第三章城市道路平面线形设计
道路勘测设计(平面线形设计1)
制定最大超高坡度 ih (max )要根据道路所在地区的气候条件, 还要给驾驶员和乘客以心理上的安全感。对重山区,城市附近, 交叉口以及有相当数量非机动车行驶的道路,最大超高还要比 一般道路小些。
(二)最小半径的计算
《标准》中规定的最小平曲线半径是汽车在曲线部 分能安全而又顺适的行驶的条件而确定的。 最小平曲线半径的实质是汽车行驶在公路曲线部分 时,所产生的离心力等横向力不超过轮胎与路面的 摩阻力所允许的界限,并使乘车人感觉良好舒适的 曲线半径值。
哪一个最优?
2. 当采用长的直线线形时,应注意的问题:
(3)道路两侧过于空旷时,宜采取植不同树种或设
臵一定 建筑物、雕塑、广告牌 等措施,以改善单调
的景观。
(4)长直线或长下坡的尽头的平曲线,除曲线半径、
超高、视距等必须符合规定外,还必须采取设臵标 志、增加路面抗滑能力等安全措施。
美 国 俄 勒 冈 州
X Fcos α Gsin α
X F Gi h Gv 2 Gi h gR v2 G( ih ) gR
Y
X
V2 ih 127R
(一)计算公式与因素
根据汽车行驶在曲线上力的平衡式计算曲线半径: 当设超高时 :
V2 R 127( i h )
式中:V——设计速度,(km/h);
V2 R 127( μ ih )
ih
1.极限最小半径
指各级公路在采用允许最大超高和允许的横向摩阻系数情况 下,能保证汽车安全行驶的最小半径。
V2 R 127( μ ih )
强调说明:极限最小半径是路线设计中的极限值,是在特殊困难 条件下不得已才使用的,一般不轻易采用。
2.一般最小半径
道路勘测设计第三章平面设计
3.1 概述 3.1.1 路线
(1)路线
(2)路线的平面
(3)路线的纵断面
(4)路线的横断面
图3-1 公路的平面、纵断面示意图
3.1.2 平面线形设计的基本要求 (1)汽车行驶轨迹
轨迹在几何性质上有以下特征: 1) 轨迹连续圆滑,即在任何一点上不出现错头、折点。
3-2 不连续的路线
120
100 80
60
40
30
20
0.10
0.12 0.13 0.15 0.15 0.16 0.17
6
6
6
6
6
6
6
8
8
8
8
8
8
8
10
10
10
10
10
10
10
2)一般最小半径
按设计速度行驶的车辆能保证其安全性和舒适性的最小半径,它是通常情况下推荐采用的最小半径 值。
表3-5 圆曲线最小半径一般值的横向力系数和超高值
3)道路两侧过于空旷时,宜采取措施,以改善单调的景观。 4)长直线下坡方向尽头的平曲线应采取相应的措施。
3-5 道路图片
(3) 直线的最小长度 1)同向圆曲线间的直线最小长度
当设计速度≥60km/h时,同向曲线间的直线最小长度以不小于设计速度的6倍为宜。
3-6 同向曲线
3-7 同向曲线间插入短直线
80 400 250 2500 3350
60 200 125 1500 1900
40 30 20 100 65 30 60 30 15 600 350 150 800 450 200
表3-8 城市道路圆曲线最小半径
设计速度(km/h) 不设超高最小半径/m 设超高推荐半径/m
第三章 城市主次干道及支路
1
3.1 横断面设计
城市道路横断面是指道路中心线法线方向的道路断面。 设计内容包括车行道(机动车道和非机动车道)、人行道、分 隔带、绿化带、设施带等。 道路横断面设计的依据是道路性质、道路类别、道路规划 红线以及交通组织方式,同时还要考虑道路红线范围以内的各 种地下管线设施的规划与建设情况。 道路横断面设计的主要任务是合理确定车行道(机动车道 和非机动车道)、人行道、分隔带、绿化带、设施带等各部分 的几何尺寸及其相互布置关系。
15
“三块板”横断面
16
“三块板”横断面
17
“四块板”横断面
18
“四块板”横断面
19
机动车道对向简易隔离的“准四块板”
20
压缩中央分隔带开辟左转专用车道
21
非机动车道与人行道共断面的二块板型式
22
非机动车道与人行道共断面的二块板型式
23
“三块板”横断面
24
3.1 横断面设计
三、车行道 车道:供纵向一列车队安全行驶的最小规定道路空间。 车行道:由若干条车道组成的道路空间。 机动车道的设计包括车行道宽度设计和车道条数设计。一条车 道的宽度取决于设计车辆的外廓尺寸及一定设计车速情况下车 辆两侧安全净距的要求;车道条数的确定则与道路远景设计小 时交通量的预测值及一条车道的设计通行能力有关。
28
(2)中间带
城市道路中的双幅路和四幅路均应设置中间带。
1)组成:中间带由中央分隔带(median divider) 和两条左侧路缘带(marginal strip)组成。
中央分 隔带
中间带
29
(2)中间带
2)宽度:
《城市道路设计规范》规定中间带的最小宽度为2.0—3.0m, 左侧路缘带常用宽度为0.25m或0.5m.
