石墨烯及其纳米复合材料发展.

合集下载

石墨烯纳米复合材料

石墨烯纳米复合材料

石墨烯纳米复合材料
石墨烯是一种由碳原子构成的二维晶格结构材料,具有优异的导电性、热导性
和机械性能。

石墨烯的发现引起了科学界的广泛关注,人们开始探索如何将石墨烯与其他材料结合,以期望得到更多新颖的性能。

石墨烯纳米复合材料应运而生,成为了当前材料科学研究的热点之一。

石墨烯纳米复合材料是指将石墨烯与其他纳米材料进行复合,形成新的材料体系。

这种复合材料不仅继承了石墨烯的优异性能,还具有了其他纳米材料的特性,因此在电子器件、储能材料、传感器等领域具有广阔的应用前景。

首先,石墨烯与纳米金属复合材料在催化剂领域有着重要的应用。

石墨烯具有
大量的π共轭结构,能够提供丰富的活性位点,而纳米金属具有优异的催化性能,将两者复合能够有效提高催化剂的活性和稳定性,从而在化工领域有着广泛的应用。

其次,石墨烯与纳米陶瓷复合材料在耐磨材料领域有着重要的应用。

石墨烯具
有出色的机械性能和高强度,而纳米陶瓷具有硬度大、耐磨性好的特点,二者复合后能够有效提高材料的耐磨性能,因此在航空航天、汽车制造等领域有着广泛的应用。

此外,石墨烯与纳米聚合物复合材料在柔性电子领域也有着重要的应用。

石墨
烯具有优异的导电性和柔韧性,而纳米聚合物具有良好的柔韧性和成型性,二者复合后能够制备出柔性电子器件,如柔性传感器、柔性电池等,因此在可穿戴设备、医疗器械等领域有着广泛的应用前景。

综上所述,石墨烯纳米复合材料具有广泛的应用前景,在能源、材料、电子等
领域都有着重要的作用。

随着材料科学的不断发展,相信石墨烯纳米复合材料将会有更多的新突破,为人类社会的发展做出更大的贡献。

石墨烯材料的特性与应用

石墨烯材料的特性与应用

石墨烯材料的特性与应用石墨烯是一种由碳原子排列成的薄膜,属于二维材料。

它具有出色的导电性、热导性和力学性能,极高的比表面积和柔韧性使其成为许多领域的研究热点。

1. 石墨烯的结构和特性石墨烯的结构类似于一张网格,由一层厚度为一个原子的碳晶格组成。

这种构造使其具有出色的电子传输性能。

该材料的电荷载流子迁移速度非常快,比传统的材料如硅快几倍。

此外,石墨烯的热导率极高,可以有效地传递热量。

这些性质使其成为许多电子学和热学应用领域的理想材料。

2. 石墨烯的应用石墨烯已经在许多领域中得到广泛应用。

以下是一些重要的应用领域:2.1 电子学应用由于石墨烯具有出色的导电性,因此它在电子学领域有广泛的应用。

石墨烯可以用于制造电子元件,如晶体管、集成电路等。

它还可以用于制造光电元件和传感器,如透明导电膜和生物传感器。

2.2 储能材料石墨烯可以用于制造储能器件,如锂离子电池和超级电容器。

其高比表面积和出色的电荷传输速度可以提高储能器件的性能。

石墨烯也可以用于制备储氢材料,这对开发氢燃料电池具有重要意义。

2.3 纳米复合材料石墨烯可以用于制造各种纳米复合材料,如聚合物基复合材料、金属基复合材料等。

石墨烯可以加强复合材料的力学性能,并且可以用于保护材料免受化学和环境腐蚀。

2.4 生物医学应用石墨烯在生物医学领域中也有许多应用。

它可以用于制造药物载体、生物传感器和各种医用材料。

石墨烯也可以用于研究肿瘤及其他疾病的治疗方法,如光疗和热疗。

3. 石墨烯的未来发展石墨烯在各个领域的应用前景广阔。

目前,石墨烯的产量和生产成本仍然很高,生产技术也存在许多难题。

因此,石墨烯的商业化应用仍然需要更多的研究和开发。

未来,石墨烯的大规模生产技术将会得到进一步的发展,其在各个领域的应用将会更为广泛。

总之,石墨烯是一个有着巨大潜力的材料。

它的优异特性使其成为了高效电子器件和新型材料的重要材料,在未来将充满无限的发展和应用前景。

石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用石墨烯作为一种新型材料,其在纳米复合材料领域具有重要的应用价值。

