程稼夫电磁学第二版第四章习题解析

合集下载

电磁学第二版习题答案

电磁学第二版习题答案

电磁学第二版习题答案电磁学 第二版 习题解答电磁学 第二版 习题解答 (2)第一章 .......................................................................................................................................................... 2 第二章 ........................................................................................................................................................ 16 第三章 ........................................................................................................................................................ 24 第四章 ........................................................................................................................................................ 32 第五章 ........................................................................................................................................................ 36 第六章 ........................................................................................................................................................ 43 第七章 .. (48)第一章1.2.2 两个同号点电荷所带电荷量之和为Q 。

电磁场与电磁波第四章习题及参考答案

电磁场与电磁波第四章习题及参考答案

第四章 习题4-1、 电量为nC 500的点电荷,在磁场)(ˆ2.1T zB =中运动,经过点)5,4,3(速度为 s m y x/ˆ2000ˆ500+ 。

求电荷在该点所受的磁场力。

解:根据洛仑兹力公式B v q F⨯=N x y z y x 4491012ˆ103ˆ2.1ˆ)ˆ2000ˆ500(10500---⨯+⨯-=⨯+⨯⨯= N y x4103)ˆˆ4(-⨯-= 4-2、真空中边长为a 的正方形导线回路,电流为I ,求回路中心的磁场。

解:设垂直于纸面向下的方向为z 方向。

长为a 的线电流I 在平分线上距离为a/2的点上的磁感应强度为aIzB πμ2ˆ01= 因而,边长为a 的正方形导线回路在中心点上的磁感应强度为aIz B B πμ24ˆ401==题4-2图 题4-3图4-3、真空中边长为a 的正三角形导线回路,电流为I ,求回路中心的磁场.解:设垂直于纸面向下的方向为z 方向。

由例4-1知,长为a 的线电流I 在平分线上距离为b 的点上的磁感应强度为2201)2(ˆa b a bIz B +=πμ所以220)2(3ˆa b a bIz B +=πμ ,其中)6(2πtg a b =4-4、真空中导线绕成的回路形状如图所示,电流为I 。

求半圆中心处的磁场。

(c)题4-4 图解:设垂直于纸面向内的方向为z 方向。

由例4-2知,半径为a 的半圆中心处的磁场为aIz B 4ˆ01μ= (1)因为在载流长直导线的延长线上磁场为零,因此aIz B 4ˆ0μ= (2)由例4-1知,本题半无限长的载流长直导线在距离为a 处的磁场为aIz B πμ4ˆ02= 因此本题磁场为半圆环的磁场与两半无限长的直导线的磁场之和)2(4ˆ0+-=ππμaIz B (3)本题磁场为电流方向相反的两不同半径的半圆环的磁场之和,即)11(4ˆ0ba I zB -=μ 4-5、 在真空中将一个半径为a 的导线圆环沿直径对折,使这两半圆成一直角。

电磁学习题解答第四章

电磁学习题解答第四章

解:由直线段AB电流的磁场:
B
0I 2r
(sin1
sin 2 )
4
I 0
a2
3 3r02
(
3a 2) 4a 2 3r02
30 Ia
2 a 2 3r02 4a 2 3r02
故中心轴上的磁场:
3(B cos ) 3
30 Ia
2 a 2 3r0 2 4a 2 3r0 2
90 Ia2
2 (a 2 3r0 2 ) 4a 2 3r0 2
氢原子处在正常状态基态时它的电子可看作是在半径为a053108厘米的轨道叫做玻尔轨道上做圆周运动速率为v22108厘米每秒已知电子电荷的大小为e161019库仑求电子的这种运动在轨道中心产生的磁感应强度b的值
第四章
3.如附图所示,一条无穷长载流质导线在一处折成直角,p点在 折线的延长线上,到折点的距离为a,
解: 由题意知,
B1
0 I1 2x x1
B B1
B2
0 I 2 2x2
co s x12 x2 2 4a 2
2 x1 x2
x1 x1
B2 α xx22
B
B 1
2
B2 2
2B1 B2
co s
I1
2a
I2
0 2
( I1 ቤተ መጻሕፍቲ ባይዱ2 x1
I2 x2
2
2
I1 x1
I2 x2
x12 x2 2 4a 2 2 x1 x2
解:依题意,做如图所示.y~y+dy细长电流
dI jdx Idy/ 2a
dB 0dI 0Idy/ 2a 2r 2 x2 y 2
dBy
dBcos
0Idy/ 2a 2 x2 y 2

