多目标优化方法及实例解析共78页文档

合集下载

第六章 多目标最优化方法

第六章 多目标最优化方法
v 12.对长江航运有无影响:U12(x) v 方案xi完成运输任务对长江航运有无干扰
影响,有影响为2,无影响为1。 v 13.外来物资的装卸次数:U13(x) v 方案xi运输外来物资至坝址的装和卸总次
数。
v 以上各指标及方案的值详见表3(运输系统决 策分析技术经济指标表)
v 6.4.4 决策意见
v
U9(x)=U1(x)/Q(x) 效益投资比
v 式中Q(x)为交通运输方案xi担负的总货运量(吨)
v 10.运输系统职工总人数:U10(x) (人) v 方案xi完成运输系统运行管理的职工总人数
(反映管理的难易、繁简)。
v 11.运输工具能源消耗费用:U11(x)(万元)
v 方案xi完成商品材料、砂石料和客运、总 运量消耗的能源费用。
员) v 2. 目标函数 v (1) 总的投资最省; v (2) 工期最短; v (3) 生产均衡,不均系数小,施工高峰强度小; v (4) 工程质量优,良率最高; v (5) 能源及原材料消耗最少;
v (6) 劳力及机械设备用量最少。 v 显然目标间存在矛盾,彼长此短,无一
方案全面最优,只能整体最优。 v 6.1.3 多目标决策的一般数学表达式 v 设有m个约束条件,k个目标函数,
表3 运输系统决策分析技术经济指标表
v 表42 火车轮渡直达两岸(杨家湾设码头) v 加权多指标决策对比优序数矩阵的计算
序数法,排出如表44,从该表44中的aij'排出 加权多目标优序数决策矩阵如表45中Ki'的大 小为序,其决策顺序应为
v
x3 → x4 → x2 → x1
v 铁路 公路 水运 火车轮渡
v 建议对三峡工程施工对外交通运输方案
做决策时,应采用铁路为主,水运与公路为 辅的方案,就铁路工程本身,应采用铁二院 推荐的姜家庙电力机车牵引方案见表46 。

多目标动态优化

多目标动态优化

目标函数的实质:求一组决策变量的满意值, 使决策结果与给定目标总偏差最小。 目标函数的特点: 目标函数中只有偏差变量 目标函数总是求偏差变量最小 目标函数值的含义: Z=0:各级目标均已达到 Z>0:部分目标未达到
一般模型
k min Z P w d w 1 1k k 1k d k k 1


k PL wLk d k wLk d k k 1


n aij x j , bi i 1 m j 1 n Ck x d d q k 1 K k k k j j j 1 x j 0 j 1 n d k , d k 0k 1 K
因此:d+ * d- = 0
d +, d - 0
(2)从目标规划角度考虑——绝对约束与目标约束

绝对约束:必须严格满足的条件,不能满 足绝对约束的解即为非可行解
4X1+2X2 400 2X1+4X2 500

目标约束:目标规划所特有的一种约束, 以目标的理想值作为约束方程右端常数项, 不必严格满足,允许发生正负偏差。
1.2 多目标优化问题解的性质

单目标问题中,各种方案的目标函数值具有可比性, 可以分出优劣,因此一般存在最优解 多目标问题中,对某个目标的“优化”可能导致其 它目标的“劣化” ,因此,一般不存在能够同时 满足各个目标最优化的最优解 多目标优化问题的求解,除了要“优化”单个目标 本身,还要平衡各个目标间的关系,因此,多目标 优化问题的解是经过各目标权衡后相对满意的方案


1.3 多目标规划求解技术简介

多目标优化方法及实例解析

多目标优化方法及实例解析
②超过计划供应的原材料,需用高价采购,这就会使生产 成本增加。
③应尽可能地充分利用设备的有效台时,但不希望加班。 ④应尽可能达到并超过计划产值指标56万元。
这样,该企业生产方案的确定,便成为一个多目标决 策问题,这一问题可以运用目标规划方法进行求解。
22
第二十二页,课件共有75页
目标规划模型的一般形式
max(min) fk ( X )
1( X )
g1
s.t.
(
X
)
2(X
)
G
g2
m ( X )
gm
式中: X [ x1, x2 ,, xn ]T 为决策变量向量。
4
第四页,课件共有75页
缩写形式:
max(min)Z F ( X ) s.t. ( X ) G
(1) (2)
fi
d i
d i
f i
(i
1,2,,
K
)
17
第十七页,课件共有75页
L
K
min Z p ( d d )
l
lk k
lk k
l 1 k 1
( x , x ,, x ) g (i 1,2,, m)
i12
n
i
f d d f (i 1,2,, K )
i
i
i
i
式中:
di+ 和 di-分别表示与 fi 相应的、与fi* 相比的目标超 过值和不足值,即正、负偏差变量;
(2) 绝对约束和目标约束 绝对约束,必须严格满足的等式约束和不等式约束,譬
如,线性规划问题的所有约束条件都是绝对约束,不能满 足这些约束条件的解称为非可行解,所以它们是硬约束。
3