《道路工程》第3章 道路平面设计
(1)确定最小半径的原则
圆曲线最小半径是以汽车在曲线部分能安全而又顺适 地行驶为必要条件的。确定圆曲线最小半径的实质是 汽车行驶在公路曲线部分时所产生的离心力等横向力 不超过轮胎与路面的附着力。即不产生横向滑移。
h
横向力2
ih
h
路拱横坡度,“+”时在曲线内侧车道上行驶,“-”时在外车 道 横向附着系数,为路面与轮胎之间的横向摩阻系数极限值
3、关于圆曲线的运用 曲线最小半径应符合表3.0.14的规定。直线与小 于不设超高的圆曲线最小半径相衔接处应设臵回 旋线,回旋线参数及其长度应根据线形设计以及 对安全视觉景观等的要求选用较大的数值。 四级公路的直线与小于不设超高的圆曲线最小半 径相衔接处可不设臵回旋线用超高加宽缓和段径 相连接。
4、关于城市道路 与公路不同,《城市道路设计规范》提供了设超 高最小半径,设超高推荐半径,不设超高最小半 径以及不设缓和曲线最小半径。当受地形条件限 制时,可采用设超高推荐半径值;当地形条件特 别困难时,可采用设超高最小半径值。
1、概述
缺点: ① 直线过长、景色单调,往往会出现过高的车 速或司机由于缺乏警觉易疲劳而发生事故。 ② 适应地形能力较差,在地形变化复杂地段, 工程费用高。
2、描述直线的指标
①最大直线长度: 德国和日本规定20V(单位为米,V为计算行车速度,用 公里/小时为单位); 美国为180s的行程; 我国对于设计速度大于或等于60km/h的公路最大直线 长度为以汽车按设计速度行驶70s 左右的距离控制,一 般直线路段的最大长度(以m计)应控制在设计速度(以 km/h 计)的20 倍为宜; 最大直线长度的量化是一个值得进一步研究的课题。
E ( R p ) sec
2
第三章平面设计6
绘图比例尺:初步设计、施工图设计的设计文件:
一般情况1:2000,在平原微丘区可用l:5000。
路线带状地形图的测绘宽度:
一般为中线两侧各100~200m。
对1:5000的地形图,每侧应不小于250m。
(2)导线及道路中线的展绘
①坐标展绘法:按导线点(或交点)坐标X,Y精确地点绘其位置上。
l1-2
JD1
p1
JD2
R1
R2
附I:同向复曲线计算方法
例:已知某三级公路(V=40km/h)有两个相邻的同向曲线,拟按复曲线 设 计 。 其 中 JD1=K9+420.85 , 偏 角 α1=45°10′25″ , 半 径 R1=400m , Ls1=160。偏角α2=41°20′22″,交点间距l1-2=345.96m。 要求计算确定R2及Ls2,并计算曲线主点里程桩号。
复曲线JD2桩号计算: JD2=JD1+间距=K9+586.81
QZ1 ZH1 α1R1 / 2 Ls1 / 2 K9 231 .137
QG=ZH1+L1=K9+388.822 HZ2=ZH1+L=K9+814.94 YH2=HZ2-Ls2=K9+641.438
QZ 2 HZ 2 α2R2 / 2 Ls2 / 2 K9 558 .505
一般情况1:2000,在平原微丘区可用l:5000。
路线带状地形图的测绘宽度:
一般为中线两侧各100~200m。
对1:5000的地形图,每侧应不小于250m。
放大
3.7.3 路线平面设计图
1. 公路平面图
(1)平面图的比例尺和测绘范围
《道路平面线形 》课件
满足设计速度
根据道路等级和设计速 度要求,合理选择线形 要素,确保行车安全。
连续性与一致性
保持线形的连续与一致 ,提高行车方向感和驾
驶舒适度。
环保与景观协调
考虑环境保护和景观协 调,合理选择线形要素 ,减少对自然环境的破
坏。
02 道路平面线形要素
直线
直线是最简单的道路平面线形,具有 方向一致、距离短、效率高等优点。
提升道路景观
通过线形优化与周围景观相协 调,提升道路景观品质。
优化方法
现场勘查与数据收集
对道路沿线地形、地貌、交通流量等进行详 细勘查和数据收集。
计算机辅助设计
利用计算机辅助设计软件进行线形设计和模 拟。
数学建模与分析
建立道路平面线形数学模型,运用数学方法 进行优化分析。
多方案比选与综合评估
制定多个优化方案,进行综合评估,选择最 优方案。
加强环境保护措施
采取水土保持、生态修复等措施, 减少道路建设对环境的影响。
03
02
加强交通安全设施