石墨烯具有高的比表面积、高的导电性和热传导性,以及优异的机械性能和化学稳定性,这些特性为石墨烯纳米复合材料的制备和应用提供了广阔的空间。

石墨烯纳米复合材料是由石墨烯和其他材料组成的复合材料。

通过将石墨烯与其他材料(如聚合物、金属、陶瓷等)进行混合和纳米级分散,可以得到具有更加特殊性能的新材料。

这样的材料在许多领域有着广泛的应用,如智能手机屏幕、电池、传感器、导电材料等。

石墨烯纳米复合材料具有以下优点:1.高导电性:石墨烯作为导体,可以导电,并且具有很高的电导率。

与其他纳米复合材料相比,石墨烯纳米复合材料在导电性方面表现更为突出。

2.高强度:石墨烯具有优异的机械性能,其强度比钢材高200倍以上。

将石墨烯与其他材料混合制备纳米复合材料可以增加材料的机械强度。

3.高热导率:石墨烯的热导率非常高,比铜的导热率高出5倍以上,因此石墨烯纳米复合材料在制备导热材料时具有重要应用价值。

4.高比表面积:由于石墨烯的结构,其比表面积非常高,在纳米复合材料的制备中能够扮演着很好的填充剂的角色。

5.化学稳定性:石墨烯具有很好的化学稳定性,不易因为酸碱等化学物质的作用而发生变化,因此在生产过程中有着广泛应用价值。

石墨烯纳米复合材料的应用领域非常广泛。

一方面,石墨烯作为纳米材料,其优异的力学性能和高的导电性质使其适用于新型导电材料的制备。

例如,用石墨烯和聚合物混合制备的导电材料可以被应用于电子器件、智能手机屏幕等。

另一方面,石墨烯纳米复合材料也可以作为高强度、高导热材料的制备原料。

例如,将石墨烯与陶瓷混合,制备出的复合材料可以应用于高温环境下的传热设备,如烟气换热器、太阳能电池板等。

此外,石墨烯纳米复合材料还可以用于生产航空器、汽车、轮船等领域的轻质结构材料,这些材料除了具有高强度、高导热等优点,还具有非常好的化学稳定性和耐久性。

总之,石墨烯纳米复合材料是一种有着广泛应用价值的新型材料。

石墨烯的制备方法及发展应用概述

石墨烯的制备方法及发展应用概述

石墨烯的制备方法及发展应用概述一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功制备以来,便以其独特的物理和化学性质,引发了全球范围内的研究热潮。

本文旨在全面概述石墨烯的制备方法,以及其在各个领域的发展应用。

我们将介绍石墨烯的基本结构和性质,为后续的制备方法和应用探讨提供理论基础。

接着,我们将重点阐述石墨烯的几种主要制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等,并分析各方法的优缺点。

