哺乳动物成熟红细胞总结

哺乳动物成熟红细胞总结
哺乳动物成熟红细胞总结

.

'.

细胞器归纳

.

'.

生物膜系统

.

'.

八体外哺乳动物细胞染色体畸变试验

九、体外哺乳动物细胞染色体畸变试验 In Vitro Mammalian Cells Chromosome Aberration Test 1 范围 本规范规定了体外哺乳动物细胞染色体畸变试验的基本原则、要求和方法。 本规范适用于检测化妆品原料及其产品的致突变性。 2 规范性引用文件 OECD Guidelines for Testing of Chemicals ( No.473, July 1997) 3试验目的 本试验是用于检测培养的哺乳动物细胞染色体畸变,以评价受试物致突变的可能性。 4 定义 染色体型畸变(Chromosome-type aberration):染色体结构损伤,表现为在两个染色单体相同位点均出现断裂或断裂重组的改变。 染色单体型畸变(Chromatid-type aberration):染色体结构损伤,表现为染色单体断裂或染色单体断裂重组的损伤。 染色体数目改变(Numerical aberration):所用细胞株的正常染色体数目的变化。 结构畸变(Structural aberration):在细胞分裂的中期相阶段,用显微镜检出的染色体结构改变,表现为缺失、断片、互换等。 有丝分裂指数(Mitotic index):中期相细胞数与所观察的细胞总数之比值;是一项反映细胞增殖程度的指标。 5 试验基本原则 在加入和不加入代谢活化系统的条件下,使培养的哺乳动物细胞暴露于受试物中。用中期分裂相阻断剂(如秋水仙素或秋水仙胺)处理,使细胞停止在中期分裂相,随后收获细胞,制片,染色,分析染色体畸变。 6 试验方法 6.1 试剂和受试物制备 6.1.1 阳性对照物:可根据受试物的性质和结构选择适宜的阳性对照物,阳性对照物应是已知的断裂剂,能引起可检出的、并可重复的阳性结果。当外源性活化系统不存在时,可使用甲磺酸甲酯(methyl methanesulphonate (MMS))、甲磺酸乙酯(ethyl methanesulphonate(EMS))、乙基亚硝基脲(ethyl nitrosourea)、丝裂霉素C(mitomycin C)、4-硝基喹啉-N-氧化物(4-nitroquinoline-N-oxide)。当外源性活化系统存在时,可使用苯并(a)芘[benzo(a)pyrene]、环磷酰胺(cyclophosphamide)。 6.1.2 阴性对照物:应设阴性对照,即仅含和受试物组相同的溶剂,不含受试物,其它处理和受试物组完全相同。此外,如未能证实所选溶剂不具有致突变性,溶剂对照与本实验室空白对照背景资料有明显差异,还应设空白对照。 6.1.3 受试物 6.1.3.1 受试物的配制:固体受试物需溶解或悬浮于溶剂中,用前稀释至适合浓度;液体受试物可以直接加入试验系统和/或用前稀释至适合浓度。受试物应在使用前新鲜配制,否则就必

红细胞的代谢

第二节红细胞的代谢 ※哺乳动物的红细胞在发育中的形态与代谢的变化 早幼红细胞→中幼红细胞→网质红细胞→成熟红细胞 ⒈早、中幼红细胞:含有胞核、内质网和线粒体,具有合成核酸和 蛋白质的能力,并可以通过有氧氧化获得能量。 ⒉网质红细胞:无细胞核和DNA,不能合成核酸,但尚有少量线 粒体和RNA,可以合成一些蛋白质及有氧氧化供能。 ⒊成熟红细胞:有细胞膜和胞浆,无细胞器,不能合成核酸和蛋白 质,也不能氧化供能,其能量主要来自酵解途径。 一、血红蛋白的生物合成 述:血红蛋白是红细胞中最主要的蛋白质,是在红细胞成熟之前合成的。成年人的血红蛋白由两条α链、两条β链组成。 1.结构:含4个亚基,每个亚基结合1分子血红素 2.组成:珠蛋白和血红素 (一)血红素的合成 述:血红素是含铁卟啉衍生物,是Hb的辅基。 1.合成的组织和亚细胞定位 ⑴合成组织:红细胞的线粒体及胞液 ⑵亚细胞定位:骨髓的幼红细胞和网织红细胞(主要) 2.合成原料:琥珀酰辅酶A、甘氨酸、Fe2+等 3.限速酶:δ氨基γ酮戊酸(ALA)合成酶(辅酶:磷酸吡哆醛)4.合成过程 ⑴δ-氨基-γ-酮戊酸(ALA)的生成 *关键酶:ALA合酶 *反应部位:线粒体

*反应式:课本P158,图13-2 述:维生素B 6缺乏时,血红素合成发生障碍,造成维生素B 6 反应性贫血。 ⑵血红素的生成 ①胆色素原的生成 述:ALA 生成后从线粒体进入胞液。 + AL A 脱水酶 2H 2O ALA ALA 胆色素原(PBG ) ②尿卟啉原与类卟啉原的生成 4x 胆色素原 尿卟啉原Ⅰ、Ⅲ同合酶 尿卟啉原Ⅲ 尿卟啉原Ⅲ脱羧酶 类卟啉原Ⅸ ③血红素的生成 述:胞液中的类卟啉原Ⅲ再进入线粒体 类卟啉原Ⅲ 类卟啉原Ⅲ氧化脱羧酶 原卟啉原Ⅸ 原卟啉原Ⅸ氧化酶 原卟啉Ⅸ 亚铁螯合酶 血红素 述:血红素生成后,迅速进入胞液与珠蛋白结合生成Hb 。 在珠蛋白多肽链合成后,一旦容纳血红素的空穴形成,立 刻有血红素与之结合,并使珠蛋白折叠成其最终的立体结 构,再形成稳定的αβ二聚体;最后,由两个二聚体构成 有功能的α2β2四聚体-血红蛋白。 COOH CH 2CH 2C C O H H H H N H OH O O H O N H 2