第五章多目标问题的最优化方法

第五章多目标问题的最优化方法

c) 当fj 取的值越靠近预先确定的适当值时, dj ,否则dj ↓。
功效系数法的关键在于如何确定功效函数,即功效系数的值。 功效系数的确定方法有:直线法、折线法和指数法。
三. 方法评价:

可直接按所要求的性能指标来评价函数,非常直观,试算后调 整方便;
min . F x
w j f j x
j 1
s
w j f jx
j s 1
q
o w
j
1
上述问题所得的优化解,显然是使位于分子的各目标函数尽可 能小,使位于分母的各目标函数尽可能大的值的解。
五.
目标函数的规格化:
当各分目标函数值在数量级上有很大差别时,可先做一次规格 化。以三角函数、指数、线性或二次函数等作为转换函数,使目标 函数值规范在 [0,1] 之间。
一.
功效系数法
基本思想:
多目标优化问题中,各个单目标的要求不全相同,有的要求极 小值,有的要求极大值,有的则要求有一个合适的数值。为了在评 价函数中反映这些不同的要求,可引入功效函数。
给每一个分目标函数值一个评价,以功效系数dj (0≤dj ≤1)表示。 对于一个设计方案 xk , F(xk),有q个分目标函数值f1(xk), f2(xk),…, fq(xk), ,对应q个功效系数 d1,d2,…,dq 。 以各功效系数的几何平均值为方案的评价函数 d :
f2
最优解:使各个分目标函数同时达到最优值的解。
● ●
4

6
5
对于f1(x),1最好,其次为3,2,4,5,6; 对于f2(x),2最好,其次为3,1,5,4,6。 综合考虑,1,2,3为非劣解,4,5,6为劣解。

多目标最优化问题全面介绍

多目标最优化问题全面介绍

多目标最优化问题全面介绍§8.1多目标最优化问题的基本原理一、多目标最优化问题的实例例1 梁的设计问题设用直径为1的圆木加工成截面积为矩形的梁,为使强度最大而成本最低,问应如何设计梁的尺寸?解:设梁的截面积宽和高分别为1x 和2x 强度最大=惯性矩最大22161x x = 成本最低=截面积最小=21x x 故数学模型为: min 1x 2xmax22161x x.s t 22121x x +=10x ≥,20x ≥ 例2 买糖问题已知食品店有1A , 2A ,3A 三种糖果单价分别为4元∕公斤,2.8元∕公斤,2.4元∕公斤,今要筹办一次茶话会,要求用于买买糖的钱不超于20元,糖的总量不少于6公斤,1A ,2A 两种糖的总和不少于3公斤,问应如何确定买糖的最佳方案?解:设购买1A , 2A ,3A 三种糖公斤数为1x ,2x ,3x1A 2A 3A重量 1x 2x3x单价 4元∕公斤 2.8元∕公斤 2.4元∕公斤min 14x +22.8x +32.4x (用钱最省)max 1x +2x +3x (糖的总量最多).st 14x +22.8x +32.4x 20≤ (用钱总数的限制)1x +2x +3x 6≥(用糖总量的要求)1x +2x3≥(糖品种的要求)1x ,2x ,3x 0≥是一个线性多目标规划。