设置交通标志、标线、安全护栏等 ,提高道路安全水平。
加强后期维护管理
定期巡查、保养和维护,确保道路 线形保持良好状态。
04
SketchUp
一款易于学习的三维建模软件,可以用于 道路设计的初步方案制定和可视化展示。
04 道路平面线形优化
优化目标
提高行车安全性
通过优化道路平面线形,降低 交通事故风险,确保行车安全
。
提高道路通行效率
合理设计道路平面线形,减少 拥堵,提高道路通行速度和效 率。
降低建设和维护成本
优化设计可降低道路建设和维 护成本,实现经济可持续发展 。
城市道路设计第三章 城市主、次干路及支路
会车视距是在同一车道上两对向汽车相遇,从相互发现 时起,至同时采取制动措施使两车安全停止,所需的最短距 离。会车视距为停车视距2倍。 3、超车视距
超车视距是指汽车安全超越前车所需的最小通视距离。 城市道路不允许车辆越过中线超车,因此不存在超车视距。
4、路测带的组成及其宽度
组成:人行道、绿化带、公用设施带等。 (1)人行道
人行道最小宽度如下表所示: (2)绿化带
人行道树株距一般为4~6m,树池采用1.5m方形或1. 2*1.8m矩形。
21
22
(3)设施带 设施带包括设置行人护栏、照明灯柱、标志牌杆柱、信号灯杆柱等的宽度。红线宽度
较窄及条件困难时,设施带可与绿化带合并,但应避免设施带与绿化带的干扰,常用 宽度为:护栏0.25m~0.5m,杆柱1.0~1.5m. ( 4 ) 路缘石 是设置在路面与其它构造物之间的标石,俗称道牙。其形状有平式、立式、斜式等几 种,如下图所示:
规定机动车车行道宽度如下表。
6
7
3、平曲线加宽值及其过渡段
8
9
10
11
12
13
(2)加宽值的过度方式:直线过度、高次抛物线过度、回旋线过度、改进直线过度等。 (3)加宽缓和段长度设置的三种情况: 对于设置有缓和曲线的平曲线,加宽缓和段应采用与缓和曲线相同长度。 对于不设置缓和曲线,但设置有超高的缓和曲线的平曲线,可采用与超高缓和段相同
土路肩:横坡度较路面宜增大1.0%~2.0%;
硬路肩:一般情况下横坡度与行车道横坡度相同,也可以稍 大于路拱横坡。
5.人行道横坡宜采用单面坡形式,坡度为1.5%~3%.
(三)超高
1.超高:是指为了减小行驶车辆在曲线路段产生的离心力,将路 面做成外侧高,内侧低的单向横坡形式。
城市道路平面线形设计
汽车在平面曲线路段上转弯时,受到的离心力主要随着车 速和道路弧度(转弯半径)的变化而变化,车开得越快,道路 弧度越大,受到的离心力越大。
离心力
向心力
第27页/共45页
减小离心力的措施
1、转弯处路段设计,要“外高内低”,有一点的倾斜度, 防止车辆转弯时向外侧滑,但倾斜度不能过大。
第28页/共45页
在张家界天门山,被称为“通天大道”的盘山公路共计 99弯,似玉带环绕,弯弯紧连,层层叠起,依山籍壁,直冲 云霄,被称为“天下第一公路奇观”,对行车司机来说是个 很大的挑战。
第21页/共45页
贵州六盘水“八大弯” 贵州六盘水“八大弯” 公路,被称为中国最具挑 战性的公路。不仅曲折环 绕,而且位于山上,高差 非常明显。
n 纵断面处:凸竖曲线
n
凹竖曲线(桥下视距)
第33页/共45页
车辆在平曲线上转弯时,因为看不到前方的障碍物,所以转 弯路口都会设置反射凸透镜,让司机提前看到过来车辆。
第34页/共45页
一、停车视距
停车视距是指驾驶人员发现前方有障碍物后,采取制定措 施使汽车在障碍物前停下来所需要的最短距离。
停车视距构成:停车视距由三部分组成。反应距离、制动 距离和安全距离。
第14页/共45页
城市道路平曲线设计
2、直线的设计
1.直线不能太长,否则容易引起驾驶员疲劳。直线最大长 度为设计车速的20倍。
2.相邻两个圆曲线之间的直线长度不能太短;
同向曲线间的最小直线长度(m)宜大于或等于设计车 速(km/h)数值的6倍;
反向曲线间的最小直线长度(m)宜大于或等于设计车 速(km/h)数值的2倍;
n ①加速行驶距离S1:
▪ ②超车汽车在对向车道上行驶的距离S2 :
[交通运输]第三章平面设计断背曲线
§2.4缓和曲线
• 缓和曲线是道路平面线形三要素之一。 • 缓和曲线:设置在直线和圆曲线之间
或半径相差较大的两个转向相同的圆曲线 之间的一种曲率连续变化的曲线。 • 《规范》规定:除四级公路外的其它各 级公路都应设置缓和曲线,另外,当圆曲 线半径大于“不设超高的最小半径”时可 省略缓和曲线。