红细胞成熟过程哺乳类动物红细胞在成熟过程中要经历一系列的变化

第三章红细胞 一、红细胞成熟过程 哺乳类动物红细胞在成熟过程中要经历一系列的变化: 早幼红细胞具有分裂繁殖的能力,细胞中含有细胞核、内质网、线粒体等细胞器; 从骨髓进入尚未完全成熟的红细胞称为网织红细胞,细胞仍有合成血红蛋白的功能,另外也可见有少量线粒体; 红细胞进入外周血1~3天后。核蛋白体等细胞器消失,成为成熟红细胞。 二、红细胞的基本结构 成熟红细胞是结构功能高度特化的细胞,无细胞核,也无细胞器。 红细胞内的主要成分是血红蛋白。血红蛋白是含卟啉铁的蛋白质。约占红细胞重量的33%,易与酸性染料结合,染成橘红色。 成熟红细胞直径7.5~8.5um,呈双凹圆盘状,表面光滑,中央较薄,约1um,周边较厚。约1.9um,在血涂片标本上显示,中央染色较浅周边较深。这一形态结构特点增加了红细胞的表面积,与体积相同的球形结构相比表面积增大约25%,还可使细胞内任何一点距细胞表面的距离都不超过0.85um。由于胞质细胞内充满了血红蛋白,最大限度地增强了气体交换的功能。 红细胞的数量及血红蛋白的含量随生理功能而政变。婴儿高于成人,运动时多于安静状态,高原地区居民高于平原地区居民。红细胞形态和数量以及血红蛋白的质与量的改变超出正常范围,则表现为病理现象。一般认为红细胞计数<3.0×1012/L,血红蛋白<100g/L,则为贫血(anemia)。红细胞计数>7.0×1012/L、血红蛋白>180g/L,则为红细胞和血红蛋白增多。 单个红细胞在新鲜时为淡黄绿色,大量红细胞使血液呈猩红色。多个红细胞常叠连在一起呈緡钱状。 红细胞有一定弹性和形态可变性,它能通过自身的变形而顺利通过直径更小的毛细血管。红细胞正常形态的维持需足够的ATP供能以及细胞内外渗透压的平衡。当缺乏ATP供能时,其形态由圆盘状态变为棘球状,当ATP供能状态改善后亦可恢复。当血浆渗透压降低时,血浆中的水分进入红细胞内,细胞肿胀呈球形甚至破裂,称为溶血,残留的红细胞膜囊称为血影;若血浆渗透压升高,红细胞内水分析出胞外,致使红细胞皱缩,也可导致膜破坏而溶血。 三、红细胞膜的结构 红细胞膜是成熟红细胞存留的唯一细胞器,它对保持红细胞的形态和维持红细胞的生命具有重要的意义。红细胞对外界的所有联系及反应,包括物质运输、免疫反应、信号转导、药物反应等,都由红细胞膜来完成。 人的红细胞膜是由蛋白质(约占49.3%)、脂质(约占42%)、糖类(约占8%)和无机离子等组成,蛋白质与脂质的比值约为1:1。电镜下观察红细胞膜呈三层(暗-明=暗):外层含糖脂、糖蛋白、蛋白质,为亲水性;中间层含磷脂、胆固醇与胆固醇酯、蛋白质具有疏水性;内层主要包含蛋白质,呈亲水性。即红细胞膜基本结构与其他细胞一样以脂双层为主体,蛋白质镶嵌在脂双层中。蛋白质大多与脂质及糖类结合以脂蛋白或糖蛋白的形式存在。这些蛋白质既有维持红细胞结构的作用,又有各自特定的功能。 1、红细胞膜蛋白 发现红细胞膜上有10种主要蛋白和一些少量蛋白质。 红细胞膜在包膜内表面可见一网状结构支撑着整个细胞,称为膜骨架,主要由血影蛋白、锚定蛋白、肌动蛋白、原肌球蛋白、肌球蛋白、加合素、4.1蛋白、4.2蛋白、4.9蛋白相连接构成。这种网状结构通过锚蛋白固定在细胞膜上。 膜骨架系统对维持红细胞的形状、稳定性起着重要作用。

哺乳动物成熟红细胞的呼吸方式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 哺乳动物成熟红细胞的呼吸方式 哺乳动物的成熟红细胞结构很特殊,既没有细胞核也无线粒体、核糖体等各种细胞器,却富含血红蛋白,这种结构特点与其运输O2的功能是相适应的。 因为无线粒体,红细胞进行无氧呼吸供能。有些学生对此产生疑问:红细胞本身携带O2,却进行无氧呼吸供能,有O2存在时,其无氧呼吸不会受抑制吗?并列举如下理由:①很多种厌氧型的细菌若生活在空气中,其无氧呼吸受到抑制,不能正常生存。②酵母菌等兼性厌氧型的生物生活在氧气充足的环境中进行有氧呼吸,在缺氧的条件下才进行无氧呼吸。 首先明确并不是所有厌氧型的生物都不能生活在有氧环境中,只有那些严格厌氧菌才不能生活在空气中(如光合细菌,产甲烷杆菌等),而耐氧性厌氧菌是可以生活在空气中的。厌氧菌能否生活在空气中,与其体内是否含有超氧化物歧化酶(SOD)和过氧化氢酶(或过氧化物酶)有关。细胞代谢过程中会产生自由基,自由基是指那些带有奇数电子数的化学物质,它们都带有未配对的自由电子,具有高度的化学活性。在O2存在时还会产生超氧阴离子自由基,它是活性氧的形式之一,性质极不稳定,化学反应能力极强,在细胞内可破坏各种重要生物大分子和膜结构,还可形成其他活性氧化物,故对生物体极其有害。好氧性生物或耐氧性厌氧菌细胞内可合成SOD和过氧化氢酶(或过氧化物酶),超氧阴离子自由基在SOD作用下被歧化成H2O2,在过氧化氢酶作用下H2O2又进一步转变成无毒的H2O,而严格厌氧菌不能合成SOD,在有O2存在时,由于无法歧化超氧阴离子自由基而身受毒害,无法生存。 红细胞内存在这两种酶(红细胞未成熟前已合成),生活在有氧环境中,不会受自由基的危害而抑制其代谢活动。 酵母菌等兼性厌氧型的生物,在缺氧的条件下进行无氧呼吸,当氧气充足时进行有氧呼吸,其无氧呼吸将会受到抑制。为什么在O2充足时,酵母菌的无氧呼吸会受到抑制呢?已知磷酸果糖激酶是无氧呼吸(糖酵解)过程中关键的限速酶,ATP对磷酸果糖激酶具有抑制作用,在有柠檬酸、脂肪酸时会加强抑制效应,而ADP、AMP、无机磷则对此酶有激活作用,酵母菌有氧呼吸会产生较多的ATP,使ATP/ADP比值增高,无机磷相对减少,有