二、多目标最优化的模型12min ()((),(),.....())T m V F x f x f x f x -=.st ()0g x ≥()0h x ≥多目标规划最优化问题实际上是一个向量函数的优化问题,当m=1,多目标优化就是前面讲的单目标优化问题三、解的概念1.序的概念12,.....()Tm a a a a = 12,.....()Tmb b b b =(1)b a =?a iib = 1,2....i m = (2)a b ≤?a i ib ≤ 1,2....i m = 称a 小于等于b(3)a b <=?a i ib ≤ 且?1≤j ≤m ,使a j j b ≠,则a 小于向量b(4)ab < 1,2....i m = 称a 严格小于b绝对最优解:设多目标最优化问题的可行域为D ,*x ∈D ,如果对x ?D ∈,都有*()()F F x x <,则称*x 为多目标最优化的绝对最优解,称绝对最优解的全体为绝对最优解集,记ab R ,absolute —绝对有效解:可行域为D ,*x ∈D ,如果不存在x D ∈,使*()()F F x x <=,则称*x 为有效解,也称pareto 最优解,称有效解的全体为有效解集,记pa R 是由1951年T.C.Koopmans 提出的。

多目标优化问题的求解算法PPT课件

多目标优化问题的求解算法PPT课件
2021
本文中,为每个目标设定一个目标阀值,各种群都在该工程的施工网络 可靠性框图上进行搜索,把每个种群每搜索得到的新解(一个实施方案的工序 组合)依次代入目标函数中,所得值和预先设定阀值进行比较分析。
产生以下几种情况: ①若四个种群搜索的解对应的函数值都优于目标值的,就把把该解加到入 解集中,再按照公式(4-15)进行更新。若搜索出的解和非支配解集中的某个解相 同,就对这条路径上的信息素进行一定比例减少,防止陷入局部最优。 ②若有三个目标函数值优于设定的目标值,就将这三个目标种群在其对应 的路径上选取其中某段路径,对此路径上的信息素进行变异处理。
2021
(5)路径对蚂蚁的吸引程度
2021
(6)非支配解集的构造
在求解多目标优化问题时,在向Pareto前沿逼近 的过程中往往需要构造非支配解集,即利用多目标 优化算法不断寻找最优和收敛的过程。群体进化过 程中形成的最优个体集合就构成了非支配解集。因 此,求解多目标优化问题的Pareto最优解,可理解成 是构造非支配解集的过程。
2021
4.多目标优化问题的基本方法
现有的研究多目标优化问题的基本方法往往是把各个目标通过带权重系数 的 方式转化为单目标优化问题,如线性加权法、约束法、目标规划法、分层序列 法 等。
这几种方法存在一些局限性,如有些方法计算效率较低,无法逐一与所有 可 行解的目标值进行比较,有些方法需要进行多次优化,加权值法带有较强的主
本文把协同进化的思想引入到多种群蚁群算法中,从而解决基于多种种群的 蚁群算法的多目标优化问题。
2021
本文采用的是多种群蚁群算法,考虑到每个种群存在不同的搜索目标, 彼此之间相互影响,例如在起初寻找最低成本的路径和最高质量的路径的进 化方向就是相反的,为了避免各目标向目标的反方向进行,从协同进化的角 度考虑,把各种群搜索求得的解,分别代入四个目标函数中求解出对应的函 数值,并与目标值进行比较,当存在种群的目标函数值不满足目标值时,对 满足的路径上的信息素可以进行交叉或者变异操作,防止已经满足要求的种 群“背道而驰”,使得后续迭代的种群能够朝着有利路径逼近最优解。