电磁学第二版习题答案第四章

电磁学第二版习题答案第四章

j
δ
=
ρ I 3.14 ×10−8 × 20 = = 0.2 V 2 −3 2 m πR 3.14 × (10 )
4.3.5 铜的电阻温度系数为 4.3 ×10−3 / 0C ,在 0 0C 时的电阻率为 1.6 ×10−8 Ω ⋅ m ,求直径为 5mm、长 为 160km 的铜制电话线在 25 0C 时的电阻。
b a
ρ dx ρ 1 1 ρ (b − a) = ( − )= 2 4π r 4π a b 4π ab
ρ dx 4π r 2
4.3.4 直径为 2mm 的导线由电阻率为 3.14 ×10−8 Ω ⋅ m 的材料制成,当 20A 的电流均匀地流过该导 体时,求导体内部的场强。
解:根据 j = δ E ,得 E =
lρ ⎡ 1 1 ⎤ lρ − = π (b − a) ⎢ ⎣a b⎥ ⎦ π ab lρ l =ρ 2 s πa
当 a = b 时: R =
4.3.3 球形电容器内外半径为 a 和 b,两极板间充满电阻率为 ρ 的均匀物质,试计算该电容器的漏 电电阻。 解:对漏电电阻,其内部电极电位差,电流沿径向从高电位向低电位流过,则有: dR = 积分得: R = ∫ dR = ∫
(a) Rab = 1K Ω , (b) Rab = 4.5Ω (c) Rab = 1.2Ω (d) Rab = 7.4Ω (e) Rab = 5Ω (f) Rab = 1.5Ω (g) Rab = 14Ω
4.2.3 当附图中的 R1 为何值时 A、B 间的总电阻恰等于 R0? 解:由 R总 = R1 +
U = 0.01× 103 = 10(V ) , U 额 = RW =
2 P 100 = 0.01 × 100 = 0.01(W )

电磁场与电磁波第二版课后答案

电磁场与电磁波第二版课后答案

电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。

《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。

通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。

第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。

电磁波是电磁场的振动。

电磁辐射是指电磁波传播的过程。

2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。

对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。

3.电磁场的本质是相互作用力。

电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。

解析1.电磁场是由电荷和电流产生的物质性质。

当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。

同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。

电磁波是电磁场的振动传播。

电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。

电磁辐射是指电磁波在空间中的传播过程。

当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。

2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。

对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。

当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。

3.电磁场的本质是相互作用力。

当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。

程稼夫电磁学第二版第四章习题解析

程稼夫电磁学第二版第四章习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.4-1动生电动势,电路中的电流要使功率最大,应取最小值1,即.4-2原题图片和答案结果不符,现分两种情况:(1)按答案来:整体绕过o点且于磁感应强度平行的轴转动将运动分解为绕c的平动和转动,转动对电势差无贡献4-3(1)OP电势相等时,OP速度沿磁场方向,显然当OP位于YOZ平面时,OP电势相等(2)当OP在YOZ平面右侧即X>0时,电势差(3)当OP在XOZ平面第一象限时,电势差最大4-4在任意时刻t,线圈中的电流为,则由电磁感应定律和欧姆定律得,该式也可以由能量得到4-5其中后一项式中与直杆平行,当与直杆方向垂直时,电动势绝对值最大故有.4-6对于回路有,故有力矩平衡故有.4-7(1)当转轮在磁场中旋转时,每一根轮辐上的感应电动势为四根辐条作为电源是并联的,轮子产生的感应电动势不变(2)根据戴维宁定理,将轮子作为电源,此时将外电路断路计算等效电动势. 4-8式中当转轮1和转轮2分别以ω1和ω2旋转并达到稳定时,闭合回路中感应电流为注意,因转轮1的四根轮辐并联,总电阻为;转轮2类似,其余连接导线、电刷、轮边缘的电阻均忽略不计.又,因转轮1和转轮2同方向旋转,ε1和ε2同方向,但在电路中的作用是彼此减弱的稳定转动时,转轮2所受磁力矩应与阻力矩抵消.磁力矩是四轮辐所受安培力产生的力矩,为式中是转轮2每根轮辐中的电流.阻力矩是阻力闸提供的力矩,因阻力恒为F,故有稳定将要向下滑动时安培力加滑动摩擦力等于重力分力解得可变电阻最大值匀速向上滑动时,电路中同时杆受力平衡,有联立解得.4-11注意题文描述中磁场竖直向上而所给图垂直于轨道平面,此处以文字为正.(1)下滑时,动生电动势与电源同向,故当加速下滑时,电流增大,V2读数增大,V1减小.(2)由牛顿第二定律及欧姆定律得:4-4-4-内电阻阻值负载电阻与内阻相等时,负载上功率最大.4-15平板的宽度d切割磁感线产生感应电动势,积累电荷产生电场,使自由电荷磁场力和4-16由受力平衡,;由力矩平衡,解得.4-17由于圆盘有厚度D,故当圆盘在磁场区域内竖直下落的速度为v时,在圆盘的厚度方向分离变量:两边积分:又初态,代入得:最大焦耳热:4-23(1)如图所示,当小球在管中任意位置x时,设该处的涡旋电场为E,则故式中r是小球在x位置时与O′的距离,式中的负号表示E的方向如图所示,即E与B的变化构成左手螺旋.因此,E的x分量为其中用到几何关系表示沿y轴正方向.小球所受洛仑兹力沿y方向,无x分量,为可见,即洛仑兹力沿y轴负方向小球在y方向还受管的支持力,因三力平衡,故管对小球的支持力为,于是,小球对管的作用力为.4-24法一:cd法二:记圆心为O,连接,.封闭回路中,与段无感生电动势,则.4-25由图中磁场方向及均匀减小,可知圆周上感应电动势方向为顺时针,大小为已知,联立解出故A、B两点电势差.4-26磁场变化产生感应电动势(负号代表逆时针方向)圆环电阻阻值,感应电流电功率.4-27回路以逆时针指向纸外为正,则磁通ab上解得做功.4-29K反向时,励磁电流反向,磁场反向,磁通量变化量大小为原来的两倍,方向相反.4-32根据自感定义,单匝线圈磁通为.4-36设原线圈电路电流为,副线圈电路电流为,由理想变压器性质由题整理得要求灯正常发光,所以算出额定电流,然后能得到每个回路上的电流.4-38(1)如图,由输入等效电路原理(2)原线圈上的电压;副线圈上的电压(3)变压比为.4-39(1)由题,安培力等于阻力(2)代入,(3)单位时间克服阻力做功单位时间电路中消耗代入得(2)当C2断路时,没有感应电流,C1中无互感电动势此时C2中只有互感电动势,a′、b′两端的电压为.。