人体内的红细胞介绍

体内的红细胞生存周期是120天 人体内的正常红细胞不会永远生存下去,一般寿命在120天左右。衰老的红细胞由于本身代谢的改变,如酶活性和糖酵解速度的降低,能量减少,稳定性受到影响,易在脾内破坏或不断在血管床中冲撞而碎裂,这是红细胞的生理性破坏,每天相当于总量的1/120。 衰老的红细胞主要被单核—巨噬细胞系统所吞噬裂解,释出血红蛋白,分解为铁、珠蛋白和卟啉。卟啉则为体内未结合胆红素的主要来源。未结合胆红素在肝脏内形成结合胆红素。胆汁中含有结合胆红素,它经肠道细菌作用,被还原为粪胆原,大部分随粪便排出。少量粪胆原又被肠道重吸收后进入血液循环,其中大多通过肝脏,尚有小部分粪服原通过肾脏,随尿排出。 正常成人每天排出粪胆原为40~280毫克,排出尿胆原<4毫克。当大量红细胞破坏,患者就会出现黄疸,血清游离胆红素增高、大便粪

胆原排出增多,尿中尿胆原呈强阳性而胆红累则阴性。红细胞就是这样不断的生成和破坏,从而维持了其在人体内的一定数量的平衡。 正常人体内红细胞是如何维护平衡的 在人体内的幼红细胞不断增殖过程中,细胞质也逐渐发育成熟。红细胞的平均寿命约120天,衰老的红细胞被单核—巨噬细胞所吞噬、破坏,尤其是脾脏在破坏红细胞中占有重要地位。 红细胞的生命期和红细胞膜的结构、红细胞内酶系统的活力及血红蛋白分子等有密切关系。红细胞内在的任何一种缺陷均可导致红细胞寿命缩短、破坏加速,如超过了骨髓代偿性增生的程度,就会引起溶血性贫血。肿大的脾脏也可阻滞和吞噬过多的红细胞。所以红细胞的平衡是依赖于红细胞膜结构的稳定,红细胞内酶系统的正常活动及血红蛋白分子含量,以及正常的脾脏功能均有关系。

pGL3-Promoter哺乳动物表达载体说明

pGL3-Promoter 编号 载体名称 北京华越洋生物VECT6010 pGL3--‐Promoter pGL3--‐Promoter载体基本信息 载体名称: pGL3-promoter, pGL3promoter 质粒类型: 荧光素酶报告系统载体 高拷贝/低拷贝: 高拷贝 启动子: SV40 克隆方法: 多克隆位点,限制性内切酶 载体大小: 5010bp 5' 测序引物及序列: RV primer3:CTAGCAAAATAGGCTGTCCC 3' 测序引物及序列: GLprimer2: CTTTATGTTTTTGGCGTCTTCCA 载体标签: -- 载体抗性: 氨苄 筛选标记: -- 备注: 用于快速定量评估影响哺乳动物细胞特定基因表达的因子及其影响能力。 稳定性: 稳定 组成型: 非组成型 病毒/非病毒: 非病毒 pGL3--‐Promoter载体质粒图谱和多克隆位点信息

pGL3--‐Promoter载体序列 ORIGIN 1 GGTACCGAGC TCTTACGCGT GCTAGCCCGG GCTCGAGATC TGCGATCTGC ATCTCAATTA 61 GTCAGCAACC ATAGTCCCGC CCCTAACTCC GCCCATCCCG CCCCTAACTC CGCCCAGTTC 121 CGCCCATTCT CCGCCCCATC GCTGACTAAT TTTTTTTATT TATGCAGAGG CCGAGGCCGC 181 CTCGGCCTCT GAGCTATTCC AGAAGTAGTG AGGAGGCTTT TTTGGAGGCC TAGGCTTTTG

哺乳动物细胞蛋白表达FAQ

哺乳动物细胞蛋白表达FAQ 1、什么是质粒超螺旋,超螺旋对提高表达量有什么帮助?答:闭环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA ,超螺旋比例90%以上是比较理想的真核表达质粒,较低的超螺旋比例会降低表达量近50%以上。 2、CHO细胞与293细胞有什么区别? 答:CHO细胞即中国仓鼠卵巢细胞,是目前表达外源蛋白最多最成功的细胞之一。该细胞属于成纤维细胞,是一种非分泌型细胞,自身很少分泌内源蛋白,因此有利于目的蛋白的纯化分离;相较于其他细胞类型,CHO细胞是治疗性蛋白生产的主要宿主细胞的原因如下:(1)能在化学成分限定和无血清悬浮培养中稳定生长, (2)该细胞基因组信息明确,在人类致病病毒应答方面表现出合理的安全性, (3)能够表达与人相似的翻译后修饰。 此外,CHO细胞表达系统的最重要优势之一是能够容易的得到基因改造的细胞。然而,因为糖基化模式与人类不完全相同,导致CHO细胞产生的重组蛋白在某些时候仍然表现出免疫原性。 HEK293细胞是真核蛋白表达常用的细胞之一,它具有以下优势:更快的生长速度,更高的生长密度、转染效率高,表达后修饰更接近人体蛋白的结构,可能会有潜在的人病毒污染。

