电荷在复合场中的运动
带电粒子在复合场中的运动公式
带电粒子在复合场中的运动公式在物理学中,带电粒子在复合场中的运动是一个重要的研究课题。
复合场是指同时存在电磁场和重力场的情况,这种情况下带电粒子的运动将受到两种力的影响。
为了描述带电粒子在复合场中的运动,物理学家们提出了一系列的运动公式,其中最著名的是洛伦兹力和引力的相互作用。
洛伦兹力是指带电粒子在电磁场中受到的力,它可以用以下公式描述:\[ \mathbf{F} = q(\mathbf{E} + \mathbf{v} \times\mathbf{B}) \]其中,\( \mathbf{F} \) 是洛伦兹力,\( q \) 是带电粒子的电荷,\( \mathbf{E} \) 是电场强度,\( \mathbf{v} \) 是带电粒子的速度,\( \mathbf{B} \) 是磁感应强度。
这个公式表明了带电粒子在电磁场中受到的力是电场力和磁场力的叠加效果。
另一方面,带电粒子在重力场中受到的力可以用牛顿的引力定律描述:\[ \mathbf{F} = m\mathbf{g} \]其中,\( \mathbf{F} \) 是重力,\( m \) 是带电粒子的质量,\( \mathbf{g} \) 是重力加速度。
当带电粒子同时受到电磁场和重力场的影响时,它的运动将受到这两种力的综合作用。
这种情况下,带电粒子的运动将由洛伦兹力和引力共同决定,可以用牛顿第二定律来描述:\[ \mathbf{F} = m\mathbf{a} \]其中,\( \mathbf{F} \) 是带电粒子所受的合力,\( m \) 是带电粒子的质量,\( \mathbf{a} \) 是带电粒子的加速度。
通过这些运动公式,我们可以定量地描述带电粒子在复合场中的运动规律,为理解和预测带电粒子在复合场中的行为提供了重要的理论基础。
这对于电磁场和引力场的研究以及相关技术应用具有重要意义。
高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动
(2)电场的电场强度大小E以及磁场的磁感应强度大小B;
答案
mv2 6qL
2 3mv 3qL
1234
对粒子从Q点运动到P点的过程,根据动能
定理有 -qEL=12mv2-12mv02 解得 E=6mqvL2
设粒子从Q点运动到P点的时间为t1,有
0+v0sin 2
θ·t1=L
1234
解得
t1=2
3mv02 3qE
⑤
竖直方向的位移 y=0+2 vyt=m6qvE02
⑥
则粒子发射位置到P点的距离为
d=
x2+y2=
13mv02 6qE
⑦
(2)求磁感应强度大小的取值范围; 答案 3-3q3lmv0<B<2mqlv0
设粒子在磁场中运动的速度为 v,结合题意及几何
关系可知,v=sinv60 0°=233v0
垂直于纸面向外的匀强磁场.OM上方存在电场强度大小为E的匀强电场,
方向竖直向上.在OM上距离O点3L处有一点A,在电场中距离A为d的位置
由静止释放一个质量为m、电荷量为q的带负电的粒子,经电场加速后该
粒子以一定速度从A点射入磁场后,第一次恰好不从ON边界射出.不计粒
子的重力.求:
(1)粒子运动到A点时的速率v0;
d.N边界右侧区域Ⅱ中存在磁感应强度大小为B、方向垂直于纸面向里的匀
强磁场.M边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M
上的O点处有一离子源,水平向右发射同种正离子.已知初速度为v0的离子 第一次回到边界M时恰好到达O点,电场及两磁场区域
足够大,不考虑离子的重力和离子间的相互作用.
