轮副D、E),求得
机械设计基础
平面机构的自由度
Machine Design Foundation
2.约束 当一个构件与其他构件组成运动副之后,构件的相对 运动就要受到限制,自由度就会随之减少。这种对组成 运动副的两个构件之间的相对运动所加的限制称为约束。 在平面机构中,每个低副引入两个约束,使构件失去 两个自由度;每个高副引入一个约束,使构件失去一个 自由度。

平面机构自由度

平面机构自由度

机构具有确定运动的条件?
F= 3n- (2 PL + PH )
F=3×2-2×3=0
桁架结构
2
3
3
1
1
3
2
3
1
1
3
2
3
1
F= 3n- (2 pl + ph )
1
F=33-(2 4+0)=1
给一个主动 件,机构有 确定运动。
3 2 4
1
4 4
1
3
2 4 4
1
1
3 2 1
3
2 1
4
两移动副限制作用重复,计算机构自由度时 应去掉一个。
F=33-(2 4+0)=1
(2)两构件构成各个转 动副且轴线互相重合
(3)机构中传递运动不 起独立作用的对称部分
(4)两构件的连接前后,连接点的轨迹重合,则 此连接的运动副会带来虚约束
平行四边形机构
3 B 4 E
C
2
A 1 F
平行四边形机构
3 B 5 4 E
C
2
A 1
D F
BC构件上点E的 轨迹是以F为圆 心EF(=AB=CD) 为半径的圆。 B
平行四边形机构
3
E
C
2 A 1
4 F
D
若加入构件5(EF),则构件5上的点E与构件3 上的点E的轨迹相同而不起实际约束作用。 3 E C B
5 F 4
2 A 1
D
计算机构自由度F,去掉构件5及其相连的运动副 3 B 5 F 4
它们是如何组合 (连接)在一块?
三、运动副及其分类
什么是运动副?
两构件直接接触并能产生一定相对运动的连 接称为运动副。 a)两个构件、b) 直接接触、c) 有相对运动

平面机构的自由度

平面机构的自由度

平面机构的自由度一、平面机构的自由度计算1、自由度作平面运动的构件相对于指定参考系所具有的独立运动的数目,称为构件的自由度。

任一作平面运动的自由构件有三个独立的运动,如图1-1所示xoy坐标系中,构件具有沿x轴和y的移动,以及绕任一垂直于xoy平面的轴线A的转动,因此作平面运动的自由构件有三个自由度。

2、约束当两构件组成运动副后,他们之间的某些相对运动受到限制,这种对于相对运动所加的限制称为约束。

每加一个约束,自由构件便失去一个自由度,运动副的约束数目和约束特点,取决于运动副的形式。

当两构件组成平面转动1-1副时,两构件间便只具有一个独立的相对转动;当两构件组成平面移动副时,两构件间便只具有一个独立的相对移动。

因此,平面低副实际引入两个约束,保留了一个自由度。

两构件组成高副时,实际引入了一个约束,保留了两个自由度。

3、机构自由度的计算设一个平面机构由N个构件组成,其中必有一个构件为机架,则活动构件数为n=N-1。

他们在未组成运动副之前,共有3n个自由度,用运动副连接后便引入了约束,减少了自由度。

若机构中共有P L个低副,P H个高副,则平面机构的自由度F的计算公式为:F=3n-2P L-P H二、平面机构自由度计算的注意事项1、复合铰链两个以上的构件在同一处以同轴线的转动副相连,称为复合铰链。