程稼夫电磁学第二版 习题解析

程稼夫电磁学第二版 习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.1-1设两个小球所带净电荷为q,距离为l,由库仑定律:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4有:1-5联立解得由库仑定律矢量式得:解得1-6(21-7移当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等. 1-12(1)积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n 区,0到x范围内的p区,以及右边的p区,有:,算得度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.1-1-势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:再将球4接地,设球1的电量变为q,则可得因此流入大地的电量为.1-31(1)考虑上下极板间距为x的情况上极板所带电荷由于只有下极板提供的电场对上极板有引力,此电场强度为则等效劲度系数为系统作微小振动频率若,则上下板会吸在一起.1-32粒子由A运动至B,竖直分运动需要时间:水平方向作匀速圆周运动经过的路程:C1-1-34考虑临界状态下小液珠运动全过程:,式中U为两板间电压;临界状态下A板带电量:,解得:最后一滴液珠被A板吸收后,使得A板实际的电量Q′应略大于Q.故吸收的小液珠个数:,[]表示高斯取整函数,即INT1-35(1)导体球电势为:得:感应电荷总电量..1-36能量守恒:(取无穷远处为势能零点)有心力作用,角动量守恒:又,得:代入E= 2keV及d=r/2得:换为电子,运动情况与质子一致,但球带负电.故1-37(1)动力学方程:,其中,解得(2)分析径向运动:1-38(1)电子在区间,做初速为零的匀加速直线运动:得,经到x=d处,沿x轴方向的分速度在区间,即电子做角频率为的简谐运动,振幅(2.1-39.便得,于是必然有1-40通过强相互作用势能,可求得距离为r时正反顶夸克间的强相互作用力为,负号表示此力为吸引力.正反顶夸克之问的距离为r0时作用力大小为正反顶夸克满足动力学方程1-42(1)由对称性,场强向左或向右情况是一样的,不妨设场强方向向右,大小为E. q的受力情况如图(2)将两个小球视为一个整体,受力情况如图垂直于绳方向的平衡方程为解得(3)接第(2)问,悬线AO的张力为1-43(1)设B球碰前所带电量为q,有将A、B接触一下后A、B都带电,此时有由以上各式解得或(2)已知B球碰前所带电量小于A球所带电量,可知B球碰前所带电量为C球与A球相碰后,两球分别带电4Q;C球与B球相碰后,两球分别带电−Q;CAFAB1-441-45两图导体柱的电势都不为正,故正电荷发出的全部电场线被小球吸收,小球收到来自无穷远的电场线,于是:用a 图减去b 图,左边是一个不带电导体,右边一个大导体右边带负电,如果左边带正电,明显在没有外界净电荷干扰的情况下正负电荷会抵消于是左边应带负电即1-46跟静电计相连,则A与静电计外壳等势,腔内没有电场线,不能带电,故闭合.电荷转移到外壳、k及A上.撤去K,用手摸A即接地,则小球电势变为0.外壳带正电,在A产生的电势为正,为使电势变为0,必须使其带负电,故重新张开.1-47设小球带电量为q.引入一个像电荷,其位置与小球关于导电平面对称,带电量与小球相反.设小球重力为G,弹簧初始伸长量为x0.小球受的电场力为初始状态平衡方程:1-48q方1-49引入两个像电荷如图:(1)q的受力情况如图:(2)两个点电荷、两个像电荷分别在两个点电荷中点产生的场强如图:其中,可见合场强水平向右,1-50(1)每一个+q在球壳上感应出的电荷可等效为一个像点电荷,与球心距离.两个像电荷在两个+q的连线上,分居球心左右.其中一个+q的受力由两个q′和另一个+q提供(以指向球心为正):(则1-布的q1、q2;q在球体外壁的感应电荷等效为在球体外壁均匀分布的−q′和在球心与q连线上的像点电荷q′.由于静电屏蔽,q1、q2所受静电力等于左腔内壁感应电荷对q1、q2的作用力.而左腔内壁的感应电荷为均匀分布,故q1、q2所受静电力像电荷,故q所受静电力(以向右为正)为:根据牛顿第三定律,球A所受静电力为大小仍为.1-54将上一问中的q换成Q,并令F=0,化简得:(2)空腔导体造成静电屏蔽,球壳内点电荷和内表面感应电荷对内表面外部无电势贡献,故球壳电势即为外表面感应电荷带来的电势.又由于外表面感应电荷为均匀分布,在外表面内不产生电场,故外表面感应电荷对球壳上电势贡献等于其在球心处产生的电势,.1-56设A1、A2、A3的质量分别为m1、m2、m3,带电量的绝对值分别为q1、q2、q3,A1、A2运动的角速度均为ω对A1有,对A2有两式相比,即得.1-57假设可以做稳定小振动,写出环偏离平衡位置x处的势能:又,得电容:.1-59法一:两个球均可视为与无限远构成电容器,由孤立导体球电容公式,其电容分别为:,.用导线连接前,可视为CA与CB串联,等效电路图如下:电容为用导线连接后,可视为CA与CB并联,等效电路图如下:两金属球等势:,解得则系统电容.1-60(1)设内球带电量为,外球电量在内球球心产生的电势为内球电量在内球球心产生的电势为内球的总电势,解得.外球电量在球心产生的电势为C13故1、2间的电容(b)本问中,3板和4板由导线相连,电势相等,故可看作由1、3构成的电容C13与4、2构成的电容C42串联后整体与1、2构成的电容C12并联,等效电路图如下:故.即又设设由于金属板内无电场,则3板上板与2板下板所带电荷等量同号(故在板内产生电场抵消):则1、2板间电容(b)设给1板充,给2板充,设1板上板带电,则1板下板带电,2板上板带电,2板下板带电,3板下板带电,4板上板带电.设3板上板带电,4板下板带电,由3、4板电荷守恒及金属板内无电场得,联立解得1-64(1)由于任一单元输入端之后的总电容为C,在第1个单元输入端a、b间加电压后,将第1个单元输出端后的电容等效为一个大小为3C的电容,由3个大小为3C的电容串联得第2个单元输入端间电压:同理得第k个单元输入端间电压所求总电能(2)第1单元与后面网络断开前,第1单元中电容为3C的电容器的带电量为Q,有则第第1个单元a、b短路后,设电容器各极板上的电荷分布如图所示.三个电容器贮存的电能1-65(1)首先,1 左与100 右无电荷,因为如果有电荷,则电荷电场线必延伸至无穷远,则金属板电势不为0,与接地不符.设1号板带电,由高斯定理,所有板总电量为零:,则100号板带电.取一个左侧包含1板右板,右侧包含n板左板的高斯面(),由于金属板内无电场,此高斯面电通量为0:,解得.1-66过程中电容电荷量不变,故弹力的水平增量:受力平衡得:.1-67因为,故可用平行板电容器公式近似计算电容C(注意内径是直径!),设玻璃1-并联:1-69设初始时细线与竖直方向夹角为,由受力平衡得:放入煤油后,浮力矩与静电力矩增量抵消:又与空气接触处无极化电荷,得.(4)与正极板接触的极化面电荷密度得1-71设极板面积为S,升高高度h,极化面电荷密度对升高的部分液体电介质受力分析得:其中解得.注意:此题素来受争议,焦点在于此题虚功原理是否适用(如果尝试以虚功原理计算,其结1-73(1)初态电容,电场能,带入得抽出后Q不变,电容变为,电场能..对势能求负梯度得受力:.暴力化简,其中.1-75,外力做功,,电阻放热.(2)故(3).1-1-(得.1-(2)系统静电能小球壳上电荷有电势,大球壳上有电势故系统能量. 1-82记,上的电荷为,有电势.,板带;4上板带,下板无电荷.此时三个电容串联,一个不带电,另外两个极板带电量相同,可等效为一板间距为的电容.1-84同1-501-85(1)取平面(即面)分析.两个点电荷在接地平板感应出两个像电荷:处处.作用在点电荷上的力高斯定理得1-86初态:末态:能量守恒:.1-87(1)设导体球原带电.如图,球外电势.(2)像电荷同(1)如图,球外电势.1-88外场作用下,介质球周围极化电荷面密度余弦分布.计算处:,解得(3).1-90(4)球形电容器电容三个电容串联:得(1). Q为第一问所求值.1-91平行板电容:电路总电容:极板上总电荷:.解得.1-92(21-93解得.(2)电压:电容定义:.(3)设留在电容内介质的长为x,外力为电容并联:。