多目标优化算法实例分享

多目标优化算法实例分享

多目标优化算法实例分享多目标优化算法是一种寻找Pareto前沿的方法,它可以在多个目标之间找到一组均衡解,而不是单个的最优解。

在实际问题中,多目标优化算法可以应用于许多领域,例如物流路线规划、生产调度、投资组合优化等。

本文将介绍几种常见的多目标优化算法,并通过实例进行详细说明。

1. 遗传算法(Genetic Algorithm,GA)遗传算法是一种模拟自然选择和遗传机制的优化算法。

它通过模拟自然界的遗传操作,包括选择、交叉和变异,逐代迭代寻找全局最优解。

在多目标优化中,遗传算法可以通过定义适应度函数和选择策略来评估每个个体的适应度,并根据适应度值进行选择和操作。

实例:物流路径规划假设有多个货物需要从不同的起点运送到终点,物流公司希望找到一组最优的路径方案,以最小化总运输时间和成本。

运输路径可以通过遗传算法的交叉和变异操作来不断演化,并在每代中选择出适应度较高的个体进行进一步优化。

通过多代的迭代,遗传算法可以找到一组接近最优的路径方案。

2. 粒子群优化算法(Particle Swarm Optimization,PSO)粒子群优化算法是一种模拟鸟群/鱼群等群体行为的优化算法。

它通过模拟每个个体在空间中的运动,并根据个体自身和群体的经验进行调整,寻找全局最优解。

在多目标优化中,粒子群优化算法可以通过定义目标函数和速度更新策略来进行多目标。

实例:投资组合优化假设有一组不同的资产可以选择投资,投资者希望找到一组投资比例以最大化投资组合的回报率和最小化风险。

每个个体可以表示一组投资比例,通过粒子群优化的速度更新和目标函数的评估,可以使个体在投资回报率和风险之间找到一种平衡。

最终,粒子群优化算法可以找到一组接近最优的投资比例。

3. 多目标遗传规划算法(Multi-Objective Genetic Programming,MOGP)多目标遗传规划算法是一种结合遗传算法和进化规划的优化方法。

它通过不断演化符合约束条件的解决方案,以找到一组帕累托前沿的解决方案。

多目标优化设计方法

多目标优化设计方法

权因子的确定方法: 在确定权因子前,应先将各子目标函数进行 无量纲化,处理的方法是:
fi ' ( X ) fi ( X ) min fi ' ( X )
X D
fi ' ( X ) 是多目标问题中某个带量纲的子目标;
fi ( X ) 是作了无量纲处理后的第i个子目标函数
(1) 专家评判法(老手法)
X D X D 1 2 l
D为可行域,f1(X), f2(X), …, fl(X)为各个子目 标函数。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法 1、线性加权和法(线性加权组合法)
根据各子目标的重要程度给予相应的权数,然后 用各子目标分别乘以他们各自的权数,再相加即构成 统一目标函数。
X ( x1 , x2 ,..., xn )T
2 * 2 min f ( X ) [ f i ( X ) f i ] i 1 s.t. gi ( X ) 0 (i 1, 2,..., m) L 1
h j ( X ) 0 ( j 1, 2,..., k )
(1)
(i S 1,..., L)
则可得功效函数为
fi ( X ) fi (1) di ( fi ( X )) (2) fi fi (1) (i S 1,..., L)
7.4 功效系数法(续)
三、功效函数的确定(续) 4、对于L个子目标函数对应的功效函数为
fi (2) fi ( X ) (2) (1) fi fi di ( fi ( X )) (1) fi ( X ) fi (2) (1) f f i i (i 1, 2,..., S ) (i S 1,..., L)

机械优化设计_第七章多目标及离散变量优化方法

机械优化设计_第七章多目标及离散变量优化方法
X D

i m in w i f i X X D i 1
的最优解,
它就是原多目标优化问题的解。
机械优化设计 难点:如何找到合理的权系数 解决方法:将各单目标最优化值的倒数取作权系数
wi

1 fi

( i 1, 2 , , l )
f i m in f i X ( i 1, 2 , , l )
i i
适用于要求目标函数越小越好。 ③当 f i 取得的值越靠近预先确定的适当值时,
c i 越大;否则 c i 越小。
机械优化设计
3)功效系数的确定方法
①直线法
机械优化设计 ②折线法
③指数法
机械优化设计 4)功效系数的特点 A.优点: 直观,计算后调整方便, 避免某一目标函数值不可接受而评价函数值较好。 可以处理希望目标函数值取某一适当值的情况。 B.事先要求明确函数值的取值范围 C. 有一个单目标不能接受,则总方案不能接受。
机械优化设计 3.协调曲线法
基本思想:在多目标优化设计中,当各分目
标函数的最优值出现矛盾时,先求出一组非
劣解,以其集合得出协调曲线,再根据恰当 的匹配关系得到满意曲线,沿着满意程度的 增加的方向,各分目标值下降,直至获得选 好解。 主要用来解决设计目标互相矛盾的多目标 优化设计问题。
机械优化设计 说明: 1)若一个目标函数值已确定,则另一目 标函数值也由此曲线确定。 2)若认为R点是一个满意的设计方案, 则曲线中QS间所有设计点都是满意的,且比 R更好。
X D
1)可反映各个单目标对整个多目标问题的重要程度; 2)对各个分目标函数作统一量纲处理。
机械优化设计 (2)极大极小法
考虑对各个目标最不利情况下求出最有利的解。就是对 多目标极小化问题采用各个目标 f i ( i 1, 2, , l ) 中的最大值作为评价函数的函数值来构造它。 即取 或