随后,我们将深入探讨石墨烯在能源、电子、生物医学等领域的应用现状和发展前景。

我们将对石墨烯的未来研究方向进行展望,以期为其在实际应用中的进一步推广提供参考。

二、石墨烯的制备方法石墨烯的制备方法多种多样,每一种方法都有其独特的优缺点和适用范围。

目前,石墨烯的主要制备方法包括机械剥离法、化学气相沉积法(CVD)、氧化还原法、碳化硅外延生长法以及液相剥离法等。

机械剥离法:这是最早用于制备石墨烯的方法,由英国科学家Geim和Novoselov在2004年首次报道。

他们使用胶带反复剥离石墨片,最终得到了单层石墨烯。

这种方法虽然简单,但产量极低,且无法控制石墨烯的尺寸和形状,因此只适用于实验室研究,不适用于大规模生产。

化学气相沉积法(CVD):CVD法是目前工业上大规模制备石墨烯最常用的方法。

它通过高温下含碳气体在催化剂表面分解生成石墨烯。

这种方法可以制备出大面积、高质量的石墨烯,且生产效率高,成本低,因此被广泛应用于石墨烯的商业化生产。

氧化还原法:这种方法首先通过化学方法将石墨氧化成石墨氧化物,然后通过还原反应将石墨氧化物还原成石墨烯。

这种方法制备的石墨烯往往含有较多的缺陷和杂质,但其制备过程相对简单,成本较低,因此也被广泛用于石墨烯的大规模制备。

碳化硅外延生长法:这种方法通过在高温和超真空环境下加热碳化硅单晶,使硅原子从碳化硅表面升华,剩余的碳原子重组形成石墨烯。

这种方法制备的石墨烯质量高,但设备成本高,制备过程复杂,限制了其在大规模生产中的应用。

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。

石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。

本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。

本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。

接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。

本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。

二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。

以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。

首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。

接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。

通过过滤、干燥等步骤得到石墨烯复合材料。

这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。

原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。

例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。

这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。

熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。

石墨烯纳米复合材料的微观结构与性能研究

石墨烯纳米复合材料的微观结构与性能研究

石墨烯纳米复合材料的微观结构与性能研究摘要:近年来,石墨烯作为一种新颖的碳基材料,其独特的结构和优异的性能引起了广泛关注。

石墨烯纳米复合材料,是将石墨烯与其他纳米材料相结合的复合材料,可以在综合性能上进一步提升。

本文主要探讨了石墨烯纳米复合材料的微观结构与性能之间的关系,并介绍了目前在此领域进行的研究。

1. 引言石墨烯是一种由碳原子单层构成的二维材料,具有高导电性、高热导性和高机械强度等优秀特性。

然而,石墨烯的应用受限于其脆性和难处理性。

为了克服石墨烯的这些缺点,研究者开始将其与其他纳米材料相结合,形成石墨烯纳米复合材料。

这些复合材料不仅可以发挥石墨烯本身的特性,还可以利用其他纳米材料的功能增强其综合性能。

2. 石墨烯纳米复合材料的微观结构研究石墨烯纳米复合材料的微观结构是其性能的基础。

一种常用的制备方法是通过化学还原石墨烯氧化物,将其还原成石墨烯,并与其他纳米材料进行混合。

这种方法可以有效地将石墨烯和其他纳米材料紧密地结合在一起。

此外,还可以利用层状材料(如石墨烯和二硫化钼)之间的范德华相互作用力实现石墨烯的层间叠加。

这种方法可以灵活地控制石墨烯的层数和纳米材料之间的相互作用,从而实现对石墨烯纳米复合材料微观结构的调控。

3. 石墨烯纳米复合材料的性能研究石墨烯纳米复合材料的性能主要取决于其微观结构和组成。

一方面,石墨烯在复合材料中可以作为导电层或衬底,提供高导电性和高热导性,从而改善复合材料的导电性能和导热性能。

另一方面,其他纳米材料的添加可以增强复合材料的力学性能和化学稳定性。

例如,将石墨烯与高分子材料相结合可以提高复合材料的柔韧性和可塑性。

同时,与金属纳米颗粒的结合可以提高复合材料的抗氧化性能。

此外,石墨烯纳米复合材料还具有其他特殊的性能。

例如,通过控制石墨烯的层数和添加纳米颗粒的种类和浓度,可以实现对复合材料的光学性能的调控。

石墨烯纳米复合材料还具有优异的吸附性能和催化性能。

这些特殊的性能使得石墨烯纳米复合材料在能源存储、传感器、催化剂和电子器件等领域具有广阔的应用前景。

石墨烯及其复合材料在锂离子电池中的应用

石墨烯及其复合材料在锂离子电池中的应用

石墨烯及其复合材料在锂离子电池中的应用1 石墨烯的性质及应用概述石墨烯是一种由碳原子组成的薄薄的层状物质,其单层厚度只有一个碳原子层厚度,具有高强度、高导电性、高热导率、高透明度等特点,被誉为“二十一世纪的黑金”。

石墨烯的这些特性使其在许多领域有着广泛的应用,从电子学、能源、催化、生物医学到材料学等等领域均有涉及。

2 石墨烯在锂离子电池中的应用锂离子电池是目前使用较为广泛的一种二次电池,能够在多种场合应用。

石墨烯在锂离子电池中的应用主要为改善电池的性能、延长电池的使用寿命以及减少电池的体积和重量等方面。

具体的应用包括以下几个方面:2.1 石墨烯作为锂离子电池的电极材料石墨烯作为一种优良的导电材料,可以作为锂离子电池的电极材料,既可以作为负极材料,也可以作为正极材料。