3、常用的哺乳动物细胞蛋白表达系统是什么?原理是什 么? 答:我们常用的系统是2936e细胞配套PTT5(pAZ5)载体 HEK2936E 是在细胞的基因组中整合了EBV病毒的 nuclear antigen 1 (EBNA1), 该蛋白可以保证含有EBV病毒复制原点(EBV ori)的质粒在HEK293E 细胞株中复制,提高质粒的拷贝数,进而提高克隆在此种质粒上的外源基因的表达水平。该系统比常规的293F细胞表达量要高。 4、导致哺乳动物细胞蛋白表达低或者不表达的原因有哪些?哪类蛋白不容易表达? 答:基因是否优化,有的蛋白稀有密码子较多,需要对应表达细胞进 行优化密码子。 蛋白本身就比较难做,比如细胞因子类的,衣壳蛋白类的,膜蛋白。质粒质量:内毒素水平、有无蛋白和核酸污染、超螺旋比例、无盐苯酚等试剂 分子量较大或者太小:大于150KD表达会有一定的难度,小于5KD也会有难度。 有的表达量不低,但是纯化得率低(可溶性差,不挂住,不稳定,易降解) 难表达蛋白:细胞因子、激素、抗菌肽、衣壳蛋白、膜蛋白

第十四章 红细胞代谢紊乱_0

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 第十四章红细胞代谢紊乱 第十四章红细胞代谢紊乱第十四章红细胞代谢紊乱复习重点一、红细胞结构与功能 1. 红细胞的生成存在于人血液和骨髓中的造血干细胞具有高度自我更新能力和分化能力,可分化为过渡性的可增殖细胞-造血祖细胞。 根据分化能力,可将造血祖细胞分为多向祖细胞和单向祖细胞,前者可进一步分化成单向祖细胞。 造血干细胞在 EPO 的刺激作用下,形成红系祖细胞,并进一步分化,促进红细胞的分化和成熟,缩短红细胞产生的时间,使得幼红细胞提早脱核,红细胞提前进入血液。 根据细胞的形态特征和发育阶段,红细胞系统可分为原始红细胞、早幼红细胞、中幼红细胞、晚幼红细胞、网织红细胞、成熟红细胞。 2. 成熟红细胞成熟红细胞呈独特的双凹面圆盘形状,不含有一般细胞所具有的细胞器,其蛋白质约有 95%是血红蛋白。 成熟红细胞由细胞质和细胞膜组成,其中细胞膜起着维持红细胞的特有形态的作用;细胞质内含有大量的血红蛋白,均质、无结构,细胞质电子密度较高,由此保证血红蛋白的功能。 3. 红细胞胞质在红细胞的胞质中包含有所有参与其代谢过程的化学成分,通常用平均红细胞容积、血红蛋白含量等指标表示,在疾病过程中,这些指标会发生改变。 1 / 16

4. 红细胞膜的组成与结构红细胞与其他细胞膜的结构相同,由双层脂质构成。 其化学组成主要是脂质和蛋白质。 脂质在红细胞膜内外层的分布是不均一的,在细胞膜外层主要是磷脂酰胆碱、神经鞘磷脂、胆固醇和糖脂(红细胞表面的血型物质),而在细胞膜内层主要是磷脂酰乙醇胺和磷脂酰丝氨酸。 红细胞膜蛋白质可以分为二类: 主体蛋白和外周蛋白。 红细胞膜结构符合流动镶嵌模型理论,以脂质双层为主要支架,蛋白质镶嵌或贯穿于脂质双层,或者处于脂质双层的两侧,具有不对称性的特点。 二、成熟红细胞的代谢 1. 红细胞代谢特点红细胞代谢的重点是糖代谢,成熟红细胞主要通过糖酵解获取能量,约有 90%的糖通过这个途径,其余的糖则通过磷酸戊糖旁路(pentose phosphate shunt) ,以及 2. 3-二磷酸甘油酸支路(2, 3-DPG) 等途径代谢,这些通路相互联系,相互补充,构成了整个红细胞代谢体系。 通过这些代谢提供能量、还原性的 NADH 和 NADPH,以及一些重要的代谢物(如 2, 3-DPG) ,对维持成熟红细胞在循环中约 120 天的生命过程及正常生理功能均有重要作用。 2. 红细胞代谢途径主要有: 糖酵解途径、磷酸戊糖旁路代谢途径、 2, 3-二磷酸甘油酸支

真核细胞表达系统的类型与常用真核细胞表达载体

标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统 摘要 : 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。 自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。 在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。 为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是: ①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制; ②能诱导基因高效表达,可达105倍,为其他系统所不及; ③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。 因此,利用真核表达系统来表达目的蛋白越来越受到重视。目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。 1.酵母表达系统 最早应用于基因工程的酵母是酿酒酵母,后来人们又相继开发了裂殖酵母、克鲁维酸酵母、甲醇酵母等,其中,甲醇酵母表达系统是目前应用最广泛的酵母表达系统。目前甲醇酵母主要有H Polymorpha,Candida Bodini,Pichia Pastris3种。以Pichia Pastoris 应用最多。

哺乳动物红细胞专题知识总结

哺乳动物红细胞专题知识总结 生物组赵鹏 高中阶段关于红细胞的知识一再出现,尤其是哺乳动物红细胞,历年各省高考题、全国高考题多次以红细胞为知识背景考查学生的能力水平,由此也凸现了红细胞知识的重要性。在此做以总结,望在同仁中起到抛砖引玉的作用。 一、形态与颜色:双凹型结构、红色。如下图: 二、产生:由骨髓中的造血干细胞分裂、分化形成。其分化的示意图如下: 三、基因突变——镰刀型细胞贫血症: 1、病因:造血干细胞分裂分化形成红细胞的过程中还要不断地分裂形成新的干细胞, 若这个过程发生基因突变,则可能诱发镰刀型细胞贫血症。其示意图如下: 2、概述:是一种隐性基因遗传病。患病者的血液红细胞表现为镰刀状,其携带氧的功能只