多目标优化

多目标优化

求解算法 转化为单目标 实例1:投资的收益和风险
市场上有n种资产(如股票、债券、…)Si ( i=1,…n) 供投资者选择,某公司有数额为M的一笔相当大的资金可用作 一个时期的投资。公司财务分析人员对这n种资产进行了评 估,估算出在这一时期内购买Si的平均收益率,并预测出购 买Si的风险损失率。考虑到投资越分散,总的风险越小,公 司确定,当用这笔资金购买若干种资产时,总体风险可用所 投资的Si中最大的一个风险来度量。 购买Si要付交易费,费率已知,并且当购买额不超过最低限 额时,交易费按购买最低限额计算(不买当然无须付费)。 另外,假定同期银行存款年利率是1%, 且既无交易费又无风 险。试给该公司设计一种投资组合方案 目标一:使净收益尽可能大; 目标二:而总体风险尽可能小。
1. 主要目标法 在多目标优化问题中,根据问题的实际 情况,确定一个目标为主要目标,而把其余目 标作为次要目标,并且根据决策者的经验,选 取一定的界限值。这样就可以把次要目标也作 为约束来处理,于是就将原多目标问题转化为 在新的约束下,求主要目标的单目标优化问 题。
转化单目标法
2. 线性加权和法:按照m个目标 fi (x) 的重要 程度,分别乘以一组权系数,然后相加作 为目标函数。
+
约定如下: •当实际值超过目标值时,有 d − = 0, d + > 0; •当实际值未达到目标值时,有 d + = 0, d − > 0; •当实际值与目标值一致时,有 d − = 0, d + = 0.
2. 统一处理目标与约束
在目标规划中,约束可分两类,一类是对资源有严格限制 的,称为刚性约束(Hard Constraint);例如在用目标规划 求解生产安排问题中设备A禁止超时使用,则有刚性约束

《多目标优化》课件

《多目标优化》课件

多目标优化算法分类
01
基于排序的方法
通过将多目标问题转化为单目标问题,寻求一个排序方案,以解决多目
标优化问题。常见的算法包括非支配排序遗传算法(NSGA-II)和快速
非支配排序遗传算法(FAST-NSGA-II)等。
02
基于分解的方法
将多目标问题分解为多个单目标子问题,分别求解子问题,再通过聚合
子问题的解得到原问题的解。常见的算法包括优先级规则法、权重和法
降温系数
降温系数决定了算法的降温速度,较 大的降温系数可能导致算法早熟,而 较小的降温系数则可能导致算法收敛 速度慢。
随机游走策略
随机游走策略决定了新解的产生方式 ,对于多目标优化问题,需要采用合 适的Pareto占优关系和支配关系来指 导新解的产生。
05
多目标优化应用案例
案例一:电力系统的多目标优化
多目标优化
同时考虑多个目标函数,寻求在各目标之间取得 平衡的最优解。
算法流程
非支配排序
对种群中的个体进行非支配排 序,形成一系列的层级。
交叉和变异操作
通过交叉和变异产生新的个体 ,丰富种群的多样性。
初始化种群
随机生成一定数量的初始解作 为种群。
选择操作
根据个体的非支配层级和拥挤 度等信息,选择优秀的个体进 行交叉和变异操作。
等。
03
基于群智能的方法
利用群智能算法的并行性和全局搜索能力,寻找多目标优化问题的满意
解集。常见的算法包括粒子群优化算法、蚁群优化算法等。
02
非支配排序遗传算法(NSGA-II)
算法原理
遗传算法
基于生物进化原理,通过选择、交叉、变异等操 作,不断优化解的适应度。
非支配排序

多目标优化

多目标优化
当加权因子从0 时,得到的最优点集合 。
第4页/共22页
§5.2 协调函数法
② 多目标函 1,2,, q
s.t. gu x 0 u 1,2,, m
hv x
fv x
f0 v
0
v 1,2,, q 1
v j
其中
f0 v
fv x * f j
为理想的合理值,是 fv x *的让步。
f1 x max y h min y y h
0.1m
y
min
0.3m 0.5m
0.5m
d1 1 d1 0.7 d1 0.3 d1 0
2. E点水平分速度的变化率越小越好
f2
x
max
vx
min
3. 货物对支点A所引起的倾覆力矩差越小越好
f3x max M min
这三个要求都属于第二类功效函数。
标函数表达式如下:
min .
s
wj
f
j
x
F
x
j 1 q
wj f jx
j s 1
o wj 1
四. 线性加权组合法:
min.
F
x
S
wj
j 1
f j (x)
q j s 1
wj f j (x)
第12页/共22页
§5.3 统一目标函数法
五. 目标函数的规格化:
当各分目标函数值在数量级上有很大差别时,可先做一次规格化。 以三角函数、指数、线性或二次函数等作为转换函数,使目标函数 值规范在 [0,1] 之间。
二. 功效系数和功效函数:
1、功效系数dj :表示对于分目标函数值 fj (x) 的满意程度。 若dj =1,表示效果最好,非常满意; dj =0,表示效果极差,方案不可取。