在负极材料方面,石墨烯的高表面积和导电性能可以增加电池的容量、循环寿命和充电速度等性能。

在正极材料方面,石墨烯可以提高电池的能量密度、循环寿命和充电速度等性能。

此外,石墨烯还可以作为一种电极材料增强剂,与其它材料复合使用,使电池整体性能更优秀。

2.2 石墨烯复合材料在锂离子电池中的应用除了单独使用石墨烯作为电池的电极材料外,还可以将石墨烯与其它材料复合使用,以改善锂离子电池的性能。

例如,石墨烯/二氧化钛复合材料可以提高电池的充电容量和循环寿命;石墨烯/硅复合材料可以减轻电池的体积和重量;石墨烯/氧化铁复合材料可以提高电池的容量和循环寿命。

石墨烯作为一种材料增强剂,它的加入可以增加复合材料的强度和稳定性,从而提高电池的使用寿命和性能。

2.3 石墨烯纳米复合材料在锂离子电池中的应用除了常规的石墨烯复合材料外,石墨烯纳米复合材料在锂离子电池中也具有潜在的应用前景。

石墨烯颗粒的尺寸十分微小,因此具有较大的比表面积和可控的晶格结构,这使得它能够与其它材料充分结合,形成具有优异性能的纳米复合材料。

石墨烯纳米复合材料可以提高电极材料的比表面积、电子传输速率和离子反应速率等性能,从而大幅度提高锂离子电池的容量、循环寿命和充电速度等性能。

石墨烯纳米复合材料的制备及应用

石墨烯纳米复合材料的制备及应用

石墨烯纳米复合材料的制备及应用随着材料科学技术的不断发展,石墨烯这种特殊材料被越来越多地应用于诸如高强度材料、高导电材料、高热导材料等领域。

但是石墨烯纯粹的形态在某些领域中不一定能够满足要求,因此需要与其他材料结合起来形成复合材料,以期获得更好的性能。

本文将介绍石墨烯纳米复合材料的制备方法及其应用。

一、石墨烯纳米复合材料制备方法1.机械混合法这是一种较为简单的制备方法,将石墨烯和其他纳米材料一起经过机械混合后再进行压制成材料。

但是这种方法难以获得优秀的分散效果和界面相容性,因此在性能方面存在局限。

2.沉积法这是一种常见的制备方法,通过将纳米材料分散在溶液中,然后将石墨烯沉积在纳米材料上面。

这种方法可以获得较好的分散效果和界面相容性,但是需要进行复杂的前处理和后处理过程。

3.化学还原法这种方法通过化学反应来制备石墨烯纳米复合材料。

将还原剂与石墨烯和其他纳米材料混合,利用还原剂产生的化学反应来将石墨烯还原,然后与其他纳米材料结合形成材料。

这种方法具有优秀的分散效果和界面相容性,制备操作简单,成本低廉,因此被广泛应用。

二、石墨烯纳米复合材料的应用及优势1.高强材料石墨烯具有优秀的强度和刚度,而与其他材料结合可以进一步提高强度。

例如,与纳米碳管混合的石墨烯可以形成更加坚韧且抗弯曲的材料,因此可以应用于强度要求较高的结构材料中。

2.高导电和高热导材料石墨烯本身具有优秀的导电和热导性能,当与其他材料结合可以形成具有更高导电和热导性能的材料。

例如,与金属纳米颗粒混合的石墨烯可以形成高效的热界面材料,用于导热和散热。

3.吸附材料石墨烯和其他纳米材料结合可以形成高效的吸附材料,例如,与氧化镁纳米颗粒混合的石墨烯可以应用于吸附有机污染物的处理。

4.传感器石墨烯和其他纳米材料结合可以形成高灵敏、高精度的传感器,例如,与金属纳米颗粒混合的石墨烯可以应用于制备高灵敏的压力传感器。

综上所述,石墨烯纳米复合材料可以应用于很多领域,具有优良的性能和广阔的应用前景。

石墨烯及其聚合物纳米复合材料

石墨烯及其聚合物纳米复合材料

石墨烯及其聚合物纳米复合材料随着科技的不断进步,新材料领域的发展日新月异,其中石墨烯及其聚合物纳米复合材料备受瞩目。

石墨烯是一种由碳原子组成的二维材料,具有出色的物理性能和化学性能,而聚合物纳米复合材料则将石墨烯与其他材料相结合,以获得更优异的性能。

本文将介绍石墨烯及其聚合物纳米复合材料的特性、应用和未来发展前景。

石墨烯具有许多独特的性质,如高导电性、高强度、透明度高、热稳定性好等。

这些特性使得石墨烯在材料领域具有广泛的应用前景。

而石墨烯聚合物纳米复合材料在此基础上,通过将石墨烯与聚合物材料相结合,形成纳米级别的复合材料,从而具有更优越的性能。

由于石墨烯及其聚合物纳米复合材料的出色性能,它们在许多领域都已有广泛的应用。

例如,石墨烯可以用于制造更高效的电池和超级电容器,同时也可以应用于太阳能电池、显示器和传感器等领域。

而石墨烯聚合物纳米复合材料则被用于制造更轻质、更坚固和更具韧性的材料,同时也被应用于生物医学领域,如药物输送和肿瘤治疗等。

石墨烯及其聚合物纳米复合材料的未来发展前景随着科学技术的不断进步,石墨烯及其聚合物纳米复合材料的发展前景越来越广阔。

未来,它们可能会被应用于更多领域,如航空航天、汽车制造、生物医学等。

同时,石墨烯及其聚合物纳米复合材料的生产成本也将不断降低,使得它们能够更广泛地应用于实际生产中。

石墨烯及其聚合物纳米复合材料作为近年来备受的新型材料,具有非常广阔的发展前景。

它们在提高材料性能、优化能源储存与利用以及推动科技创新等方面都发挥了重要作用。

我们有理由相信,随着科研工作的不断深入以及技术的不断进步解决石墨烯及其聚合物纳米复合材料在大规模生产和应用中遇到的问题指日可待石,石墨烯及其聚合物纳米复合材料将在未来引领材料科学领域的发展,为人类创造更多的价值。

随着科技的不断进步,新型材料的研发显得尤为重要。

其中,聚合物石墨烯纳米复合材料作为一种具有优异性能的新型材料,在许多领域都具有广泛的应用前景。

石墨烯及其复合材料的制备、性质及应用研究共3篇

石墨烯及其复合材料的制备、性质及应用研究共3篇

石墨烯及其复合材料的制备、性质及应用研究共3篇石墨烯及其复合材料的制备、性质及应用研究1石墨烯及其复合材料的制备、性质及应用研究石墨烯是一种由碳原子构成的单层蜂窝状结构材料,具有独特的电学、光学、热学和机械性质。

自2004年它被首次发现以来,它的研究成果一直是纳米科学和材料科学最活跃的领域之一。

石墨烯具有很高的载流子迁移率、良好的机械强度和高比表面积,因此在传感器、电子器件、能量存储装置、超级电容器、太阳能电池、催化剂和生物医学传感器等领域具有广泛的应用。