电磁学第二版答案 (3)

电磁学第二版答案 (3)

电磁学第二版答案第一章:电磁场的基本概念和电场定律1.问题:什么是电磁场?电磁场与电荷的关系是什么?答案:电磁场是由电荷产生的一种物质性质,可以通过施加力量或引力相互作用的方式来描述。

电磁场与电荷之间通过电场和磁场来相互作用。

电荷产生的电场是电力线从正电荷指向负电荷的线,而磁场则是呈环状绕着电流或磁体产生的。

2.问题:什么是库仑定律?请描述其数学形式。

答案:库仑定律是描述电荷之间相互作用力的定律。

其数学形式可以表示为:$F = k \\frac{Q_1Q_2}{r^2}$其中,F表示电荷之间的力,Q1和Q2分别表示两个电荷,r表示两个电荷之间的距离,k为库仑常数。

3.问题:什么是电场强度?电场强度的计算公式是什么?答案:电场强度表示单位正电荷在某点上受到的力,是描述电场场强性质的物理量。

其计算公式可以表示为:$E = \\frac{F}{q}$其中,E表示电场强度,F表示力,q表示测试电荷。

4.问题:什么是高斯定律?请描述其数学形式。

答案:高斯定律描述了电场与电荷之间的关系。

其数学形式可以表示为:$\\phi_E = \\frac{Q}{\\varepsilon_0}$其中,$\\phi_E$表示电场的通量,Q表示电荷量,$\\varepsilon_0$为真空介电常数。