多目标优化方法及实例解析报告PPT78页

多目标优化方法及实例解析报告PPT78页
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
4脑。—— 玛丽·佩蒂博恩·普尔
多目标优化方法及实例解析报告
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

多目标优化问题

多目标优化问题

多目标优化方法基本概述几个概念优化方法一、多目标优化基本概述现今,多目标优化问题应用越来越广,涉及诸多领域。

在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。

例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。

多目标优化的数学模型可以表示为:X=[x1,x2,…,x n ]T----------n维向量min F(X)=[f1(X),f2(X),…,f n(X)]T----------向量形式的目标函数s.t. g i(X)≤0,(i=1,2,…,m)h j(X)=0,(j=1,2,…,k)--------设计变量应满足的约束条件多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。

二、多目标优化中几个概念:最优解,劣解,非劣解。

最优解X*:就是在X*所在的区间D中其函数值比其他任何点的函数值要小即f(X*)≤f(X),则X*为优化问题的最优解。

劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。

非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*).如图:在[0,1]中X*=1为最优解在[0,2]中X*=a为劣解在[1,2]中X*=b为非劣解多目标优化问题中绝对最优解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。

三、多目标优化方法多目标优化方法主要有两大类:1)直接法:直接求出非劣解,然后再选择较好的解将多目标优化问题转化为单目标优化问题。

2)间接法如:主要目标法、统一目标法、功效系数法等。

将多目标优化问题转化为一系列单目标优化问题。

多目标优化问题(over)

多目标优化问题(over)

第七章多目标优化问题的求解优化问题按照目标函数的数量,可以分为单目标优化问题和多目标优化问题,前面我们讲过的线性优化就是一个单目标优化问题,对单目标优化问题进一步突破,将目标函数扩展为向量函数后,问题就转化为多目标优化问题。

本节将简要介绍多目标最优化问题的建模与求解方法。

1、多目标优化模型多目标优化问题一般表示为..()min ()s t J ≤=x G x 0x F 其中121()[(),(),,()]T f f f =F x x x x ,下面将通过例子演示多目标优化问题的建模。

例1设某商店有123,,A A A 三种糖果,单价分别为4,2.8和2.4元/kg ,现在要举办一次茶话会,要求买糖果的钱不超过20元,但糖果的总重量不少于6kg ,1A 和2A 两种糖果的总重量不低于3kg ,应该如何确定最好的买糖方案。

分析:首先应该确定目标函数如何选择的问题,本例中,好的方案意味着少花钱多办事,这应该是对应两个目标函数,一个是花钱最少,一个是买的糖果最重,其他的可以认为是约束条件。

当然,这两个目标函数有些矛盾,下面考虑如何将这个问题用数学描述。

设123,,A A A 三种糖果的购买重量分别为123,,x x x kg ,这时两个目标函数分别为花钱:1123min ()4 2.8 2.4f x x x =++x ,糖果总重量:2123max ()f x x x =++x ,如果统一用最小值问题表示,则有约束的多目标优化问题可以表示为123123123123121234 2.8 2.4min-4 2.8 2.4206..+3,,0x x x x x x x x x x x x s t x x x x x ++⎡⎤⎢⎥++⎣⎦++≤⎧⎪++≥⎪⎨≥⎪⎪≥⎩()模型建立以后,可以考虑用后面的方法进行求解。

2、无约束目标函数的最小二乘求解假设多目标优化问题的目标函数为121()[(),(),,()]T f f f =F x x x x ,则可以按照下面的方式将其转化为单目标问题22212..min()()++()L m Mn s t f f f ≤≤+x x x x x x x 这样就可以用以前的单目标优化的方法直接求解该问题了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档