有正常红细胞的一半。 3、诊断: (1)细胞水平:取血液制装片,光学显微镜观察红细胞的形态; (2)分子水平:利用β—珠蛋白基因做成的探针进行检测。 典型考题: 例、(07江苏高考生物试卷38题)单基因遗传病可以通过核酸杂交技术进行早期诊断。镰刀型细胞贫血症是一种在地中海地区发病率较高的单基因遗传病。已知红细胞正常个体的基因型为BB、Bb,镰刀型细胞贫血症患者的基因型为bb。有一对夫妇被检测出均为该致病基因的携带者,为了能生下健康的孩子,每次妊娠早期都进行产前诊断。下图为其产前核酸分子杂交诊断和结果示意图。 (1)从图中可见,该基因突变是由于________引起的。巧合的是,这个位点的突变使得原来正常基因的限制酶切割位点丢失。正常基因该区域上有3个酶切点,突变基因上只有2个酶切点,经限制酶切割后,凝胶电泳分离酶片段,与探针杂交后可显示出不同的带谱,正常基因显示________条,突变基因显示________条。 (2)DNA或RNA分子探针要用________等标记。利用核酸分子杂交原理,根据图中突变基因的核苷酸序列(---ACGTGTT---),写出作为探针的核糖核苷酸序列________。 (3)根据凝胶电泳带谱分析可以确定胎儿是否会患有镰刀型细胞贫血症。这对夫妇4次妊娠有胎儿Ⅱ-1~Ⅱ-4中基因型BB个体是____________,Bb的个体是________,bb的个体是_______________。 评析:展示本题的目的不仅在于让学生巩固复习利用探针来诊断疾病的方法,同时让学生了解整个过程的梗概,因为近些年高考题中,有关电泳的考题并不少见,可藉此机会向学生简述。 答案:(1)碱基对改变(或A变成T) 2 1 (2)放射性同位素(或荧光分子等) …UGCACAA…(3)Ⅱ一l和Ⅱ一4 Ⅱ一3 Ⅱ一2 4、治疗:骨髓移植,即向患者移植正常人的造血干细胞。 ○1骨髓库:骨髓库并不是把供者的骨髓或造血干细胞存到库里。骨髓库里保存的只是志愿捐献造血干细胞人们的名字、年龄、性别、健康状况、详细地址、HLA基因检查结果等。如果有一个患者需要做造血干细胞移植,患者的HLA基因与所有志愿者的HLA基因进行配对,配对相合,便通知该志愿者捐献造血干细胞。因此骨髓库参加的志愿者越多,库容量越大,患者找到相合捐献者的机会就越多。 ○2属于器官移植,会产生排斥反应;

哺乳动物细胞表达系统

哺乳动物细胞表达系统 按照宿主细胞的类型,可将基因表达系统大致分为原核、酵母、植物、昆虫和哺乳动物细胞表达系统。与其它系统相比,哺乳动物细胞表达系统的优势在于能够指导蛋白质的正确折叠,提供复杂的N型糖基化和准确的O型糖基化等多种翻译后加工功能,因而表达产物在分子结构、理化特性和生物学功能方面最接近于天然的高等生物蛋白质分子。从最开始以裸露DNA直接转染哺乳动物细胞至今的30余年间,哺乳动物细胞表达系统不仅已成为多种基因工程药物的生产平台,在新基因的发现、蛋白质的结构和功能研究中亦起了极为重要的作用。本文主要从表达系统及其两个组成部分——表达载体和宿主细胞等方面,简要介绍哺乳动物细胞表达系统和相关的研究进展。 研究现状 ①部分蛋白在哺乳动物细胞中的表达已从实验室研究迈向生产或中试生产阶段。 ②已有许多重要的蛋白及糖蛋白利用哺乳动物细胞系统表达和大量制备、生产。如人组织型血纤蛋白酶原激活因子、凝血因子Ⅷ、干扰素、乙肝表面抗原、红血球生成激素、人生长激素、人抗凝血素Ⅲ,集落刺激因子等。有些产品已投入临床应用或试用。 ③虽然经过多年努力,哺乳动物细胞表达系统的表达水平有大幅度增高,但从整个水平上看仍偏低,一般处在杂交瘤细胞单克隆抗体蛋白产率的下限,即1-30μg/l08细胞/24小时。有人认为其限速步骤可嚣是在工程细胞中(对于重组蛋白来讲,常是异源的),重组蛋白的分泌效率较低。 1 表达载体 1.1 表达栽体的类型 哺乳动物细胞表达外源重组蛋白可利用质粒转染和病毒载体的感染。利用质粒转染获得稳定的转染细胞需几周甚至几个月时间,而利用病毒表达系统则可快速感染细胞,在几天内使外源基因整合到病毒载体中,尤其适用于从大量表达产物中检测出目的蛋白。 根据进入宿主细胞的方式,可将表达载体分为病毒载体与质粒载体。病毒载体是以病毒颗粒的方式,通过病毒包膜蛋白与宿主细胞膜的相互作用使外源基因进入到细胞内。常用的病毒载体有腺病毒、腺相关病毒、逆转录病毒、semliki森林病毒(sFv)载体等。另外,杆状病毒载体应用于哺乳动物细胞的表达在近几年颇受重视,这是因为它与其它病毒载体相比有特有优势,如可通过昆虫细胞大量制备病毒颗粒;可感染多种哺乳动物细胞,但在细胞内无复制能力,生物安全度高;可插入高达38 kb的外源基因等。 质粒载体则是借助于物理或化学的作用导人细胞内。依据质粒在宿主细胞内是否具有自我复制能力,可将质粒载体分为整合型和附加体型载体两类。整合型载体无复制能力,需整合于宿主细胞染色体内方能稳定存在,如SV40病毒载体、反转录病毒载体和游离型如痘苗病毒、腺病毒载体。利用Sindbis virus(SV)、Scmliki Forest virus(sFV) 和痘苗病毒载体感染哺乳动物细胞表达的蛋白在结构与功能上与天然哺乳动物来源的蛋白更相似。Liljestrom等利用SFV病毒载体感染哺乳动物细胞获得的外源蛋白占细胞总蛋白的;而附加体型载体则是在细胞内以染色体外可自我复制的附加体形式存在。整合型载体一般是随机整合入染色体,其外源基因的表达受插入位点的影响,同时还可能会改变宿主细胞的生长特性。相比之下,附加体型载体不存在这方面的问题,但载体DNA在复制中容易发生突变或重排。 附加体型载体在胞内的复制需要两种病毒成分:病毒DNA的复制起始点(ori)及复制相关蛋白。根据病毒成分的来源不同,附加体型表达载体主要分为4大类,表2对这几类附加体载体进行了简要的概括。 载体的选择取决于外源基因的导人方式和其调控元件是否有利于转录和翻译。真核