(1)求离子的比荷;
迹如图乙所示,设此时的轨迹圆圆心为O2,半
带电粒子在复合场中的(类)平抛运动
带电粒子在复合场中的(类)平抛运动在物理学中,带电粒子在复合场中的(类)平抛运动是一个重要的研究课题。
本文将通过描述这一过程的物理原理和实际应用,帮助读者更好地理解这一现象。
我们需要了解带电粒子和复合场的概念。
带电粒子是指具有电荷的微观粒子,如带电质子或带电电子。
而复合场是指由多个力场组合而成的场,例如电磁场。
带电粒子在这样的复合场中进行平抛运动,可以通过分析其受力情况来理解。
在带电粒子的平抛运动中,其受到的主要力包括重力和电场力。
重力是指地球对带电粒子的吸引力,其方向始终指向地心。
而电场力是由于带电粒子在电场中受到的作用力,其方向根据带电粒子的电荷类型和电场的性质而定。
在平抛运动过程中,带电粒子在初始时刻具有一个初速度,这个初速度可以分解为水平方向和垂直方向的分速度。
在水平方向,带电粒子受到的力只有电场力,因此其速度在水平方向上保持不变。
而在垂直方向,带电粒子受到的力有重力和电场力的合力,因此其速度在垂直方向上会发生变化。
当带电粒子在复合场中进行平抛运动时,其轨迹可以通过分析其运动方程来确定。
运动方程可以根据带电粒子在水平和垂直方向上的受力情况来得到。
在水平方向上,由于带电粒子受到的力只有电场力,其运动方程可以简化为匀速直线运动的方程。
而在垂直方向上,带电粒子受到的力有重力和电场力的合力,其运动方程可以通过运用牛顿第二定律来获得。
带电粒子在复合场中的平抛运动不仅在物理学研究中具有重要意义,也有许多实际应用。
例如,在加速器中,科学家们利用带电粒子在复合场中的平抛运动来研究粒子的性质和相互作用。
通过调控电场和重力的大小和方向,科学家可以探索带电粒子的行为规律,从而揭示微观世界的奥秘。
带电粒子在复合场中的平抛运动还可以应用于医学领域。
例如,在放射治疗中,医生们利用带电粒子在复合场中的平抛运动来精确定位和破坏肿瘤细胞。
通过调节电场和重力的参数,医生可以将带电粒子准确引导到肿瘤部位,从而实现肿瘤的精确治疗。
第三课时带电粒子在复合场中的运动省名师优质课赛课获奖课件市赛课一等奖课件
典例剖析
【例1】 如图所示,匀强磁场垂直纸面对里,有一足够长旳等
腰三角形绝缘滑槽,两侧斜槽与水平面夹角为α,在斜槽顶点
两侧各放一种质量相等、带等量负电荷旳小球A和B,两小球
与斜槽旳动摩擦因数相等,且μ< 止释放,下面说法正确旳是( )
ta将n两 小, 球同步由静
2
第第1177页页
A.两球沿斜槽都做匀加速运动,且aA=aB B.两球沿斜槽都做匀加速运动,且aA>aB C.两球沿斜槽都做变加速运动,且aA>aB D.两球沿斜槽旳最大位移关系是:sA=sB
第第2200页页
(1)洛伦兹力为零(即v与B平行),重力与电场力平衡,做匀速直 线运动;或重力与电场力旳合力恒定做匀变速运动.
(2)洛伦兹力F与速度v垂直,且与重力和电场力旳合力(或其中 一种力)平衡.做匀速直线运动.
第第2211页页
2.当带电粒子所受合外力充当向心力,带电粒子做匀速圆周运 动.因为一般情况下,重力和电场力为恒力,故不能充当向心 力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力 充当向心力.
典例剖析 【例2】 如图所示,在空间存在着水平方向旳匀强磁场和竖直
方向旳匀强电场,电场强度为E,磁感应强度为B.在某点由静 止释放一种带电液滴a,它运动到最低点处,恰与一种原来处 于静止旳液滴b相撞,相撞后两液滴合为一体,沿水平方向做 直线运动.已知液滴a质量是液滴b质量旳2倍,液滴a所带电 荷量是液滴b所带电荷量旳4倍.求两液滴旳初始位置之间 旳高度差h(设a、b之间旳静电力能够不计).