本文旨在介绍石墨烯及其复合材料的制备方法、性质及其应用研究进展。

石墨烯的制备有许多方法,包括机械剥离、化学气相沉积、物理气相沉积、化学还原、流体力学剥离和微波辐射法等。

其中,机械剥离法是第一个制备单层石墨烯的方法,虽然成本低、易于实现,但需要大量时间和劳动力,并存在控制问题。

化学还原法则采用氧化石墨的还原,得到具有一定缺陷的石墨烯,且杂质易残留影响性质。

化学气相沉积法制备石墨烯具有高晶格载流子迁移率、具有极高的缺陷密度的石墨烯,但过程复杂,成本高。

物理气相沉积法适合生产无缺陷石墨烯,但难以控制多层石墨烯形成、且温度高,影响成品质量。

流体力学剥离法利用石墨烯的自身表面张力减小形成薄膜,但制备过程仍需要控制单层厚度。

微波辐射法是最新的石墨烯制备方法,采用微波对石墨进行瞬间加热、膨胀、冷却制备大面积石墨烯,具有制备速度快、质量好、颗粒易于控制等优点。

石墨烯的独特性质使其在许多应用中具有广阔的前景。

首先,在电子领域,石墨烯可以用来制造微电子器件、包括场效应晶体管、半导体和光电器件等。

FET型石墨烯晶体管基于石墨烯中载流子迁移率的高值,值得在短时间获得了重大的研究进展;二维电子系统(2DEG)可以用于制造高速逻辑电路和高灵敏感受器。

其次,在传感器领域,石墨烯表现出高度灵敏性,可以用于制造各种传感器,如光学传感器、生物传感器等。

此外,石墨烯还可以用于制造锂离子电池、超级电容器、声波马达等能量存储装置中。

石墨烯纳米复合材料

石墨烯纳米复合材料

石墨烯纳米复合材料
石墨烯是一种由碳原子构成的二维晶格结构材料,具有优异的导热、导电、机械强度和化学稳定性等特性。

因此,石墨烯被广泛应用于电子、能源、材料和生物医药等领域。

而石墨烯纳米复合材料则是将石墨烯与其他纳米材料进行复合,以期望获得更加优异的性能和应用。

本文将介绍石墨烯纳米复合材料的制备方法、性能以及应用前景。

首先,石墨烯纳米复合材料的制备方法包括物理法、化学法和生物法等多种途径。

物理法主要包括机械剥离法、化学气相沉积法和化学氧化还原法等;化学法主要包括溶液剥离法、化学还原法和化学气相沉积法等;生物法则是利用生物体内的生物合成途径来制备石墨烯。

不同的制备方法会影响石墨烯纳米复合材料的结构和性能。

其次,石墨烯纳米复合材料具有优异的性能。

首先,石墨烯的高导热、高导电性能使得纳米复合材料具有优异的导热、导电性能,可应用于导热材料和导电材料领域;其次,石墨烯的高机械强度和化学稳定性使得纳米复合材料具有优异的机械性能和耐腐蚀性能,可应用于材料强化和防腐蚀领域;最后,石墨烯的大比表面积和丰富的官能团使得纳米复合材料具有优异的吸附性能和催化性能,可应用于吸附材料和催化材料领域。

最后,石墨烯纳米复合材料具有广阔的应用前景。

首先,在电子领域,石墨烯纳米复合材料可应用于柔性电子、导电油墨和电磁屏蔽材料等领域;其次,在能源领域,石墨烯纳米复合材料可应用于锂离子电池、超级电容器和光伏材料等领域;最后,在材料和生物医药领域,石墨烯纳米复合材料可应用于复合材料、药物载体和生物传感器等领域。

综上所述,石墨烯纳米复合材料具有优异的性能和广阔的应用前景,其制备方法、性能和应用前景将会在未来得到更加广泛的研究和应用。

石墨烯纳米复合材料的制备与应用研究进展

石墨烯纳米复合材料的制备与应用研究进展
的性能 : 比表 面积超 大 , 论值 为 2 3 理 6 0m ・g [ ; 3 机 械性能 优 异 , 氏模 量 达 1 0TP [ ; 导 率 为 5 0 杨 . a 热 4 30
石墨烯 具有优 异的热性 能 、 力学 性能及 电性 能 , 特 别 是氧化 石 墨烯 由于 成 本低 、 料 易 得 、 原 比表 面 积 超 大 、 面官 能 团丰 富 , 表 在经过了稳 定存 在 的石 墨烯 。石 墨烯 得 的出现颠 覆 了传 统 理论 , 使碳 的晶 体结 构 形成 了从 零 维 的富勒 烯 、 维的碳 纳米管 、 一 二维 的石墨烯 到三维 的 金 刚石和 石墨 的完整 体系 ] 。 作 为一种 独特 的二 维 晶体 , 墨烯 具 有 非常 优 异 石
m 。。、
液 中的石墨烯 也可 与聚合物 单体混 合形成 复合材料 体 系 。此 外 , 墨烯 的加入使 复合材料 多功 能化 , 石 不仅 表 现 出优 异的 力学和 电学性能 , 且具有 优 良的加工性 能 ,
为复合 材料 提供 了更广 阔的应用前 景 。
lS・ m一 。张 好斌 等[] 1 对微 孑 MAA/ 墨烯 3 LP 石
导 电纳米复合 材料 进行 了研 究 , 现极 少 量 均匀 分 散 发
作 者在 此 阐述 了石 墨烯 纳 米 复 合 材 料 的制 备 方
法 , 石墨烯 纳米 复合 材 料 的应 用研 究 进展 进 行 了综 对
的石墨烯 即能显著 改变 材料 的 泡孔 结 构 , 为制备 综 合 性 能优异 的微 孔 发 泡材 料 提供 了基 础 。黄 毅 等n 通 过 溶液共混 制备 了石 墨烯 增 强 的聚 氨 酯 ( U) P 复合 材
基体 中形 成纳米级 分散 , 改善聚合 物 的热性 能 、 在 力学 性 能及 电性 能 等方 面 具有 更大 的潜 力 。石 墨烯/ 聚合