2.当不得已采用了长直线时,应注意其对应的纵坡不 宜过大;如果两侧地形过于空旷时,适宜种植不同树 种或设置一定建筑物等技术措施予以改善;定线时应 注意把自然风景或建筑物纳入驾驶员的视线范围内;
在长直线尽头设置的平曲线,除曲线半径、 超高、视距等必须符合规定要求外,还必 须采取设置标志、增大路面抗滑能力等安 全保障措施。
ih 6% ~ 8% h 0.05 ~ 0.06
• 适用:一般最小半径是在通常情况下推荐采用的最 小半径。
• 一方面考虑了汽车在这种曲线上以设计速度或以 接近设计速度行驶时,旅客有充分的舒适感;
• 另一方面考虑到在地形比较复杂的情况下不会过 多增加工程量。
③.圆曲线不设超高最小半径:指道路曲线半径较大、 离心力较小时,汽车沿双向路拱(不设超高)外侧 行驶的路面摩擦力足以保证汽车行驶安全稳定所采 用的最小半径。
(3)这个轨迹的曲率变化是连续的,即轨迹上任意一 点不出现两个曲率变化率值。
三、道路平面线形
1.平面线形三要素:直线、圆曲线、缓和曲线 2 .路线平面设计的内容 直线、圆曲线和缓和曲线的选用和相互间的组合; 线形与地形、地物、环境和景观的协调; 考虑线形设计对驾驶员视觉与心理的影响。
§2.2 直线
4.横向稳定性的保证
汽车在平曲线上行驶时的横向稳定性主要取决于横向力系 数μ值的大小。
现代汽车在设计制造时重心较低,一般b≈2hg,而 h<0.5,
城市道路与市政工程-城市道路平面设计
缓和曲线的指标(2) ——缓和曲线最小长度
缓和曲线最小长度应满足三方面要求:曲率逐 渐变化,乘客感觉舒适;行车时间不宜太短; 超高过渡宜平缓 。
二、平曲线计算
圆曲线计算(1) —— 曲线要素计算
圆曲线计算(2) —— 主点桩号计算
例题:某单圆曲线,交点桩号为k1+600,转 角α为300,若该曲线外半径取400米,试进行 曲线要素和主点桩号计算。
平面基本线形
平面线形:道路中心线在平面上的投影线。
直线:曲率K=0
圆曲线:曲率K=常数
缓和曲线:曲率K=变数; 道路平面线形由直线、圆曲线和缓和曲线三种组合而成, “平面线形三要素”。
直线
直线适用于地形平坦、视线目标无障碍处。 在平原区,直线作为主要线形要素是适宜的。直 线有测设简单、前进方向明确、路线短捷等优点, 直线路段能提供较好的超车条件。
但直线过长、街道景色单调,往往会出现过 高的车速或司机由于缺乏警觉易疲劳而发生事故。
描述直线的指标
① 最大直线长度 最大直线长度的量化还是一个 需要研究的课题,目前各国有不同的处理方法, 德国和日本规定20V(单位为米,V为计算行车速 度,用公里/小时为单位),美国为180s的行程。 最大直线长度不必太拘泥,最小长度应该保证。
二、缓和曲线长度的计算
(一)按离心加速度变化率计算(舒适性)
Ls=0.036V3/R
(二)按行车时间不宜太短(3s) Ls≥Vt/3.6=0.83V (三)超高过渡应平缓 L=R/9~R
设计道路时,应符合规范中规定的缓和曲线最小长度。
平面线形,过去多采用长直线、短曲线的形式, 一般是首先设置直线,然后用曲线连接。 随着车速的提高及交通量的增长,对于高等级道 路已趋于以曲线为主的设计,即结合地形拟定曲 线,再连以缓和曲线或直线的方法,使路线在满 足行车动力要求的条件和视觉舒顺前提下,增加 了结合地形设置线形的自由,使线形的经济效益 较为显著,并保证行车的高速和安全。
道路平面线形设计
Ch3 道路平面线形设计【本章主要内容】§3-1 平面线形概述§3-2 直线§3-3 圆曲线§3-4 缓和曲线(3h)§3-5 平面线形的组合与衔接§3-6 行车视距§3-7 道路平面设计成果【本章学习要求】掌握平面线型的基本组成要素:直线、圆曲线、缓和曲线的设计标准、影响因素及确定方法、要素计算;行车视距的种类及保证;平面设计的设计成果;了解平面线型的组合设计。
本章重点:缓和曲线设计与计算、平面设计注意事项,难点:缓和曲线。
§3-1 道路平面线形概述基本要求:掌握平面线形的概念,平面线形三要素,了解汽车行驶轨迹对道路线形的要求。
重点:平面线形的概念。
难点:平面线形三要素。
1 平面线形的概念平面线形—道路中线在平面上的水平投影,反映道路的走向。