a mg FN g (qE qvB)
m
m
由上式知a随v旳增长而增长,即小球做加速度增长旳加速运动
. 当qvB=qE,即速度增大 v E 时,
带电粒子在复合场中的(类)平抛运动
带电粒子在复合场中的(类)平抛运动带电粒子在复合场中的(类)平抛运动,是指带电粒子在电磁场和重力场的共同作用下,做类似于平抛运动的运动轨迹。
这种运动在物理学中被广泛研究,对于了解电磁场和重力场的相互作用,以及带电粒子在这些场中的运动规律具有重要意义。
一、电磁场和重力场的基本概念电磁场是由电荷和电流所产生的物理场。
电磁场的基本量是电场和磁场,它们是相互作用的。
电磁场的作用可以通过麦克斯韦方程组来描述。
重力场是由物体所产生的物理场。
重力场的基本量是重力加速度,它是物体受到的重力作用的大小和方向。
重力场的作用可以通过牛顿万有引力定律来描述。
二、带电粒子在电磁场中的运动规律带电粒子在电磁场中的运动规律可以通过洛伦兹力公式来描述。
洛伦兹力公式表示带电粒子在电磁场中受到的力的大小和方向。
洛伦兹力公式为:F=q(E+v×B)其中,F是带电粒子所受的力,q是粒子的电荷量,E是电场强度,B是磁场强度,v是粒子的速度。
带电粒子在电磁场中的运动轨迹可以通过牛顿第二定律和洛伦兹力公式来描述。
牛顿第二定律表示物体所受的合力等于物体的质量乘以加速度。
带电粒子在电磁场中的加速度可以通过洛伦兹力公式来计算。
因此,带电粒子在电磁场中的运动轨迹可以通过解微分方程来求解。
三、带电粒子在重力场中的运动规律带电粒子在重力场中的运动规律可以通过牛顿第二定律和牛顿万有引力定律来描述。
牛顿万有引力定律表示两个物体之间的引力大小与它们的质量和距离的平方成正比,与它们之间的相对位置有关。
带电粒子在重力场中的运动可以看作是一个质点在重力场中的运动,因此可以应用牛顿第二定律来描述。
四、带电粒子在复合场中的运动规律带电粒子在复合场中的运动规律可以通过将电磁场和重力场的作用合并来描述。
带电粒子在复合场中的运动轨迹可以通过解微分方程来求解。
在复合场中,带电粒子所受的合力等于电磁力和重力的合力,因此可以应用牛顿第二定律来描述。
总之,带电粒子在复合场中的(类)平抛运动是一个复杂的物理过程,它涉及到电磁场和重力场的相互作用,以及带电粒子在这些场中的运动规律。
专题拓展课二 带电粒子在复合场中的运动
专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。
2.能够运用运动组合的理念分析带电粒子在组合场中的运动。
3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。
拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。
2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。
(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。
(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。
(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。
3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。
(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。
(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。
4.要正确进行受力分析,确定带电粒子的运动状态。
(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。
(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。
5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。
特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。
【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。
图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。
重难点08 带电粒子在复合场中的运动(解析版)
2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
2022届高三物理二轮专题:带电粒子在复合场中的运动 课件
A.该带电粒子是带正电荷的粒子
B.动能增加,重力势能增加,电势能减少
C.动能不变,重力势能增加,电势能减少
D.动能减少,重力势能增加,电势能增加
考向一
例2
带电粒子在复合场中的匀变速运动
(2019·全国卷Ⅲ·24)空间存在一方向竖直向下的匀强电场,O、P是
电场中的两点.从O点沿水平方向以不同速度先后发射两个质量均为m的
重力加速度g=10 m/s2,问:
(1)油滴在第三象限运动时受到的重力、电场力、