哺乳动物细胞培养基的基本要求

哺乳动物细胞培养基的基本要求 (一)营养成分 细胞生长繁殖所需要的营养成分包括氨基酸、单糖、维生素、无机离子和H 2 O。 氨基酸和维生素的添加量是有限的,某些氨基酸和维生素的添加量往往是凭经验的,通常与某个细胞系的建立过程有密切关系。例如,Fisher’s培养基含有高浓度的叶酸,这是因为L5178Y对叶酸的依赖性,在这种培养基的发展过程中,叶酸就被沿用下来了。 大多数细胞的培养基都含有葡萄糖作为能量来源,葡萄糖的主要代谢途径是通过无氧酵解产生丙酮酸,丙酮酸可转化为乳酸盐或乙酰乙酸盐,然后进入柠檬 酸循环被氧化成CO 2和H 2 0。培养基中乳酸的累积在培养胚胎及转化细胞时尤为 明显,提示体外培养时柠檬酸循环不能像多细胞机体内那样完全进行。有证据表明,碳源的大部分来自谷氨酰胺而非葡萄糖。这也解释了为何某些培养的细胞对谷氨酰胺和谷氨酸盐的需求异常高。 (二)促生长因子及激素 促生长因子及激素在商品干粉培养基或液体培养基中一般都不添加,含血清培养液的来源正是血清本身。在无血清培养基中+经常需要添加这些组分。 自然凝集的血清,与利用物理方法如离心法去除细胞得到的血浆相比,对于刺激细胞的增殖,效果更好。原因是,自然凝集的血清保留了更多的生长因子,如血小板生长因子。 (三)渗透压和pH 培养基中基础平衡盐溶液组成的盐类是维持渗透压平衡的主要化合物,这些 盐类主要包括Na一、K+、Mg2+、Cl一、SO 42-、Ca2+、POi 和HCO 3 -等。 大部分培养基的盐浓度是依据Eargle’s和Hank’s平衡盐溶液而来, Eargle’s平衡盐溶液的Hank,s浓度高,适合5%CO 2 的气体环境。Hank’s平 衡盐溶液的HCO 3 -浓度低,适 用于空气环境。5%CO 2 的气体环境中,培养液的pH稳定及调节依赖于溶解在培 养液的CO 2 气体和组成培养基基础平衡盐溶液的缓冲作用。

哺乳动物成熟红细胞的呼吸方式讲解学习

精品文档 精品文档哺乳动物成熟红细胞的呼吸方式 哺乳动物的成熟红细胞结构很特殊,既没有细胞核也无线粒体、核糖体等各种细胞器,却富含血红蛋白,这种结构特点与其运输O2的功能是相适应的。 因为无线粒体,红细胞进行无氧呼吸供能。有些学生对此产生疑问:红细胞本身携带O2,却进行无氧呼吸供能,有O2存在时,其无氧呼吸不会受抑制吗?并列举如下理由:①很多种厌氧型的细菌若生活在空气中,其无氧呼吸受到抑制,不能正常生存。②酵母菌等兼性厌氧型的生物生活在氧气充足的环境中进行有氧呼吸,在缺氧的条件下才进行无氧呼吸。 首先明确并不是所有厌氧型的生物都不能生活在有氧环境中,只有那些严格厌氧菌才不能生活在空气中(如光合细菌,产甲烷杆菌等),而耐氧性厌氧菌是可以生活在空气中的。厌氧菌能否生活在空气中,与其体内是否含有超氧化物歧化酶(SOD)和过氧化氢酶(或过氧化物酶)有关。细胞代谢过程中会产生自由基,自由基是指那些带有奇数电子数的化学物质,它们都带有未配对的自由电子,具有高度的化学活性。在O2存在时还会产生超氧阴离子自由基,它是活性氧的形式之一,性质极不稳定,化学反应能力极强,在细胞内可破坏各种重要生物大分子和膜结构,还可形成其他活性氧化物,故对生物体极其有害。好氧性生物或耐氧性厌氧菌细胞内可合成SOD和过氧化氢酶(或过氧化物酶),超氧阴离子自由基在SOD作用下被歧化成H2O2,在过氧化氢酶作用下H2O2又进一步转变成无毒的H2O,而严格厌氧菌不能合成SOD,在有O2存在时,由于无法歧化超氧阴离子自由基而身受毒害,无法生存。 红细胞内存在这两种酶(红细胞未成熟前已合成),生活在有氧环境中,不会受自由基的危害而抑制其代谢活动。 酵母菌等兼性厌氧型的生物,在缺氧的条件下进行无氧呼吸,当氧气充足时进行有氧呼吸,其无氧呼吸将会受到抑制。为什么在O2充足时,酵母菌的无氧呼吸会受到抑制呢?已知磷酸果糖激酶是无氧呼吸(糖酵解)过程中关键的限速酶,ATP对磷酸果糖激酶具有抑制作用,在有柠檬酸、脂肪酸时会加强抑制效应,而ADP、AMP、无机磷则对此酶有激活作用,酵母菌有氧呼吸会产生较多的ATP,使ATP/ADP比值增高,无机磷相对减少,有氧呼吸过程中还会使柠檬酸等物质增多,最终抑制了磷酸果糖激酶的活性,同时NADH进入线粒体中被有氧呼吸消耗,不能还原乙醛生成乙醇,还会使糖酵解过程中的NAD和NADH不能发生周转,也影响了糖酵解速度。 由以上可知,抑制无氧呼吸的直接原因,是生物细胞进行了有氧呼吸,在有氧呼吸的过程中发生的物质变化抑制了无氧呼吸的进行,并不是由于O2的存在直接抑制了无氧呼吸。成熟的红细胞内由于缺乏有氧呼吸酶系,不能进行有氧呼吸,所以红细胞尽管携带较多的O2也不会抑制其无氧呼吸。 红细胞进行无氧呼吸是与其运输O 2的功能相适应的,因其结合和携带O 2 的过 程中并不消耗O 2,从而有效地提高了运输O 2 的效率。红细胞自身生命活动所消 耗能量并不多,其无氧呼吸产生能量主要是保证细胞膜上离子泵的正常运转,使红细胞维持细胞内高钾、低钙和低钠的状态,还能保证低铁血红蛋白不被氧化。(若血红蛋白中的Fe2+被氧化为Fe3+,形成高铁血红蛋白,高铁血红蛋白中的Fe3+