2 平面线形三要素2.1 汽车行驶轨迹大量的观测和研究表明,行驶中的汽车,其导向抡旋转面与车身纵轴之间的关系对应的行驶轨迹为:1) 角度为0时,汽车的行驶轨迹为直线;2) 角度不变时,汽车的行驶轨迹为圆曲线;3) 角度匀速变化时,汽车的行驶轨迹为缓和曲线。
行驶中的汽车,其轨迹在几何性质上有以下特征:1)轨迹是连续和圆滑的;2)曲率是连续的;3)曲率的变化是连续的。
直线一圆曲线一直线符合第(1)条规律直一缓一圆一缓一直符合第(1)、(2)条规律整条高次抛物线可能符合全部规律,但计算困难,测设麻烦。
2.2平面线形要素直线、圆曲线、缓和曲线称为平面线形的三要素。
§3-2 直线基本要求:了解直线的使用特点和适用条件;掌握直线的设计标准及计算。
重点:直线的设计标准。
难点:路线方位角、转角的计算。
1 直线的特点1.1 以最短的矩离连接两目的地;1.2 线形简单,容易测绘;1.3 长直线,行车安全性差;1.4 山区、丘陵区难与地形与周围环境协调。
2 设计标准2.1直线最大长度1)限制理由2)直线最大长度:20V。
道路勘测设计-平面设计
50 400 200 100
40 300 150 70
30 150 85 40
20 70 40 20
2.圆曲线
(4)平曲线最小长度
平曲线:道路上除直线外的部分,分为有缓和曲线的和 没有缓和曲线的两种。 应大于2ls (2倍缓和曲线长)。 应大于6s行程。 平曲线中的圆曲线和每一个缓和曲线都应大于3s行程。 公路与城市道路设计规范中都给出了各级道路在不同的 设计速度下的平曲线、圆曲线最小长度,和最小缓和 曲线长度。 城市道路平曲线与圆曲线最小长度
积分得
l A
2
ρ · 2 l=A
dl
A l
2
d
Y
l
2 2 A l
——缓和曲线上任意 一点的偏角
A 2
2
A 2
dx
cos d
x A 2 (1
cos d
dl
10
2
4
216
4
④ 符合视觉要求—— l
R 9
~ R
选取原则:缓和曲线+圆曲线+缓和曲线,三部 分长度大致相同,各占1/3。
3.缓和曲线
(6)不设缓和曲线的条件
①小圆曲线半径大于不设超高圆曲线最小半径时;
②复曲线中小圆半径临界半径,且符合下列条件之一时: 小圆曲线设置最小长度缓和曲线,且大圆与小圆的内移值之差不 超过0.10m; 设计速度≥80km/h时,大圆半径(R1)与小圆半径(R2)之比小于1.5; 设计速度<80km/h时,大圆半径(R1)与小圆半径(R2)之比小于2。 ③ 《标准》规定,四级公路不设缓和曲线 。
03(08)第三章 平面设计
[不设超高最小半径]:道路曲线半径较大、离心力较小时,汽车驶 安全稳定采用的最小半径。 圆曲线半径大于一定数值时可以不设置超高而允许设置等于直线路 段路拱的反超高,从行驶的舒适性考虑必须把横向力系数控制到最 小值。
当路拱横坡为1.5%时横向力系数采用0.035,当路拱横坡为2.5%时 横向力系数采用0.040, 当路拱横坡为3.0%时横向力系数采用 0.045 ,当路拱横坡为3.5%时横向力系数采用0.050 。
(3) 圆曲线运用
曲线最小半径应符合上表的规定。直线与小于上表 所列不设超高的圆曲线最小半径相衔接处应设置回 旋线,参数及其长度应根据线形设计以及对安全视 觉景观等的要求选用较大的数值。
四级公路的直线与小于不设超高的圆曲线最小半径 相衔接处可不设置回旋线,用超高加宽缓和段径相 连接。
EN
练习
3-4(1) P 67
rl C A
(二)缓和曲线基本形式
1、回旋线的数学表达式
rl=A
2
r----回旋线上某点的曲率半径(m) l----回旋线上某点到原点的曲线(m) A---回旋线的参数。
A2 dl Rd d l
l
2
2A
2
dx dl cos
dy dl sin
dx A cos d 2
3、缓和曲线的省略 1.在直线与圆曲线间,当圆曲线半径大于或等于 3-1所列“不设 超高的最小半径”时; 2.半径不同的同向圆曲线间,当小圆半径大于或等于“不设 超高的最小半径”时; 3.小圆半径大于表3-5中所列半径,且符合下列条件之一时:
(1)、小圆曲线按规定设置相当于最小回旋线长的回旋线时,其 大圆与小圆的内移值之差不超过0.10m。
《道路工程》道路平面设计PPT课件
.