洛伦兹力三力的大小之比,并指出油滴带何种电荷;
(2)油滴在P 点获得的初速度大小;
F
qE
(3)油滴在第一象限运动的时间。
mg
考向三
带电粒子在复合场中的多过程运动
A
×
× ×
×
× ×
C
×
× ×
N
F
qE
mg
考向三 带电粒子在复合场中的多过程运动
小球在y轴右侧匀强电场中受到的合力方向由
A点指向O点,则qE1=mg
q 20
解得m= 9 C/kg
1 2
由 A 到 O 过程中,由动能定理得 mgy1+qE1x1=2mv -0
解得v=4 m/s
qE
mg
(2)小球第二次穿过y轴时的纵坐标;
解析
小球在y轴左侧时,有qE2=mg
故小球做匀速圆周运动,其轨迹如图所示,
2mg=ma
qE
y
F合
v
mg
x
2 2
可得 t2= 5 s
故小球从 O 点到第三次穿过 y 轴所经历的时间
9π
2
2
t=t1+t2= +
带电粒子(带电体)在复合场中的运动问题(原卷版)-2023年高考物理压轴题专项训练(新高考专用)
压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。
针对性的专题训练,可以提高同学们解决难题、压轴题的信心。
3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。
物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。
带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。
解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。
其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。
涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。
问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。
二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。
物理专题三带电粒子在复合场(电场磁场)中的运动解读
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
带电粒子在复合场中,常见的三种运动轨迹
v0=4.0×103 m/s的速度沿与两板平行的中线OO′
射入,取g=10 m/s2、π=3.14。求:
(1)粒子在0~1.0×10-4 s内位移的大小x;
(2)粒子离开中线OO′的最大距离h;
(3)粒子在板间运动的时间t;
(4)画出粒子在板间运动的轨迹图。
U 5 【解析】(1)由题意知: Eq q 2.0 10 s d 5 而mg 2.0 10 s
由牛顿第二定律得:
mv0 2 qv0 B = R
所以粒子离开中线OO′的最大距离 h=0.128 m。
(3)板长L=1.2 m=3x t=2T+3Δt=5.0×10-4 s (4)轨迹如圆形区域内存在
垂直纸面向外的匀强磁场,磁感应强度大
小为B,在此区域外围足够大空间有垂直 纸面向内的磁感应强度大小也为B的匀强 磁场,一个带正电粒子从边界上的P点沿半径向外,以速 度v0进入外围磁场,已知带电粒子质量m=2×10-10 kg,带
显然Eq=mg 故粒子在0~1.0×10-4 s时间内做匀速直线运动, 因为Δt=1.0×10-4 s, 所以x=v0Δt=0.4 m
(2)在1.0×10-4~2.0×10-4 s时间内,
电场力与重力平衡,粒子做匀速圆周运动, 2m 因为 T qB 故粒子在1.0×10-4~2.0×10-4 s时间内恰好完成一个周期圆 周运动
4 为 v = BqR = BqL m 4m
设粒子进入电场后沿y轴负方向做减速运动的最大位移
1 为y, mv 2 = qEy, 得y = 2 2 2 qB L 由动能定理知 s = + 16mE qB2 L2 32mE 1 p L。 2
所以粒子运动的总路程为
答案: qB2 L2
带电粒子在复合场中的运动例题
带电粒子在复合场中的运动例题引言本文将围绕带电粒子在复合场中的运动进行详细的探讨和解析。
我们将通过一个具体的运动例题,展示带电粒子在电磁场和重力场共同作用下的运动规律,帮助读者更好地理解这一过程。
问题描述考虑一个带电质量为m的粒子,在匀强电场和重力作用下,其运动方程如下:$$F=qE+m g$$其中,F表示粒子所受的合外力,q表示粒子的电荷量,E表示电场强度,g表示重力加速度。
在给定初速度v0的情况下,我们的目标是确定带电粒子在复合场中的运动轨迹。
解析为了解决这个问题,我们将采取以下步骤:步骤一:分析受力情况带电粒子所受的合外力由电场力和重力构成,因此可以将合外力表示为:$$F=qE+m g$$步骤二:列出运动方程根据牛顿第二定律,粒子的加速度与合外力成正比,因此可以得到运动方程为:$$a=\f ra c{F}{m}=\f ra c{qE}{m}+g$$将加速度与速度的关系带入上式,得到:$$\f ra c{dv}{dt}=\f ra c{qE}{m}+g$$步骤三:解微分方程对上式进行积分,可以得到粒子的速度与时间的关系:$$v=\f ra c{qE}{m}t+gt+v_0$$其中,v0为初始速度。