石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用石墨烯是一种由碳原子构成的二维材料,具有极高的强度、导电性、热传导性和化学稳定性,所以被广泛地应用于各种领域中。

近年来,石墨烯与纳米复合技术的结合,使得新材料的性能得到了大幅度提升,而石墨烯纳米复合材料的研究也成为了材料科学领域的热门话题。

一、石墨烯纳米复合材料的制备方法1. 化学还原法化学还原法是目前使用最为广泛的方法之一,它利用还原剂将氧化石墨烯还原成石墨烯。

在此基础上,通过添加不同的纳米材料,可以制备出石墨烯复合材料。

化学还原法制备出的复合材料,具有制备简单,成本低廉等优点。

2. 机械合成法机械合成法是通过机械研磨的方法将不同原材料混合制备而成的。

该方法可同时制备出纳米复合材料和石墨烯基材。

机械合成法的优点是制备工艺简单,对原料的要求不高,且制备出的材料具有极好的分散性和稳定性。

3. 真空热蒸发法真空热蒸发法是利用高温真空条件下,将石墨烯和纳米材料掺杂在一起来制备纳米复合材料。

该方法可以制备出高质量、高纯度的石墨烯纳米复合材料。

二、石墨烯纳米复合材料的应用领域1. 电子器件石墨烯纳米复合材料可以制备出具有优异性能的电子器件。

由于石墨烯的高导电性和高透明性,因此可以制备出透明导电膜、柔性电极等新型电子组件。

此外,石墨烯与纳米金属粒子复合后,还可用于纳米传感器的制备。

2. 光电功能材料石墨烯与半导体纳米材料复合后,可以制备出光电功能材料。

石墨烯的高导电性、高透明性和优异的光学性能,可以提高太阳能电池、有机发光二极管和光电探测器等光电器件的性能,并且可以延长其使用寿命。

3. 生物医药材料石墨烯复合纳米材料在生物医药领域中也有着广泛的应用。

例如,石墨烯与纳米颗粒复合后,可以制备成高效的抗菌和抗病毒药物,同时具有良好的生物相容性。

此外,石墨烯还可以用于生物成像、癌症治疗等领域。

三、石墨烯纳米复合材料的优势1. 优异的物理性能石墨烯纳米复合材料具有石墨烯和纳米材料的优异性能,如高导电性、高透明性、优异的力学性能、高比表面积和化学稳定性等。

石墨烯/纳米银复合材料的制备及应用研究进展

石墨烯/纳米银复合材料的制备及应用研究进展

石墨烯/纳米银复合材料的制备及应用研究进展综述了石墨烯/纳米银复合材料的制备方法及应用,讨论了其在导电、导热和生物医学等方面的应用,展望了石墨烯/纳米银复合材料的研究方向和发展前景。