19
2、描述直线的指标
①最大直线长度: ➢德国和日本规定20V(单位为米,V为计算行车速度,用 公里/小时为单位); ➢美国为180s的行程; ➢我国对于设计速度大于或等于60km/h的公路最大直线 长度为以汽车按设计速度行驶70s 左右的距离控制,一 般直线路段的最大长度(以m计)应控制在设计速度(以 km/h 计)的20 倍为宜; ➢最大直线长度的量化是一个值得进一步研究的课题。
极限最小半径:车辆在设置超高的曲线上安全行驶,满足最低 舒适性要求的半径规定值。
V 采用各级公路相应的设计速度,确定圆曲线最小半径的关键 参数是横向附着系数和超高横坡。
超高值变化范围在10%-6%之间,计算圆曲线最小半径时分别用 6% 8%、和10%的超高值代入计. 算,横向力系数0.10-0.17。29
➢卵型曲线 两同向圆曲线不宜互相衔接或插入的直线长度不足 时.可用回旋线将两同向圆物线连接组合为卵形曲线。
➢凸型曲线 将两同向回旋线在曲率相同处径向衔接而组合为凸形曲 线。
➢C型曲线 将两同向圆曲线的回旋线曲率为零处径向衔接而组合为C形 曲线。
二、直线
1、概述
➢ 适用于:
地形平坦、视线目标无障碍处。在平原区,直线
作为主要线形要素是适宜的。
➢ 优点:
① 直线有测设简单、前进方向明确、路线短捷;
② 无视距障碍,能提供较好的超车条件。
③ 定线、设计、量距、绘图、计算、放样方便。
④ 驾驶方便
⑤ 车辆不受离心力作用乘车舒适
.
18
二、直线
1、概述
➢ 缺点: ① 直线过长、景色单调,往往会出现过高的车速
或司机由于缺乏警觉易疲劳而发生事故。 ② 适应地形能力较差,在地形变化复杂地段,工
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 离心力
离心力的定义
在牛顿力学上,离心力是一种惯性,车辆行动时会受到 惯性的作用,比如向前加速,车向后仰;突然刹车,车会向 前倾。所以当车辆在转弯时,也会受到反向的惯性力作用, 往左旋转,车辆向右倾;向右旋转,车辆向左倾。
离心力的定义
车辆在曲线道路上受到 的转弯惯性,就是车辆受到 的离心作用,用一种虚拟的 力来表示,就是离心力。
段时间内所走的距离。
S2
V2
254( )
(3)安全距离
S3 5 ~ 10m
二、会车视距:
定义:会车视距是在同一车道上两对向汽车相遇,从相 互发现时起,至同时采取制动措施使两车安全停止,所需的 最短距离。 会车视距SH约等于2倍停车视距。
三、超车视距 n 超车视距是指汽车安全超越前车所需的最小通视距离。 n 超车视距的构成:超车视距的全程可分为四个阶段
二、选用弯道平曲线半径
三、编制里程桩 道路直线段和曲线段确定后,从路线起点,按每20m、50m、100m的距离
依前进方向顺序编列里程桩号,对曲线起点、中点、终点以及桥涵、交叉 口等特征点编列加桩号。
道路定桩,有里程桩和安全警示桩两种。
四、确定道路红线 用地红线,是城市用地的边界线。 城市道路红线是规划道路的路幅边界线,将城市道路用地和
2.相邻两个圆曲线之间的直线长度不能太短;
同向曲线间的最小直线长度(m)宜大于或等于设计车速 (km/h)数值的6倍;
反向曲线间的最小直线长度(m)宜大于或等于设计车速 (km/h)数值的2倍;
二、圆曲线
在城市道路设计中,直线段长度有限制,所以必须采用 圆弧曲线来连接直线路段,并在切点相连以保障线形平顺。 其半径与长度由汽车在弯道上行驶的特点和要求决定。
2. 直线的应用
直线道路的最大长度必须有所限制,否则司机会感到疲倦。 而且直线路段两边应该适当布置景观。
我国线路设计规范规定:公路的设计时速为120km/h,根据 计算,直线最大长度就为20 * 120 = 2400米,也就是2.4公里。