图1-2所示为三个构件在A点形成复合铰链,从侧视图可见,这三个构件实际上组成了轴线重合的两个转动副,而不是一个转动副。

一般的,k个构件形成复合铰链具有(k-1)个转动副,计算自由度时应注意找出复合铰链。

例如图1-3所示直线机构中,A,B,D,E四点均为由三个构件组成的复合铰链,每处有两个转动副。

因此,改机构n=7, P L=10, P H=0,其自由度F=3×7-2×10-0=1。

1-2 1-32、局部自由度与机构运动无关构件的独立运动称为局部自由度。

在计算机构自由度时,局部自由度应略去不计。

平面机构的自由度及其计算中英文对照

平面机构的自由度及其计算中英文对照

Planar mechanism of freedom1.Degree of freedom of planar mechanisms and its calculationWhen a body in plane motion who is no other object constraint,it can move in the xoy plane coordinate system with a point along the X axis, Y axis direction, but also can revolve around a vertical to xoy plane a shaft is rotated, the 3 modes of motion can be no contact, the mutual movement is independent of. Component has a number of independent movement which known as components of the degrees of freedom. Therefore, a planar motion of the member has 3 degrees of freedom.When the member is formed between the pair, as the independence movement was restricted, so the degree of freedom of mechanism will be reduced.On the structure of the independence movement and the restrictions are called constraints.As mentioned before, the kinematic chain, if an institution as a rack, and when the other one (or several) members according to a given motion during exercise, the remaining members have been identified, such as mechanism kinematic chains. Obviously cannot move or irregular move movement of the chain are not mechanism.In order to design the mechanism movement and movement uncertainty, we must discuss the degrees of freedom of mechanism and mechanism has identified the movement conditions.Mechanism has to determine the motion required by a given independent movement of the number of parameters, called the degree of freedom of mechanism.In planar mechanisms, each member in planar motion, as shown in Figure 1-1, as planar motion of the member 1 has not been associated with component 2 kinematic pair, assuming that member 2 consolidation in the xoy coordinate system, member 1 relative to the member 2 has a total of 3 degrees of freedom (along the X, Y axis movement and around and sports plane perpendicular to the axis of rotation), now two member connected pair, due to the two member into contact with each other to provide certain constraints so that its degrees of freedom is reduced, and the reduction of the number is equal to the movement pair the number of constraints.Because the two components of kinematic pair, still need to ensure that can produce a certainrelative motion of planar mechanism kinematic pairs, so the constraints to a maximum of 2, while the rest of the number of degrees of freedom for a minimum of 1.Figure1-1 Degree of freedom of planar mechanism diagramAs shown in Figure 1-2, two members movable side, members can only along the X axis moving relatively, namely mobile side introduces two constraint, retains one degree of freedom.As shown in Figure 1-3 two member to form a rotary pair, retaining only the 1 rotating movements, also introduced 2 constraints, retained the 1 degrees of freedom.To sum up, the planar low-pair were reduced in two degrees of freedom.Figure 1-2 Mobile accessoryFigure 1-3 Rotation pairAs shown in Figure 1-4,two component plane higher pair, introduces 1 constraint, retained the 2 degrees of freedom (two component parts can be along the tangent direction of sliding of instantaneous contact point, and can rotate around the instantaneous contact point.).Figure 1-4 High sideAssumptions about the composition of planar mechanism there are a total of n activity component, when each member does not constitute a pair when there are a total of 3n degrees of freedom.When each member movement pair connection, because the movement pair constraint and the system degrees of freedom are correspondingly reduced, reducing the number of which is equal to the kinematic pair into bondage number.In two components in planar mechanism, kinematic pair can have lower and higher pairs.If the body of the components to form P L low side and p hhigh side, so it will introduce (2p l+p h) constraints, so the degree of freedom of mechanism for:F=3n-(2p l+p h)=3n-2p l-p h2. The condition that Mechanism has identified the movementAccording to certain requirements for movement of the transfer and transformation mechanism, when the driver according to a given motion during exercise, the body of the remaining component motion also is completely determined.Therefore, to judge whether a mechanism with the determined motion except with the degree of freedom of mechanism is related with mechanism, also given driver number.Then we analyse several examples.As shown in Figure 1-5, four bar mechanism whose n = 3, P L = 4, p h = o.Then calculated F = 1, so given a movement parameters (given a driver, such as a given member one angular ), then the rest of component displacement is determined.That is to say, the degree of freedom for the institution in 1 with a driving component can be determined motion.Figure 1-5 Four bar mechanismAs shown in Figure 1-6, five bar mechanism, whose n = 4, PL = 5, pH = 0, then F = 2, with two degrees of freedom.If only given a driver, for example, a given member 1 displacement θ, then the remaining components movement and can not be identified.When the 1 member holds the position of AB, member 2, 3, 4 can occupy position BCDE, can also hold the position of BC/D/E, or other location.However, if we are given a driver, such as a member of 4 angular displacement α, which at the same time given 2 independence movement parameters, see not hard, the five rodmechanism components of motion is completely determined.Therefore, it must be given two driver, can determine the movement.Figure 1-6 Five bar mechanismAs shown in Figure 1-7, kinematic chain n = 2, P L = 3, p h = 0, then F = 0, we can see the degrees of freedom equal to zero for the kinematic chain can not generate relative motion.Figure 1-7 Kinematic chainTo sum up, mechanism has a determined motion conditions are: the degree of freedom of mechanism is greater than zero and the number of degrees of freedom must be equal to the number of driver.3.Calculation of degrees of freedom of mechanism should be paid attention to it.In the calculation of degrees of freedom of mechanism, often encounter is calculated according to the formula of degree of freedom of mechanism and the actual number of degrees of freedom does not fit the situation.This is because in the calculation of degree of freedom of mechanism, there are some issues that should be paid attention to because of the failure to handle correctly, will now be the attention of the major issues as follows.