第二章:静电场1.问题:什么是电势能?请描述其计算公式。

答案:电势能是指电荷在电场中的位置所具有的能量。

其计算公式为:PE=qV其中,PE表示电势能,q表示电荷量,V表示电势。

2.问题:什么是电势?请描述其计算公式。

答案:电势是描述电场中某一点电能状态的物理量。

其计算公式为:$V = \\frac{U}{q}$其中,V表示电势,U表示电势能,q表示电荷量。

3.问题:什么是电容器?请描述电容器的分类。

答案:电容器是储存电荷的装置,由两个导体之间的绝缘介质(电介质)隔开。

电容器根据结构和工作方式的不同,可以分为电容电器和分布式电容器两种类型。

电磁学课后答案第四章

电磁学课后答案第四章
0
4-2 (张方奕 PB13203055) 解: (1)相互垂直两段对 O 无电磁贡献 = 即有 =− = = ⑵代入 得B + ∙ 0. 5 4 ∙ 0. 5 4 ( − ) = 8 4
I = 20 A, a = 30 mm , b = 50 mm
4 ´ 10 -5 T
4-3 (张方奕 PB13203055) 解: 磁感 B 可分为无限长导线与圆环 O 分别贡献 由安培定理 2 =
0
4-7(张方奕 PB13203055) 解: dQ e 由电流的定义, I= = 2 p r dt ( ) v 则, B = 4p
0
*
ev 2pI = 0 2 = 12.52T r 4p r
4-8 (余阳阳 PB13203083) 解:
Q × Rd × (2p R sin )( R sin ) 2 2 Br = ò 4p R 3 2p 0 2× [( R sin ) 2 + ( R cos - x ) 2 ] 2
又由匀速圆周运动规律得
mv 2 mv = Bqv r = r Bq mv mv = v0 × 0 v× Bq B0 q v= mv0 B v0 , r = B0 q BB0
4-15 (余阳阳 PB13203083) 解: (1) 由动量定理
B
dq ldt = mdv dt
Blq = mv
又由能量守恒
0
ln
b + r 2 + b2 a+ r +b
2 2
+
a r +n
2 2
-
b r + b2
2
4-5 (张方奕 PB13203055) 解: (1).圆环两半相抵消,B=0 (2).电阻之比为

电磁学第二版习题答案

电磁学第二版习题答案

电磁学第二版习题答案
《电磁学第二版习题答案:深入探讨电磁学的基本原理和应用》
电磁学是物理学中的重要分支,研究电荷和电流所产生的电场和磁场以及它们之间的相互作用。

《电磁学第二版》是一本经典的电磁学教材,其中包含了大量的习题,用以帮助学生加深对电磁学原理的理解。

本文将深入探讨这些习题的答案,以及它们背后的物理原理和应用。

在电磁学第二版的习题答案中,我们可以看到许多基本的电磁学原理得到了巧妙的应用。

例如,通过求解电荷在电场中的受力情况,我们可以推导出库仑定律,并进一步了解电荷之间的相互作用。

另外,通过对电磁感应现象的分析,我们可以理解电磁感应定律,并应用它们来解决各种实际问题,如感应电动势和法拉第电磁感应定律等。

除了基本原理的应用,电磁学第二版习题答案还涉及了一些高级的电磁学概念和技术。

例如,通过求解麦克斯韦方程组,我们可以探讨电磁波的传播特性和极化现象,从而深入了解电磁波的性质和应用。

此外,还可以通过电磁学习题来理解电磁场的能量和动量传递,以及电磁场与物质的相互作用,这对于电磁学在工程技术和现代物理学中的应用具有重要意义。

总的来说,电磁学第二版习题答案不仅帮助学生巩固了电磁学的基本原理,还深入探讨了一些高级的电磁学概念和技术。

通过学习这些习题答案,读者可以更加全面地理解电磁学的理论和应用,为今后的学习和研究奠定坚实的基础。

同时,这些习题答案也为电磁学教学和科研提供了宝贵的参考资料,促进了电磁学领域的发展和应用。

电磁学第四章答案全

电磁学第四章答案全

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载电磁学第四章答案全地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容习题2、平行板电容器(面积为S,间距为d)中间两层的厚度各为d1和d2(d1+d2=d),介电常数各为和的电介质。

试求:(1)电容C;(2)当金属板上带电密度为时,两层介质的分界面上的极化电荷密度;(3)极板间电势差U;(4)两层介质中的电位移D;解:(1)这个电容器可看成是厚度为d1和d2的两个电容器的串联:(2)分界处第一层介质的极化电荷面密度(设与d1接触的金属板带正电)分界处第二层介质的极化电荷面密度:所以,若与d1接触的金属板带负电,则(3)(4),4、平行板电容器两极板相距3.Ocm,其间放有一层的介电质,位置与厚度如图所示,已知极板上面电荷密度为,略去边缘效应,求:(1)极板间各处的P、E和D的值;(2)极板间各处的电势(设正极板处);(3)画出E-x,D-x,U-x曲线;解:(1)由高斯定理利用对称性,可给出二极板内:(各区域均相同),在0与1之间,在1与2之间,在2与3之间,,(2):0-1区:1-2区:2-3区:题4图6、一平行板电容器两极板相距为d,其间充满了两种介质,介电常数为的介质所占的面积为S1, 介电常数为的介质所占的面积为S2。