血液的生物化学《生物化学》复习提要

血液的生物化学 血液概况 血液(blood)的组成 (占体重的8%) 血浆(plasma) (占全血容积的55-60%) 红细胞,白细胞,血小板 血清(serum) ---血液凝固后析出的淡黄色透明液体 非蛋白质类含氮化合物:尿素、肌酸、肌酸酐、尿酸、胆红素、氨基酸和氨非蛋白氮(non-protein nitrogen):血液中的有机物的非蛋白类含氮化合物主要有尿素、肌酸、肌酸酐、尿酸、胆红素和氨等,它们中的氮总称为非蛋白氮。 第一节血浆蛋白 一、血浆蛋白质的分类与性质 血浆蛋白是指血浆含有的蛋白质,是血浆中的主要的固体成分。 血浆蛋白总浓度:70~75g/L 清蛋白浓度:38~48g/L;球蛋白浓度:15~30g/L A/G=1.5-2.5 (一)血浆蛋白的分类 1. 依据电泳(electrophoresis)结果分类 清蛋白、α1球蛋白、α2球蛋白、β球蛋白、γ球蛋白 2. 依据生理功能分类 1).载体蛋白 2).免疫防御系统蛋白 3).凝血和纤溶蛋白 4).酶 5).蛋白酶抑制剂 6).激素 7).参与炎症应答的蛋白 (二)血浆蛋白质的性质 1. 绝大多数血浆蛋白在肝合成。 2. 血浆蛋白的合成场所一般位于膜结合的多核蛋白体上。 3. 除清蛋白外,几乎所有的血浆蛋白均为糖蛋白。 4. 许多血浆蛋白呈现多态性(polymorphism)。如:ABO血型。 5. 在循环过程中,每种血浆蛋白均有自己特异的半衰期(清蛋白:20天)。 6. 在急性炎症或某种类型组织损伤等情况下,某些血浆蛋白的水平会增高,它们被称为急性时相蛋白质(acute phase protein APP)。 二、血浆蛋白质的功能 (一)维持血浆胶体渗透压 (二)维持血浆正常的pH (三)运输作用 (四)免疫作用 (五)催化作用

哺乳动物细胞培养手册

实用哺乳动物细胞培养手册 细胞培养基本概念 细胞培养是指从体内组织取出细胞在体外模拟体内环境下,使其生长繁殖,并维持其结构和功能的一种培养技术。细胞培养的培养物可以是单个细胞,也可以是细胞群。 细胞培养目的与用途 1、科学研究:药物研究开发与基础研究 药物研究与开发 (1) 新药筛选:如化学合成药物药效研究、中药有效成分筛选与鉴定等。 (2) 疫苗研究与开发:如病毒性疫苗的研究与开发(肝炎病毒疫苗、艾滋病疫苗等)、肿瘤疫苗(多肽疫苗)等。 (3) 基因工程药物研究与开发:如干扰素研究与开发,细胞生长因子研究与开发等。 (4) 细胞工程药物研究与开发:生物活性多肽研究与开发,人参皂甙、紫杉醇等生物活性成分研究与开发。 (5) 单克隆抗体制备:包括诊断用单克隆抗体,治疗用单克隆抗体。 基础研究 (1) 药物作用机理 (2) 基因功能 (3) 疾病发生机理 2、生物制药 (1) 疫苗生产:如病毒性疫苗(肝炎病毒疫苗、艾滋病疫苗等)、肿瘤疫苗(多肽疫苗)等。 (2) 基因工程药物生产:如在临床医学中具有治疗价值的一些细胞生长因子如干扰素、粒细胞生长因子、胸腺肽等 (3) 诊断用和药用单克隆抗体生产 (4) 细胞工程药物生产:生物细胞内的一些生物活性多肽,生物活性物质等 细胞培养基本条件 1、合适的细胞培养基 合适的细胞培养基是体外细胞生长增殖的最重要的条件之一,培养基不仅提供细胞营养和促使细胞生长增殖的基础物质,而且还提供培养细胞生长和繁殖的生存环境。 2、优质血清 目前,大多数合成培养基都需要添加血清。血清是细胞培养液中最重要的成分之一,含有细胞生长所需的多种生长因子及其它营养成分。 2 3、无菌无毒细胞培养环境 无菌无毒的操作环境和培养环境是保证细胞在体外培养成功的首要条件。在体外培养的细胞由于缺乏对微生物和有毒物的防御能力,一旦被微生物或有毒物质污染,或者自身代谢物质积累,可导致细胞中毒死亡。因此,在体外培养细胞时,必须保持细胞生存环境无菌无毒,及时清除细胞代谢产物。 4、恒定的细胞生长温度