(1)C ompound hingeMore than two members in the same side are connected by rotating, constitute the so-called composite hinge.By the M components of compound hinge, which is composed of the rotating pair number should be (m-1), therefore, in the calculation of degrees of freedom of mechanism, should pay attention to the existence of a compound hinge.(2)L ocal degrees of freedomIf the body in certain components produced by the partial exercise does not affect the other components of the movement, we put this does not affect the overall freedom of motion, called local degrees of freedom.In the calculation of degree of freedom of mechanism, should be the mechanism of removing no local degrees of freedom.Partial freedom while not affecting the whole body movement, but the roller can make the high side contact sliding friction into rolling friction, reduce wear, so the actual machinery often have local degrees of freedom appear.(3)V irtual constraintOn the motion of mechanism does not actually play a role of restriction constraints is called a virtual constraint.In the calculation of degree of freedom ofmechanism, should be the mechanism to construct virtual constraint component together with the attached motion pair removed at all.Virtual constraint as compound hinge and local degrees of freedom that stick out a mile, here are some common virtual constraint exists.①If there are two members in the mechanism through a rotating pair connection, when the rotating pair apart, two member connected to the locus of points coincide with each other, then the rotating pair into a virtual constraint.②In the motion process, if the two member is the distance between two points is always the same, then the two to two rotating pairs and a member, will thus introduce a virtual constraint.③If two members in some form a moving pair, and the moving side movement relative to agree, or two members in some form a rotation pair, and the rotational movement relative to an axis coincident side.In this case the calculation of degrees of freedom of mechanism, should only be considered a motion by the introduction of the constraints, the remaining side so throughout the campaign into the constraint as a virtual constraint to omit.平面机构的自由度及其计算1.平面机构的自由度一个不受其他物体约束的自由构件在作平面运动时,可以在平面Xoy坐标系中随其上某一点沿x轴、y轴方向移动,同时还可以绕垂直于xoy平面的某根轴旋转,这3种运动方式之间可以没有任何的联系,即相互之间的运动是独立的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Planar mechanism of freedom1.Degree of freedom of planar mechanisms and its calculationWhen a body in plane motion who is no other object constraint,it can move in the xoy plane coordinate system with a point along the X axis, Y axis direction, but also can revolve around a vertical to xoy plane a shaft is rotated, the 3 modes of motion can be no contact, the mutual movement is independent of. Component has a number of independent movement which known as components of the degrees of freedom. Therefore, a planar motion of the member has 3 degrees of freedom.When the member is formed between the pair, as the independence movement was restricted, so the degree of freedom of mechanism will be reduced.On the structure of the independence movement and the restrictions are called constraints.As mentioned before, the kinematic chain, if an institution as a rack, and when the other one (or several) members according to a given motion during exercise, the remaining members have been identified, such as mechanism kinematic chains. Obviously cannot move or irregular move movement of the chain are not mechanism.In order to design the mechanism movement and movement uncertainty, we must discuss the degrees of freedom of mechanism and mechanism has identified the movement conditions.Mechanism has to determine the motion required by a given independent movement of the number of parameters, called the degree of freedom of mechanism.In planar mechanisms, each member in planar motion, as shown in Figure 1-1, as planar motion of the member 1 has not been associated with component 2 kinematic pair, assuming that member 2 consolidation in the xoy coordinate system, member 1 relative to the member 2 has a total of 3 degrees of freedom (along the X, Y axis movement and around and sports plane perpendicular to the axis of rotation), now two member connected pair, due to the two member into contact with each other to provide certain constraints so that its degrees of freedom is reduced, and the reduction of the number is equal to the movement pair the number of constraints.Because the two components of kinematic pair, still need to ensure that can produce a certainrelative motion of planar mechanism kinematic pairs, so the constraints to a maximum of 2, while the rest of the number of degrees of freedom for a minimum of 1.Figure1-1 Degree of freedom of planar mechanism diagramAs shown in Figure 1-2, two members movable side, members can only along the X axis moving relatively, namely mobile side introduces two constraint, retains one degree of freedom.As shown in Figure 1-3 two member to form a rotary pair, retaining only the 1 rotating movements, also introduced 2 constraints, retained the 1 degrees of freedom.To sum up, the planar low-pair were reduced in two