步骤四:求解轨迹方程将速度与时间的关系带入运动方程中,即可得到带电粒子在复合场中的运动轨迹:$$x=\f ra c{1}{2}\l e ft(\fr ac{q E}{m}t^2+g t^2+v_0t\ri g ht)+x _0$$其中,x0为初始位置。
结论通过以上的推导和计算,我们得到了带电粒子在复合场中的运动轨迹方程。
这个运动方程将帮助我们更好地理解带电粒子在电场和重力场中的相互作用情况,并能够准确地描述其运动过程。
希望读者通过本文的学习,能够加深对带电粒子在复合场中运动的理解,并能够应用相关原理解决类似的问题。
*注意:本文所使用的公式和推导过程纯属示例,实际问题中需要根据具体情况进行适当的调整。
带电粒子在电场和重力场复合场中的运动
$E_{p} = qvarphi$,其中$q$为带电粒子的电荷量,$varphi$为 电势。
影响因素
与带电粒子的电荷量和电场强度有关。
动能
01
02
03
定义
带电粒子在运动过程中所 具有的能量。
计算公式
$E_{k}
=
frac{1}{2}mv^{2}$,其中
$m$为带电粒子的质量,
$v$为速度。
带电粒子在电场和重力场复合场中 的运动
目录
• 带电粒子在电场和重力场复合场中的 受力分析
• 带电粒子在复合场中的运动形式 • 带电粒子在复合场中的能量分析
目录
• 带电粒子在复合场中的运动轨迹分析 • 带电粒子在复合场中的动力学方程 • 带电粒子在复合场中的实验验证
01 带电粒子在电场和重力场 复合场中的受力分析
详细描述
当带电粒子受到的电场力和重力相互抵消时,粒子受到的合外力为零,因此粒子将做匀速圆周运动。 此时,粒子受到的电场力充当向心力,使粒子沿着圆形轨迹运动。粒子的速度大小不变,方向时刻改 变,其运动轨迹为一个闭合的圆。
03 带电粒子在复合场中的能 量分析
电势能
定义
带电粒子在电场中由于电场力作用而具有的势能。
详细描述
当带电粒子受到的电场力和重力方向不一致时,粒子将受到一个与初速度方向垂直的合外力,这个力使粒子做曲 线运动。根据牛顿第二定律,合外力与加速度方向一致,因此粒子加速度方向时刻改变,导致速度方向也时刻改 变,从而形成曲线轨迹。
匀速圆周运动
总结词
当带电粒子受到的电场力和重力相互抵消时,粒子将在匀强电场中做匀速圆周运动。
牛顿第二定律的应用
牛顿第二定律是动力学的基础,在复合场中,带电粒子受到 电场力和重力的作用,因此,牛顿第二定律的应用是推导动 力学方程的关键。
带电粒子在复合场中的运动
况随区域情况发生变化,其运动过程由几种不同的运动阶段组
成。
带电粒子在组合场中的运动 【真题示例】 (2017· 天津理综, 11) 平面直角坐标系 xOy 中,第 Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿 y 轴 负方向的匀强电场,如图1所示。一带负电的粒子从电场中的Q 点以速度v0沿x轴正方向开始运动。Q点到y轴的距离为到x轴距 离的2倍。粒子从坐标原点 O离开电场进入磁场,最终从x轴上 的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。不计粒 子重力,问: (1)粒子到达O点时速度的大小和方向; (2)电场强度和磁感应强度的大小之比。
归纳总结:带电粒子在组合场中运动的处理方法
1.(2017· 益阳一模)如图3所示,在边长为L的等边三角形内有垂直 纸面向里的匀强磁场,磁感应强度大小为B,在AC边界的左侧 有与AC边平行的匀强电场,D是底边AB的中点。质量为m,电 荷量为q的带正电的粒子(不计重力)从AB边上的D点竖直向上射 入磁场,恰好垂直打在AC边上。
(1)第6 s内小球离开斜面的最大距离; (2)第19 s内小球未离开斜面,θ角的正切值应满足什么条件?
6、如图所示的空间,匀强电场的方向竖直向下,场强为E,匀 强磁场的方向垂直于纸面向外,磁感应强度为B.有两个带电小 球A和B都能在垂直于磁场方向的同一竖直平面内做匀速圆周运 动(两小球间的库仑力可忽略),运动轨迹如图.已知两个带电 小球A和B的质量关系为mA = 3mB,轨道半径为RA = 3RB = 9 cm. (1)试说明小球A和B带什么电,它们所带的电荷量之比 qA/qB 等于多少? (2)指出小球A和B在绕行方向及速率之比; (3)设带电小球A和B在图示位置P处相碰撞,且碰撞后原先 在小圆轨道上运动的带电小球B恰好能沿大圆轨道运动,求带电 小球A碰撞后所做圆周运动的轨道半径(设碰撞时两个带电小球 间电荷量不转移).
运动电荷在复合场中的运动
的匀强磁场。已知从左方水平射入的电子穿
过这区域时未发生偏转,重力忽略不计,则
在这区域中的E和B的方向可能是
A.E和B都沿水平方向,并与电子
运动的方向相同
B.E和B都沿水平方向,并与电子
运动的方向相反
C.E竖直向上,B垂直纸面向外
vB
D.E竖直向上,B垂直纸面向里
E
例2:匀强电场E方向竖直向下,匀强磁场B方 向垂直于纸面向里,三个微粒M、N、P带有 等量同种电荷,质量分别为mM、mN、mP, 它们在电磁场中作不同的运动,M向左匀速 直线运动,N静止,P向右匀速直线运动如图
为何值?