略去边缘效应,求电容C。

解:电容C等效为两个电容器的并联:9、在半径为R的金属球之外有一层半径为的均匀电介质层,设电介质的介电常数为,金属球带电荷云为Q,求:(l)介质层内、外的场强分布:(2)介质层内、外的电势分布;(3)金属球的电势。

解:(1)当时,,当时,当时,(2)介质层内的电势:(3)金属球的电势:12、球形电容器由半径为 QUOTE R1 的导体球和与它同心的导体球壳构成,壳的内半径为 QUOTE R2 ,其间有两层均匀电介质,分界面的半径为r,介电常数分别为 QUOTE ε1 和 QUOTE ε2 (见图4-27)。

大物电磁学课后答案4

大物电磁学课后答案4

a
|2

a
2
0I arctg a a 2x
y
a/2
dB x
Bx 0
B
B
2 x

B
2 y
By

0I arctg a
a
2x
当a 时, B 0I arctg 0I 0 j .
a
a 2 2
补充4.4 边长为a的正方形载流回路,电流为I, (1)求这回路轴

2
2
0I 2 2 R
d

0I 2R
dI
x
dB
柱面横截面图
(沿x正向)
4-15 载流长直导线弯成图中三种形状,求O点的磁感应强度B。
解:(a)分成4段
B1 B3 0
B2
0Idl 4R12

0
0I 4R12
R1d

0I 4R1
同理
B4

0I 4R 2
解: (1) eE evB v E/B 3.75103 (米/秒)
(2)E,V,B 两两垂直
4-10 已知一电量为q的粒子垂直入射到磁感应强度为B的均匀磁
场以前,经过电压为V的电场加速,粒子的初速度可以忽略不计
,进入磁场后经过半圆到达照像底片上的P点,已知粒子入口至
P点的距离为x,求该粒子质量。
解:由于BC和AD中I2方向相反,在I1的磁场中受
力,大小相等方向相反,合力为零。
I1
AB受力为
FAB

I 2lB1

I
2l
0I1 2a
(方向如图)
ab
B
C
I2 l

程稼夫电磁学答案全解

程稼夫电磁学答案全解

相差 5%左右。遇到类似的小差距,一般就是 3 种情况:1 π按 3 算 2 g按 9.8 算 3 你过程 中的量保留的位数太少。 ) 5 首先它们要共线,否则无法平衡,其次负电荷应在正电荷中间,否则负电荷无法平衡。于 是乎
⎧ kq1q3 kq1q2 = 2 ……① ⎪ ⎪ a2 l 其中,a为q1q 3的距离,b为q 2 q 3l为q1q 2的距离 ⎨ ⎪ kq2 q3 = kq1q3 ……② ⎪ l2 ⎩ b2
(2)取一小段线段,令其到r处的距离为x,则E= r +l (3)依然等效…… 13 因为无限大带点平板两边场强与距离无关, 所以可以把所研究位置两边的电荷压到一起。 14(1)把外面的球壳拿掉(貌似牛顿证明过平方反比力场球壳内部场强为 0) 挖空等效于放上一个电荷密度相同,点性相反的球,然后根据第一问,矢量叠加即可
U MN = E Δl =
2 U v0 d 2g
既然是让内部电势=0,那么就是让内部与无穷远等势。于是我们从外面开始数首 先,由于是金属球壳,所以内球1壳内表面无电荷,故外表面电荷量为q1,然后由 高斯定理得:外球壳内表面电荷量为-q1,那么我们从最外面开始数:造成无穷远 kQ ,造成内球壳与外球 b 壳电势差的电荷是夹在中间的电荷,产生的电势差相当于一个半径a带电-q1的金 与外球壳电势差的是外球壳外表面的电荷Q,则电势差为 属球在表面处和距球心为b处产生的电势差,为 + kQ = 0故Q − q1 = 答案 b − kq1 − kq1 − kq − kq1 − , 则由题意得: 1 − a b a b
29 30
由矢量图中的数量关系可以知道答案……
首先,看看 r
a 的意义:球外电荷不影响球上电荷的分
布,即把带电球看作点电荷。再看看电荷分布的原则:如 果电荷等分后整个系统的电荷对称分布,那么就等分。于 1 1 1 是,很自然地 Q2 = Q , Q3 = Q .Q4 本来不应该等于 Q的,但是差 2 4 8 距是一个1阶小量,对最后答案的影响就是2阶小量,而答案 a 中只有1阶小量( ),所以暂令它是 r 1 Q。与此同时,1带的电量也带着一个一阶小量,这个就不能 8 丢了,因为这个小量对答案的影 响也是一阶小量。 那么根据1、4接触时电势相等和1接地电势为0得(还有 Q1 + Q4 Q )(接地后电荷 Q '): 8 ⎧ kQ1 kQ 2 kQ3 kQ4 kQ 4 kQ 3 kQ2 kQ1 ⎪ a + r + 2r + r = a + r + 2r + r ⎪ ⎨ kQ ' kQ 2 kQ3 kQ4 ⎪ + + + =0 ⎪ a r r 2r ⎩ = 2 ( -2) a + r (5 2 + 2) a Q, Q ' = Q 解得: Q1 = 2 8(r-a) − 8 2r 2 2 r2 + ( -2) ar + (5 + 2 ) ar -2) ar + (5 + 2 ) a ( r − a ) 2 2 Q≈ Q 于是 Δ Q = Q1 − Q ' = 8r ( r − a ) 8r ( r − a ) 3 1 a 3 1 a 2 ) a ] (1 − ) −1 Q ≈ [ r + (3 + 2 ) a ] (1 + )Q ≈ 答案喽 = [ r + (3 + 2 8r r 2 8r r 1 这道题把Q 4约化为 Q是关键,否则后来的计算会异常麻烦 8 r2 + (