城市里面,机动车限速一般为20-80km/h,所以城市道路最 大直线长度一般为0.4-1.6公里。
路线设计的任务 在调查研究掌握大量材料的基础上, 设计出一条有一定技术标准、满足 行车要求、工作费用最省的路线。
道路线形
城市道路:空间三维曲线,既有方向变化,又有 高程变化的带状空间构筑物。
平面线形:道路中心线在平面上的投影线,反映 沿线道路方向的转折变化,由直线和曲线组合而 成,曲线包括圆曲线和缓和曲线。
城市道路平曲线设计
一、直线 道路中直线段最多、也最简单。
1. 直线的特点 路线便捷,两点之间以直线为最短。
2.行车方向明确,行驶受力简单,驾驶操作简易。 测设简单,施工容易。 过长的直线易使驾驶人感到单调、疲倦,难以目测车间
距离,于是产生尽快驶出直线的急燥情绪,易超车。 直线线形大多难于与地形相协调。
三、缓和曲线
汽车由直线进入圆曲线或者由圆曲线驶入直线路段时, 其运动轨迹是一条曲率渐变的曲线,尤其是在城市快速路与 不同等级道路衔接时,汽车很可能超出自己的车道驶出一条 较长的过渡性轨迹线,此即缓和曲线。它位于直线与圆曲线 之间,在起点处与直线段相切,而在终点处与圆曲线相切。
缓和曲线作用 曲率连续变化,便于车辆遵循车道行驶; 离心加速逐渐变化,旅客感觉舒服; 超高横坡度逐渐变化,行车更加平稳; 与圆曲线配合得当,增加线形美观。
ST S1 SZ S0
反应距离
制动距离
S1
停车视距ST SZ
S0 安全距离
(1)反应距离S1:是当驾驶人员发现前方的阻碍物,经过判 断决定采取制动措施的那一瞬间到制动器真正开始起作用的那
一瞬间汽车所行驶的距离。
S1
V 3.6
t
(2)制动距离:是指汽车从制动生效到汽车完全停住,这
贵州晴隆县的山路,共有24拐
在张家界天门山,被称为“通天大道”的盘山公路共计99 弯,似玉带环绕,弯弯紧连,层层叠起,依山籍壁,直冲云霄, 被称为“天下第一公路奇观”,对行车司机来说是个很大的挑 战。
贵州六盘水“八大弯”
贵州六盘水“八大弯” 公路,被称为中国最具挑 战性的公路。不仅曲折环 绕,而且位于山上,高差 非常明显。
离心力
向心力
减小离心力的措施
1、转弯处路段设计,要“外高内低”,有一点的倾斜度, 防止车辆转弯时向外侧滑,但倾斜度不能过大。
减小离心力的措施
2、扩大转弯半径。在高速公路或坡度比较缓、路面宽阔的 道路,进弯道时尽量要将车靠内侧行驶,出弯道时尽量 将车靠外侧行驶。这样就可以改变汽车行驶的弧度,延 缓转弯时的弯度,有效减小离心力。
n ①加速行驶距离S1: ②超车汽车在对向车道上行驶的距离S2:
n ③超车完了时,超车汽车与对向汽车之间的安全距离S3:
n
S3=15~60m
n ④超车汽车从开始加速到超车完了时对向汽车的行驶距离
S4:
n全超车视距为: S超=S1+S2+S3+S4
5 平面线形设计的步骤
平面线形设计的步骤
平面线形设计是道路平面设计的主要内容,其主要步骤 如下: 一、初步拟定平面线形
离心力并不是真实存在的 力。它的作用只是为了在旋 转参考系(非惯性参考系) 下,牛顿运动定律依然能够 使用。
2
2
计算汽车离心力的公式,F=mv /r=Gv /gr,所以,离心力
主要和车辆的重量、速度和曲线半径有关。
车辆的重量一般是特定的,所以转弯时需降速,扩大转弯半径。
汽车在平面曲线路段上转弯时,受到的离心力主要随着车 速和道路弧度(转弯半径)的变化而变化,车开得越快,道路 弧度越大,受到的离心力越大。
纵断面线形:道路中心线保持各点高程不变沿里 程展开后的立面投影线。
道路平面线形
道路横断面 线形
道路纵断面线形
2 平面线形设计的内容和原则
平面线形设计的原则