P θ
M
U
如图21所示,在xoy平面内的第三象限中有沿-y方
向的匀强电场,场强大小为E。在第一和第二象限
有匀强磁场,方向垂直于坐标平面向里。有一个质
量为m、电荷量为e的电子,从y轴的P点以初速度
v0垂直于电场方向进入电场(不计电子所受重力)。 经电场偏转后,沿着与x轴负方向成45˚角进入磁
滑行的最大速度及沿斜面滑行的最大距离。
-q
B
m
例4:带电粒子以初速度v从a点进入匀强磁场 中运动,如图所示,粒子恰能经过x轴上的 b点,且Oa=Ob。若撤去磁场加一个与y方向 平行的匀强电场,粒子仍以v从a进入电场, 粒子仍能通过b点,求电场强度E与磁感应强 度B的比值。
y
R BqO vmavRO 2 bObm Bqv
所示。若不考虑空气阻力的影响,则三个微 粒带有_____电荷(填正或负),三个微粒质 量由小到大排列的顺序是___________。
MP
N
粒子匀速圆周运动
P
例3:如图所,一质量为m、带电量为-q的物
带电粒子在复合场中的运动(二)----叠加场
目标导航
1、无约束的叠加场 (1)匀速直线运动 (2)圆周运动 (3)一般的曲线运动 2、有约束的叠加场
带电粒子在叠加场中的运动
受力分析
运动分析
列式求解
选择规律(牛顿运动 定律、动能定理等)
受力分析时注意: (1)先分析电场力、磁场力、重力,再分析弹力、摩擦力
(2)三种力的比较:
大小
方向
做功点
重力
G = mg
竖直向下
做功只与始、末高度 差有关
电场力
F = Eq
与电场线或电场强度平行(正 同负反)
W = Uq
洛伦兹力
F = qVB
与磁感线或磁感应强度垂直 (左手定则)
始终不做功
(3)是否考虑重力:电子、质子、α粒子、离子等微观粒子无特殊
说明一般不计重力;带电小球、尘埃、油滴、液滴等带电颗粒无特
(4)有轨道约束的 运动。
• 带电体在复合场中受轻杆、轻绳、圆环、轨道等约 束的情况下,常见的运动形式有直线运动和圆周运 动,此时解题要通过受力分析明确变力、恒力做功 情况,并注意洛伦兹力不做功的特点,运用动能定 理、能量守恒定律结合牛顿运动定律求出结果.
4、如图所示,粗糙的足够长直绝缘杆上套有一带电小球,整个装置处在由 水平向右匀强电场和垂直于纸面向外的匀强磁场组成的足够大复合场中,
例1、如图所示,实线表示竖直平面内的电场线,电场线与水平方向成α角, 水平方向的匀强磁场与电场正交,有一带电液滴沿斜向上的虚线L斜向上 做直线运动,L与水平方向成β角,且α>β,则下列说法中正确的是( ) A.液滴一定做匀速直线运动 B.液滴一定带负电 C.电场线方向一定斜向上 D.液滴有可能做匀变速直线运动
带电粒子在复合场中的运动
等,简化动力学方程的求解过程。
动力学方程的应用
带电粒子在磁场中的回旋运动
当带电粒子在磁场中作圆周运动时,其轨迹为一回旋线,可以根据动力学方程计算粒子的 回旋半径和回旋频率等参数。
带电粒子在电场中的加速运动
当带电粒子在电场中作加速运动时,可以根据动力学方程计算粒子的速度和位移等参数。
带电粒子的偏转运动
速度恒定
带电粒子的速度保持不变, 不随时间变化。
运动轨迹稳定
带电粒子的运动轨迹应是 一条稳定的曲线,不会发 生突变或震荡。
平衡位置的确定
受力分析
对带电粒子进行受力分析,找出各个力的方向和 大小,判断其平衡位置。
速度分析
根据速度恒定的条件,分析带电粒子在平衡位置 附近的速度变化情况。
轨迹分析
根据运动轨迹稳定的条件,分析带电粒子在平衡 位置附近的轨迹变化情况。
动力学方程的求解
分离变量法
01
将带电粒子的运动分解为在电场中的运动和在磁场果合并。
数值计算方法
02
对于一些复杂的动力学问题,可以采用数值计算方法,如有限
差分法、有限元法等,通过迭代求解动力学方程。
近似解法
03
对于一些特殊情况,可以采用近似解法,如小参数法、变分法
能量守恒定律的应用场景