电磁学第二版答案解析

电磁学第二版答案解析
答:q0不是足够小时,会影响大导体球上电荷的分布。由于静电感应,大导体球上的正电荷受到排斥而远离P点,而F/q0是导体球上电荷重新分布后测得的P点场强,因此比P点原来的场强小。若大导体球带负电,情况相反,负电荷受吸引而靠近P点,P点场强增大。
3、两个点电荷相距一定距离,已知在这两点电荷连线中点处电场强度为零。你对这两个点电荷的电荷量和符号可作什么结论?
答:人体是导体。当手直接握铜棒时,摩擦过程中产生的电荷通过人体流入大地,不能保持电荷。戴上橡皮手套,铜棒与人手绝缘,电荷不会流走,所以铜棒带电。
7、两个点电荷带电2q和q,相距l,第三个点电荷放在何处所受的合力为零?
解:设所放的点电荷电量为Q。若Q与q同号,则三者互相排斥,不可能达到平衡;故Q只能与q异号。当Q在2q和q联线之外的任何地方,也不可能达到平衡。由此可知,只有Q与q异号,且处于两点荷之间的联线上,才有可能达到平衡。设Q到q的距离为x.
第一章静电场
§1.1静电的基本现象和基本规律
思考题:
1、给你两个金属球,装在可以搬动的绝缘支架上,试指出使这两个球带等量异号电荷的方向。你可以用丝绸摩擦过的玻璃棒,但不使它和两球接触。你所用的方法是否要求两球大小相等?
答:先使两球接地使它们不带电,再绝缘后让两球接触,将用丝绸摩擦后带正电的玻璃棒靠近金属球一侧时,由于静电感应,靠近玻璃棒的球感应负电荷,较远的球感应等量的正电荷。然后两球分开,再移去玻璃棒,两金属球分别带等量异号电荷。本方法不要求两球大小相等。因为它们本来不带电,根据电荷守恒定律,由于静电感应而带电时,无论两球大小是否相等,其总电荷仍应为零,故所带电量必定等量异号。
解:
(1)
(2)q与Q同号时,F背离O点,q将沿两Q的中垂线加速地趋向无穷远处。

电磁学第二版课后习题答案

电磁学第二版课后习题答案

电磁学第二版课后习题答案电磁学是物理学中的重要分支,研究电荷和电流的相互作用以及电磁场的产生和传播。

对于学习电磁学的学生来说,课后习题是巩固知识和提高能力的重要途径。

本文将对《电磁学第二版》课后习题进行一些解答和讨论,帮助读者更好地理解电磁学的概念和应用。

第一章:电荷和电场1. 问题:两个等量的正电荷之间的相互作用力是多少?答案:根据库仑定律,两个等量的正电荷之间的相互作用力等于它们之间的电荷量的平方乘以一个常数k,即F = kq1q2/r^2。