遵循城市总体规划中的道路网布局,与地形地 质水文相结合、合理衔接直线与平曲线、合理设置 缓和曲线及弯道设计、合理设置沿线其他设施。
平面线形设计的内容
缓和曲线要求 有足够的长度,有合理的曲线形式。
平面线形衔接中,相邻的曲线悬殊不能过大,否则 对司机行车非常危险。
云南宜良某山路——7公里 路68道拐
在昆明市宜良县城西有 一条通往靖安哨的盘山公路, 公路依山梁而修,弯弯曲曲, 短短的7公里公路,共有68 道拐,远远超出了被称为世 界闻名的贵州24道拐的公路。 据有关专家介绍,这算得上 是世界公路史上的奇迹。
4 行车视距
行车视距
行车视距——汽车在行驶中,当发现障碍物后,能及时采取措施, 防止发生交通事故所需要的必须的最小距离。包括停车视距、会车视 距、超车视距。
汽车在行驶过程,三种情况下存 在视距问题的情况,看不到前方障碍 物的情况。夜间行车设计不考虑。
n 平面上:平曲线(转弯的时候)
n 纵断面处:凸竖曲线
减小离心力的措施
3、转弯时要降低车速,一般公路转弯口都设有路标和反射镜, 以便让司机知道前方是否有车辆,提前做好准备。
城镇街道或出入大门的转弯,转弯前在50-100米内减速用 转向灯表示行进方向,做到“一慢、二看、三通过”。
车辆在转弯前,首先必须控制车速,并随时做好停车 的准备,尽量避免使用紧急制动与弯路中会车。在转弯时, 操纵方向盘要与车速相配合,应适时转,不同路况的转弯 技巧,及时回方向,转向角度要视实际情况而定,避免意 外事故发生。因为转弯车速过快造成的车祸事故屡见不鲜。
根据道路走向(由城市交通联系和道路网规划确定), 按照拆迁量、工程经济、车辆运行要求、城市发展要求以及 沿线规划区块设计思路等,合理确定平面线形初步设计方案。
主要基础资料是地形图。道路网规划一般为1:2000 —1:5000;详细规划中道路平面设计为1:500—1:1000。
先从中心线开始拟定设计。
平面线形三要素 ⑴. 直线(line); ⑵. 圆曲线(circular curve) ; ⑶. 缓和曲线(transition curve) 。
设计车速
车速是道路几何线形的基本依据之一。设计车速就是指具 有平均驾驶水平的驾驶员在天气良好、低交通密度时能够保持 安全、舒适行驶的最高速度。
道路设计上一定要给车辆足够的缓冲距离。 设计车速的大小对道路弯道半径、弯道超高、行车视距等 线形要素取值起决定作用,并对道路横断面尺寸、侧向净宽、 道路纵坡度等有密切关系。
n
凹竖曲线(桥下视距)
车辆在平曲线上转弯时,因为看不到前方的障碍物,所以转 弯路口都会设置反射凸透镜,让司机提前看到过来车辆。
一、停车视距
停车视距是指驾驶人员发现前方有障碍物后,采取制定措 施使汽车在障碍物前停下来所需要的最短距离。
停车视距构成:停车视距由三部分组成。反应距离、制动 距离和安全距离。
世界上最长的直行公路——澳大利亚艾尔公路
艾尔高速公路,穿越西澳大利亚州和南澳大利亚通过纳 勒伯平原。是世界上最长的无转弯公路,直线长达146公里, 没有一个转弯,对任何司机来说都是一项艰难的挑战,直得 让人发疯!
城市道路平曲线设计
2、直线的设计
1.直线不能太长,否则容易引起驾驶员疲劳。直线最大长 度为设计车速的20倍。
其他建设用地划分开来。包括通行机动车、非机动车和行人 交通所需的道路宽度;
五、绘制平面图
谢 谢!
第三章课程学习内容
1 概述 2 平面线形设计的内容和原则 3 离心力 4 行车视距 5 平面线形设计的步骤
1 概述
路线的概念
路线,字面意思就是指,从一个地方到另一个地方,沿着特 定方向的空间直线或曲线所经过的道路。
线形几何学,就是要研究道路所在空间曲线的几何特性(如 几何构成,几何形状,几何元素关系等)及各种线形路用特 性的一门学科。 线形几何学是城市道路交通规划的基本科学依据。