哺乳动物成熟红细胞及习题考查

哺乳动物红细胞专题知识总结 哺乳动物红细胞专题知识总结 生物组赵鹏 高中阶段关于红细胞的知识一再出现,尤其是哺乳动物红细胞,历年各省高考题、全国高考题多次以红细胞为知识背景考查学生的能力水平,由此也凸现了红细胞知识的重要性。在此做以总结,望在同仁中起到抛砖引玉的作用。 一、 形态与颜色:双凹型结构、红色。如下图: 二、产生:由骨髓中的造血干细胞分裂、分化形成。其分化的示意图如下: 三、基因突变——镰刀型细胞贫血症: 1、 病因:造血干细胞分裂分化形成红细胞的过程中还要不断地分裂形成新的干细胞,若这个过程发生基因突变,则可能诱发镰刀型细胞贫血症。其示意图如下: 2、概述:是一种隐性基因遗传病。患病者的血液红细胞表现为镰刀状,其携带氧的功能只有正常红细胞的一半。 3、诊断: (1)细胞水平:取血液制装片,光学显微镜观察红细胞的形态; (2)分子水平:利用β—珠蛋白基因做成的探针进行检测。 典型考题: 例、(07江苏高考生物试卷38题)单基因遗传病可以通过核酸杂交技术进行早期诊断。镰刀型细胞贫血症是一种在地中海地区发病率较高的单基因遗传病。已知红细胞正常个体的基因型为BB、Bb,镰刀型细胞贫血症患者的基因型为bb。有一对夫妇被检测出均为该致病基因的携带者,为了能生下健康的孩子,每次妊娠早期都进行产前诊断。下图为其产前核酸分子杂交诊断和结果示意图。 (1)从图中可见,该基因突变是由于________引起的。巧合的是,这个位点的突变使得原来正常基因的限制酶切割位点丢失。正常基因该区域上有3个酶切点,突变基因上只有2个酶切点,经限制酶切割后,凝胶电泳分离酶片段,与探针杂交后可显示出不同的带谱,正常基因显示________条,突变基因显示________条。 (2)DNA或RNA分子探针要用________等标记。利用核酸分子杂交原理,根据图中突变基因的核苷酸序列(---ACGTGTT---),写出作为探针的核糖核苷酸序列________。 (3)根据凝胶电泳带谱分析可以确定胎儿是否会患有镰刀型细胞贫血症。这对夫妇4次妊娠有胎儿Ⅱ-1~Ⅱ-4中基因型BB个体是____________,Bb的个体是________,bb的个体是_______________。 评析:展示本题的目的不仅在于让学生巩固复习利用探针来诊断疾病的方法,同时让学生了解整个过程的梗概,因为近些年高考题中,有关电泳的考题并不少见,可藉此机会向学生简述。 答案:(1)碱基对改变(或A变成T) 2 1 (2)放射性同位素(或荧光分子等) …UGCACAA…(3)Ⅱ一l和Ⅱ一4 Ⅱ一3 Ⅱ一2 4、治疗:骨髓移植,即向患者移植正常人的造血干细胞。 1骨髓库:骨髓库并不是把供者的骨髓或造血干细胞存到库里。骨髓库里保存的只是志愿捐

重组制品生产用哺乳动物细胞质量控制技术评价一般原则

重组制品生产用哺乳动物细胞质量控制 技术评价一般原则 二OO六年十月

目 录 1前言 1 1.1目的和意义 1.2适用范围 1.3局限性 2宿主细胞的选择 1 2.1宿主细胞来源、历史和一般特性 2.1.1宿主细胞来源和历史 2.1.2宿主细胞一般特性 3重组工程细胞克隆构建过程、筛选及鉴定 2 3.1目的基因来源 3.2表达载体的具体构建步骤 3.3载体引入宿主细胞的方法及重组工程细胞的筛选 3.4重组工程细胞的初步鉴定 4重组工程细胞库的建立 3 4.1细胞库建立 4.2建库细胞的管理 5细胞库检定 3 5.1细胞鉴定 5.1.1细胞种属的鉴定 5.1.2致瘤性试验 5.1.3目的基因和表达框架分析 5.1.4表达产物检测 5.2微生物污染检测 5.2.1细菌、真菌和支原体检查 5.2.2病毒因子的检查 5.2.2.1体外试验 5.2.2.2体内试验 5.2.2.3种属特异性病毒的检定

5.2.2.4逆转录病毒的检测 5.2.2.4.1感染性试验 5.2.2.4.2逆转录酶检测 5.2.2.4.3透射电镜检查 6细胞稳定性研究 6 6.1贮存条件下的稳定性 6.2传代/扩增过程中的稳定性 6.2.1基因水平的比较 6.2.2目的产物表达水平的比较 6.2.3细胞自身的稳定性 6.2.4内源因子检查 6.2.5 致瘤性监测 7 生产过程细胞质量控制 7 7.1常规生产过程监控 7.2细胞增殖限度 7.3其它风险性因素控制 8小结 8 9、名词解释 9 10、参考文献 10

1前言 对于结构复杂、带有糖基化修饰基团的抗体、凝血因子、酶、激素等生物大分子,通常需要借助哺乳动物细胞才能正确表达和修饰成具有预期生物活性的重组制品。随着生物工程技术的进步和发展,目前这些细胞应用不断增多。 在宿主细胞选择、重组工程细胞构建以及生产细胞的培养扩增和监控过程中,不仅要关注细胞的适用性、目的产物表达生产能力,同时还应当重视伴随细胞培养产生的内源性病毒、宿主细胞残余蛋白和DNA、致肿瘤成分等潜在的风险性因素对重组产品带来的安全性影响,在早期研究阶段,同步开展库细胞、生产培养过程细胞、生产终末细胞的全面检定和控制以及病毒和/或致瘤性成分的去除/灭活工艺的验证。 1.1目的和意义 经过全面检测的种子细胞是实现重组基因工程产品生产的前提和基础,使生产用种子细胞具有共同的始祖细胞,保持相同的遗传和生物学特征,在特定的培养环境和条件下持续稳定表达携带的外源目的基因;经过研究确定细胞在扩增培养和生产过程中的变化,才能够有效控制风险性因素,满足生产的持续需求,使产品质量保持一致。 本技术评价一般原则重在阐述重组制品生产用哺乳动物细胞质量控制的基本内容和相关要求,以期引导开展全面完整的细胞质量试验研究、生产细胞培养工艺验证,建立系统规范的重组工程细胞库及实现生产过程细胞质量的有效监控。

相关文档
最新文档