2. 问题:电场是什么?如何计算电场强度?答案:电场是指电荷周围的一种物理量,它描述了电荷对其他电荷的作用力。

电场强度E可以通过电场力F除以测试电荷q得到,即E = F/q。

第二章:静电场1. 问题:什么是电势能?如何计算电势能?答案:电势能是指电荷在电场中由于位置变化而具有的能量。

电势能可以通过电荷q乘以电势差V得到,即U = qV。

2. 问题:什么是电势差?如何计算电势差?答案:电势差是指单位正电荷从一个点移动到另一个点时所做的功。

电势差可以通过电场力F乘以移动距离d得到,即V = Fd。

第三章:电流和电阻1. 问题:什么是电流?如何计算电流?答案:电流是指单位时间内通过导体横截面的电荷量。

电流可以通过电荷量Q除以时间t得到,即I = Q/t。

2. 问题:什么是电阻?如何计算电阻?答案:电阻是指导体中电流流动受到的阻碍程度。

电阻可以通过电压V除以电流I得到,即R = V/I。

第四章:电路和电源1. 问题:什么是电路?如何计算电路中的电流和电压?答案:电路是指由电源、导线和电器元件组成的路径,用于电流的传输和电能的转换。

电路中的电流可以通过欧姆定律计算,即I = V/R,其中V为电压,R 为电阻。

2. 问题:什么是直流电源?什么是交流电源?答案:直流电源是指电流方向保持不变的电源,如电池。

交流电源是指电流方向周期性变化的电源,如交流发电机。

通过以上的解答和讨论,我们对电磁学的基本概念和计算方法有了更深入的了解。

电磁学-程书分级(第二版)5页打印版

电磁学-程书分级(第二版)5页打印版
1
P162
习题1-37
2
第二问计算时要注意哪些是可以舍掉的二阶小量,不然算不到答案上
P162
习题1-38
1
P163
习题1-39
1
P163
习题1-40
1
P163
习题1-41
1
P163
习题1-42
1
P164
习题1-43
1
P164
习题1-44
1
P164
习题1-45
1
P164
习题1-46
1
P164
习题1-47
P169
习题1-78
1
P169
习题1-79
1
P169
习题1-80
1
P169
习题1-81
1
P169
习题1-82
1
P170
习题1-83
1
P170
习题1-84
1
见P165习题1-50
P170
习题1-85
1
第三问答案可能有误,习题1-49几乎完全一样
P170
习题1-86
1
“相对介电常数”
P170
习题1-87
P49
练习1-30
2
要用积分
P50
练习1-31
1
第二问是假设三个半径均为已知
P52
练习1-32
2
从该题目解答来看,题目应当默认高压电缆的电压为常量,谜之对b求导
P53
练习1-33
1
答案有误
P55
练习1-34
2
解答有误
P60
练习1-35
1
P62
练习1-36
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.
4-1动生电动势,电路中的电流
要使功率最大,应取最小值1,即.
4-2原题图片和答案结果不符,现分两种情况:
(1)按答案来:
整体绕过o点且于磁感应强度平行的轴转动
将运动分解为绕c的平动和转动,转动对电势差无贡献
4-3(1)OP电势相等时,OP速度沿磁场方向,显然当OP位于YOZ平面时,OP电势相等
(2)当OP在YOZ平面右侧即X>0时,电势差
(3)当OP在XOZ平面第一象限时,电势差最大
4-4在任意时刻t,线圈中的电流为,则由电磁感应定律和欧姆定律得,
该式也可以由能量得到
4-5
其中后一项式中与直杆平行,当与直杆方向垂直时,电动势绝对值最大故有.
4-6对于回路有,故有
力矩平衡
故有.
4-7(1)当转轮在磁场中旋转时,每一根轮辐上的感应电动势为
四根辐条作为电源是并联的,轮子产生的感应电动势不变
(2)根据戴维宁定理,将轮子作为电源,此时将外电路断路计算等效电动势
. 4-8
式中
当转轮1和转轮2分别以ω1和ω2旋转并达到稳定时,闭合回路中感应电流为
注意,因转轮1的四根轮辐并联,总电阻为;转轮2类似,其余连接导线、电刷、轮边
缘的电阻均忽略不计.又,因转轮1和转轮2同方向旋转,ε1和ε2同方向,但在电路中的作用是彼此减弱的
稳定转动时,转轮2所受磁力矩应与阻力矩抵消.磁力矩是四轮辐所受安培力产生的力矩,

式中是转轮2每根轮辐中的电流.阻力矩是阻力闸提供的力矩,因阻力恒为F,故有稳定
将要向下滑动时安培力加滑动摩擦力等于重力分力
解得可变电阻最大值
匀速向上滑动时,电路中
同时杆受力平衡,有
联立解得.
4-11注意题文描述中磁场竖直向上而所给图垂直于轨道平面,此处以文字为正.
(1)下滑时,动生电动势与电源同向,故当加速下滑时,电流增大,V2读数增大,V1减小.
(2)由牛顿第二定律及欧姆定律得:
4-
4-
4-
内电阻阻值
负载电阻与内阻相等时,负载上功率最大.
4-15平板的宽度d切割磁感线产生感应电动势,积累电荷产生电场,使自由电荷磁场力和
4-16由受力平衡,;由力矩平衡,
解得.
4-17由于圆盘有厚度D,故当圆盘在磁场区域内竖直下落的速度为v时,在圆盘的厚度方向
分离变量:
两边积分:
又初态,代入得:
最大焦耳热:
4-23(1)如图所示,当小球在管中任意位置x时,设该处的涡旋电场为E,


式中r是小球在x位置时与O′的距离,式中的负号表示E的方向如图所示,即E与B的变化构成左手螺旋.
因此,E的x分量为
其中用到几何关系
表示沿y轴正方向.
小球所受洛仑兹力沿y方向,无x分量,为
可见,即洛仑兹力沿y轴负方向
小球在y方向还受管的支持力,因三力平衡,故管对小球的支持力为,
于是,小球对管的作用力为.
4-24法一:
cd
法二:记圆心为O,连接,.封闭回路中,与段无感生电动势,

.
4-25
由图中磁场方向及均匀减小,可知圆周上感应电动势方向为顺时针,大小为
已知,联立解出
故A、B两点电势差.
4-26磁场变化产生感应电动势(负号代表逆时针方向)
圆环电阻阻值,感应电流电功率.
4-27回路以逆时针指向纸外为正,则磁通
ab上
解得
做功.
4-29K反向时,励磁电流反向,磁场反向,磁通量变化量大小为原来的两倍,方向相反.
4-32根据自感定义,单匝线圈磁通为.
4-36设原线圈电路电流为,副线圈电路电流为,由理想变压器性质
由题
整理得
要求灯正常发光,所以算出额定电流,然后能得到每个回路上的电流.
4-38(1)如图,由输入等效电路原理
(2)原线圈上的电压;
副线圈上的电压
(3)变压比为.
4-39(1)由题,安培力等于阻力
(2)代入,
(3)单位时间克服阻力做功单位时间电路中消耗
代入得
(2)当C2断路时,没有感应电流,C1中无互感电动势
此时C2中只有互感电动势,a′、b′两端的电压为.。

相关文档
最新文档