degrees of freedom.Figure 1-2 Mobile accessoryFigure 1-3 Rotation pairAs shown in Figure 1-4,two component plane higher pair, introduces 1 constraint, retained the 2 degrees of freedom (two component parts can be along the tangent direction of sliding of instantaneous contact point, and can rotate around the instantaneous contact point.).Figure 1-4 High sideAssumptions about the composition of planar mechanism there are a total of n activity component, when each member does not constitute a pair when there are a total of 3n degrees of freedom.When each member movement pair connection, because the movement pair constraint and the system degrees of freedom are correspondingly reduced, reducing the number of which is equal to the kinematic pair into bondage number.In two components in planar mechanism, kinematic pair can have lower and higher pairs.If the body of the components to form P L low side and p hhigh side, so it will introduce (2p l+p h) constraints, so the degree of freedom of mechanism for:F=3n-(2p l+p h)=3n-2p l-p h2. The condition that Mechanism has identified the movementAccording to certain requirements for movement of the transfer and transformation mechanism, when the driver according to a given motion during exercise, the body of the remaining component motion also is completely determined.Therefore, to judge whether a mechanism with the determined motion except with the degree of freedom of mechanism is related with mechanism, also given driver number.Then we analyse several examples.As shown in Figure 1-5, four bar mechanism whose n = 3, P L = 4, p h = o.Then calculated F = 1, so given a movement parameters (given a driver, such as a given member one angular ), then the rest of component displacement is determined.That is to say, the degree of freedom for the institution in 1 with a driving component can be determined motion.Figure 1-5 Four bar mechanismAs shown in Figure 1-6, five bar mechanism, whose n = 4, PL = 5, pH = 0, then F = 2, with two degrees of freedom.If only given a driver, for example, a given member 1 displacement θ, then the remaining components movement and can not be identified.When the 1 member holds the position of AB, member 2, 3, 4 can occupy position BCDE, can also hold the position of BC/D/E, or other location.However, if we are given a driver, such as a member of 4 angular displacement α, which at the same time given 2 independence movement parameters, see not hard, the five rodmechanism components of motion is completely determined.Therefore, it must be given two driver, can determine the movement.Figure 1-6 Five bar mechanismAs shown in Figure 1-7, kinematic chain n = 2, P L = 3, p h = 0, then F = 0, we can see the degrees of freedom equal to zero for the kinematic chain can not generate relative motion.Figure 1-7 Kinematic chainTo sum up, mechanism has a determined motion conditions are: the degree of freedom of mechanism is greater than zero and the number of degrees of freedom must be equal to the number of driver.3.Calculation of degrees of freedom of mechanism should be paid attention to it.In the calculation of degrees of freedom of mechanism, often encounter is calculated according to the formula of degree of freedom of mechanism and the actual number of degrees of freedom does not fit the situation.This is because in the calculation of degree of freedom of mechanism, there are some issues that should be paid attention to because of the failure to handle correctly, will now be the attention of the major issues as follows.(1)C ompound hingeMore than two members in the same side are connected by rotating, constitute the so-called composite hinge.By the M components of compound hinge, which is composed of the rotating pair number should be (m-1), therefore, in the calculation of degrees of freedom of mechanism, should pay attention to the existence of a compound hinge.(2)L ocal degrees of freedomIf the body in certain components produced by the partial exercise does not affect the other components of the movement, we put this does not affect the overall freedom of motion, called local degrees of freedom.In the calculation of degree of freedom of mechanism, should be the mechanism of removing no local degrees of freedom.Partial freedom while not affecting the whole body movement, but the roller can make the high side contact sliding friction into rolling friction, reduce wear, so the actual machinery often have local degrees of freedom appear.(3)V irtual constraintOn the motion of mechanism does not actually play a role of restriction constraints is called a virtual constraint.In the calculation of degree of freedom ofmechanism, should be the mechanism to construct virtual constraint component together with the attached motion pair removed at all.Virtual constraint as compound hinge and local degrees of freedom that stick out a mile, here are some common virtual constraint exists.①If there are two members in the mechanism through a rotating pair connection, when the rotating pair apart, two member connected to the locus of points coincide with each other, then the rotating pair into a virtual constraint.②In the motion process, if the two member is the distance between two points is always the same, then the two to two rotating pairs and a member, will thus introduce a virtual constraint.③If two members in some form a moving pair, and the moving side movement relative to agree, or two members in some form a rotation pair, and the rotational movement relative to an axis coincident side.In this case the calculation of degrees of freedom of mechanism, should only be considered a motion by the introduction of the constraints, the remaining side so throughout the campaign into the constraint as a virtual constraint to omit.平面机构的自由度及其计算1.平面机构的自由度一个不受其他物体约束的自由构件在作平面运动时,可以在平面Xoy坐标系中随其上某一点沿x轴、y轴方向移动,同时还可以绕垂直于xoy平面的某根轴旋转,这3种运动方式之间可以没有任何的联系,即相互之间的运动是独立的。

相关文档
最新文档