标签:石墨烯;复合材料;纳米银;制备及应用石墨烯作为一种由单层单质原子组成的六边形结晶碳材料,其特殊性能的应用一直是近几年研究的重点。

但是石墨烯的生产效率低,需经常将其进行改性,达到以较少的添加量获得更好性能的目的。

其中,纳米银的出现在一定程度上扩大了石墨烯在导电[1],导热方面的应用。

而且纳米银的生产效率高,很好地解决了石墨烯/纳米银的生产问题,为石墨烯在诸多技术领域的应用拓展了空间[2]。

金属粒子由于含有自由移动的电子和极大的比表面积,在导电性和导热性方面有着出色的表现。

而纳米银颗粒,纳米银棒,纳米银线则可以在复合基体中形成网络通路,提高材料的导电性和导热性。

1 石墨烯/纳米银复合材料的制备方法目前,石墨烯掺杂纳米银复合材料可以根据纳米银的形貌特征分为石墨烯/纳米银颗粒复合材料和石墨烯/纳米银线复合材料。

纳米银的加入使得石墨烯复合材料的导电性和导热性以及石墨烯的表面硬度均得到了提高[3]。

1.1 机械共混法机械共混法可分为搅拌法和熔融共混法。

刘孔华[4]利用搅拌法制备得到石墨烯/纳米银线杂化物,在50 ℃下搅拌,升温至210 ℃,最后降至常温得到石墨烯/纳米银线杂化物。

熔融共混法是利用密炼机或者挤出机的高温和剪切作用力下将石墨烯、纳米银和基材熔融后,共混得到石墨烯/纳米复合材料。

该方法用途广泛,适用于极性和非极性聚合物和填料的共混。

并且纳米银的烧结温度在180 ℃,对于纳米银颗粒可以烧结形成一定规模的网络结构。

此方法制备的复合材料所需时间短,且纳米银线是单独制备,所以可以单独控制纳米银线的长度和长径比。

但是由于是机械共混,纳米银在石墨烯材料中的分散性不是很好,且容易发生团聚,达不到形成大量网络结构的目的。

1.2 化学还原法化学还原法是目前比较常见的将金属纳米粒子附着在石墨烯表面的方法。

石墨烯纳米复合材料的制备及其应用研究

石墨烯纳米复合材料的制备及其应用研究

石墨烯纳米复合材料的制备及其应用研究摘要:石墨烯是一种新兴的二维碳纳米材料,具有完美的晶体结构和出色的物理和化学性能。

石墨烯独特的电、热、光学和机械性能,在电子、导热材料、气体传感器、光敏元件和环境科学中具有广泛的潜在应用。

由于其潜在的实际应用价值。

本文概述了石墨烯制备的方法,介绍了石墨烯电极材料、环境吸附材料领域的应用。

并进一步对石墨烯及其纳米复合材料的发展前景做出了分析。

关键词:石墨烯;纳米复合材料;制备石墨烯是纳米复合材料研究中相对重要的材料。

纳米石墨烯复合材料具有更高的制备要求。

目的是生产可用于生物、机械和其他生产领域的高质量、高性能材料,发挥纳米石墨烯复合材料的适用性。

目前,就石墨烯复合材料的制备而言,纳米复合材料的制备是主要的发展趋势。

在当今的各个领域,纳米石墨烯复合材料具有非常明显的优势,并具有良好的发展前景。

因此,纳米石墨烯复合材料的制备和应用也受到越来越多的关注。

一、石墨烯复合材料的制备(一)熔融共混法制备通过熔融共混法制备纳米石墨烯复合材料,实际上是借助高温和高剪切力,将石墨烯或氧化石墨烯分散在聚合物基质中。

由于在使用该方法的纳米石墨烯复合材料的制造过程中不需要溶剂,因此非常适用于极性和非极性聚合物。

研究表明,在以单层或多层形式均匀分布的PET(石墨烯)基质中,基质中可能会出现卷曲和皱褶。

以栅格的形式,大大提高了复合材料的导电性。

当PET基体的石墨烯含量达到3vol%时,复合材料的最大电导率可以达到2.11S/m,这与目前电磁屏蔽领域对石墨烯复合材料的需求一致。

通过这种制造方法,一些专家和学者已经制成了高导电复合材料,例如分离的石墨烯-多壁纳米管/超高分子量聚乙烯,它们的导电率非常高,并且其导电渗透率低,仅为0.039vot%[1]。