在解决带电粒子在复合场中的运动问题时,我们通常需要分析带电粒子的受力情况,然后利用能量守恒 定律计算出带电粒子的速度、位移等物理量。
THANKS FOR WATCHING
感谢您的观看
匀速圆周运动
总结词
带电粒子在复合场中以恒定速率绕圆周运动,受到的电场力和洛伦兹力提供向心 力。
详细描述
当带电粒子在复合场中受到的电场力和洛伦兹力达到平衡时,粒子将绕圆周匀速 运动。此时,粒子的速度大小保持不变,方向不断变化,且受到的磁场力充当向 心力,使粒子保持圆周运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中的运动
1如图所示,空间的某个复合场区域内存在着方向相互垂直的匀强电场
和匀强磁场.质子由静止开始经一加速电场加速后,垂直于复合场的界
面进入并沿直线穿过场区,质子从复合场区穿出时的动能为E k .那么氘
核同样由静止开始经同一加速电场加速后穿过同一复合场后的动能
E k ′的大小是 ( )
A.E k ′=E k
B.E k ′>E k
C.E k ′<E k
D.条件不足,难以确定
2.如图所示,在互相垂直的匀强电场和匀强磁场中,电荷量为q 的液滴在竖直
面内做半径为R 的匀速圆周运动,已知电场强度为E,磁感应强度为B,则油滴
的质量和环绕速度分别为
( ) A.B E g qE , B.B E E qR B ,2 C.B qgR g qR , D.E
BgR g qE , 3.如图5
质量为m.碰撞时间)A.v R π24原理如图2子从s
A.B.C.只要X D.只要X 5.如图4A.a C.c 6. A B .减小加速电压U ,增大电场强度E
C .适当地加大加速电压U
D .适当地减小电场强度E
7.如图所示,在宽l 的范围内有方向如图的匀强电场,场强为E ,一带电粒子以速度v 垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射
入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B .
图4
8.如图所示,在互相垂直的水平方向的匀强电场(E已知)和匀强磁场(B已知)中,有一固定的竖直绝缘杆,杆上套一个质量为m、电荷量为+q的小球,它们之间的摩擦因数
为μ,现由静止释放小球,试求小球沿棒运动的最大加速度和最大速度.(mg>μqE,
小球的带电荷量不变)
9.如图所示,一质量为m,带电荷量为+q的小物体,在水平方向的匀强磁场B中,从倾角为θ的绝缘光滑足够长的斜面上由静止开始下滑,求:
(1)此物体在斜面Q上运动的最大速度.
(2)此物体在斜面上运动的距离.
(3)此物体在斜面上运动的时间.
10.如图所示,在第二象限内有水平向右的匀强电场,在第一、第四象限内分别存在匀强磁场,磁感应强度大小相等,方向如图所示;现有一个带电粒子在该平面内从x轴上的P点,以垂直于x轴初速度v0进入匀强电场,恰好经过y轴上的Q点且与y轴成45°角射出电场,再经过
一段时间又恰好垂直于x轴进入下面的磁场.已知OP之间的距离为d,(不计粒子的重力)求:
(1)Q点的坐标;
(2)带电粒子自进入电场至在磁场中第二次经过z轴的时间.
11.如图所示,在空间中存在垂直纸面向里的场强为B匀强磁场,其边界AB、CD的宽度为d,在左边界的Q点处有一质量为m,带电量为负q的粒子沿与左边界成30o的方向射入磁场,粒
子重力不计.求:
(1)带电粒子能从AB边界飞出的最大速度?
(2)若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示的匀强电场中减速至零且不碰到负极板,则极板间电压及整个过程中粒子在磁场中运
动的时间?
(3)若带电粒子的速度是(2)中的3倍,并可以从Q点沿
纸面各个方向射入磁场,则粒子能打到CD边界的范围?
30°
小孔
A
B
Q
C
D
U
d
+-
v。