(二)溶液混合法制备通过溶液混合法制备纳米石墨烯复合材料,实际上是指在溶剂的作用下,将聚合物分子插入GO片材后,通过还原制备纳米石墨烯复合材料。

石墨烯的应用前景及未来发展

石墨烯的应用前景及未来发展

石墨烯的应用前景及未来发展石墨烯是一种由碳原子组成的单层二维材料,具有高度的力学强度、导电性和热传导性等特性,被誉为“二十一世纪的奇迹材料”。

自2004年被发现以来,石墨烯在诸多领域取得了重大突破,未来其应用前景更为广阔。

本文将探讨石墨烯在能源、环保、医疗、电子、材料五大领域的应用前景及未来发展。

一、能源领域石墨烯在能源领域的应用主要包括太阳能电池、储能材料、燃料电池等方面。

石墨烯的高导电性和良好的导热性使其成为制作高效太阳能电池的材料之一。

同时,石墨烯的大表面积和高比表面积使其成为制作高效储能材料的理想选择。

另外,在燃料电池中,石墨烯的导电性和热传导性可以优化燃料电池的性能,并延长其使用寿命,具有重要应用价值。

二、环保领域石墨烯在环保领域的应用主要包括污染物检测、废水处理等方面。

由于其极高的表面积和出色的电化学性能,石墨烯可以作为高灵敏的传感器材料,配合其与不同物质之间的化学及生物相互作用,可以检测并分析各种污染物质。

同时,利用石墨烯的过滤功能和分离性能,可以将废水中的杂质进行有效去除和分离,使得废水得到有效治理和再利用。

三、医疗领域石墨烯在医疗领域的应用主要包括智能药物输送、生物成像、医疗纳米材料等方面。

具有高度特异性和生物相容性的石墨烯纳米材料可以作为新型药物输送系统,帮助药物在体内更加准确地定位和释放。

此外,基于石墨烯材料的荧光探针可以在疾病检测和生物成像方面发挥重要作用,实现常规影像诊断的超越。

四、电子领域石墨烯在电子领域的应用主要包括电子器件、柔性电子等方面。

石墨烯具有较高的电子迁移率以及极薄的厚度,这些特点使其成为制作高性能电子器件的理想材料。

同时,石墨烯的柔性性使其适用于制作柔性电子,为可穿戴显示、柔性传感器等领域带来了新的发展机遇。

五、材料领域石墨烯在材料领域的应用主要包括复合材料、涂层材料等方面。

将石墨烯纳入复合材料中,可以显著提高其性能,并拓展其应用范围。

例如,将石墨烯与基板材料复合,可以提高基板的力学强度和耐磨性,同时还可以提高复合材料的导电性和导热性。

石墨烯纳米复合材料的研究及其应用

石墨烯纳米复合材料的研究及其应用

石墨烯纳米复合材料的研究及其应用引言石墨烯是一种最近研发起来的材料,在过去几年中已经吸引了许多科学家和工程师的关注。

石墨烯的独一无二的特性使得其成为了新时代材料科学研究的重要领域之一。

石墨烯单层碳原子排列成一个六边形晶格,其厚度仅为单层纳米且几乎无厚度限制,电子在其表面的运动非常快,寿命长,机械强度极高,导电性也非常优异。

这些特性及其它许多优点使得石墨烯物理和化学的性质十分广泛。

本文将全面介绍石墨烯纳米复合材料的研究及其应用领域。

一、石墨烯纳米复合材料的制备方法1. 机械法机械法制备的石墨烯复合材料是将石墨烯纳米片与基质材料(如聚合物或金属)混合,经过高能机械研磨或高剪切力加工处理得到。

这种制备方法简单易行,适用范围广,成本低廉。

但石墨烯的质量容易受制备条件、基质材料的质量等因素的影响,难以控制。

2. 化学还原法化学还原法制备的石墨烯复合材料是将氧化石墨烯与基质材料进行混合,然后通过还原处理得到。

这种制备方法可以实现大范围和高质量的石墨烯纳米片制备。

但是由于这种方法使用的还原剂一般为有毒物质,制备过程对环境污染大。

3. 气相沉积法气相沉积法制备的石墨烯复合材料是利用化学气相沉积法制备石墨烯,然后将其与基质材料进行混合,制备出石墨烯复合材料。

这种方法生成的石墨烯复合材料具有高质量、高稳定性,但是成本较高。

二、石墨烯纳米复合材料应用的领域1. 储氢领域石墨烯纳米复合材料在储氢领域具有广泛的应用前景。

由于石墨烯具有高表面积、橄榄式晶体结构和良好的导电性能,使得其在氢吸附、存储和释放等方面有着潜力的应用。

同时,石墨烯复合材料的强度和稳定性也具有优势,对于储氢性能进行改进具有重要的作用。

2. 生物医学领域石墨烯纳米复合材料在生物医学领域也具有广泛的应用前景。

石墨烯复合材料可以应用于治疗癌症、制造更好的心血管材料,并且还可以制造出具有高灵敏度的生物传感器。

同时,由于石墨烯具有高比表面积,使得其能够提高药物的吸附效率,提高药物在体内的有效性,因此可以用于制造药物载体材料。

2024年石墨烯纳米复合材料市场前景分析

2024年石墨烯纳米复合材料市场前景分析

2024年石墨烯纳米复合材料市场前景分析引言石墨烯是一种由碳原子组成的二维材料,具有出色的力学强度和导电性能。

石墨烯纳米复合材料是通过将石墨烯与其他材料(如聚合物或金属)相结合制成的复合材料。

石墨烯纳米复合材料在多个行业中有广泛的应用潜力,包括电子、能源、医疗和汽车等。

本文将对石墨烯纳米复合材料市场前景进行分析,探讨其发展趋势和商业机会。

石墨烯纳米复合材料市场概述市场规模石墨烯纳米复合材料市场在过去几年呈现出快速增长的趋势。

根据市场研究公司的数据,2019年全球石墨烯纳米复合材料市场规模约为XX亿美元,预计到2025年将增长至XX亿美元。

应用领域石墨烯纳米复合材料在多个领域中有广泛的应用。

其中,电子领域是石墨烯纳米复合材料的主要应用领域之一。

石墨烯纳米复合材料可以用于制造高性能的电子元件,如智能手机和平板电脑的显示屏、电池和传感器等。

此外,石墨烯纳米复合材料在能源领域也有巨大的潜力。

由于其优异的导电性能和化学稳定性,石墨烯纳米复合材料可以用于制造高效的太阳能电池、储能设备和超级电容器等。

医疗和汽车领域也是石墨烯纳米复合材料的重要应用领域。

在医疗领域,石墨烯纳米复合材料可以用于制造药物传输系统、组织工程和医疗传感器等。

在汽车领域,石墨烯纳米复合材料能够提高汽车零部件的强度和导热性能,提升汽车性能和安全性。

技术发展为了推动石墨烯纳米复合材料市场的发展,许多公司和研究机构致力于石墨烯的制造和应用技术的研发。

传统的石墨烯制造方法包括机械剥离和化学气相沉积等,这些方法生产的石墨烯纳米复合材料成本较高且难以大规模生产。

然而,随着技术的进步和创新,新的石墨烯制造方法正在不断涌现。

例如,化学溶剂剥离法和电化学法等方法能够降低石墨烯的制造成本,并实现大规模生产。

市场前景分析市场驱动因素石墨烯纳米复合材料市场的快速增长离不开多个市场驱动因素的推动。

首先,石墨烯纳米复合材料具有出色的力学强度和导电性能,可以为传统材料带来多种改良。

石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用

石墨烯纳米复合材料及其应用
石墨烯纳米复合材料是指将石墨烯与其它材料(如金属、聚合物等)复合而成的新型材料。

石墨烯是一种只有一个原子厚度的碳原子晶格,具有高强度、高导电性和高导热性等特性。

将石墨烯与其它材料复合能够进一步优化其性能,并扩展其应用领域。

石墨烯纳米复合材料的制备方法多样,常用的方法包括机械混合、溶液法、化学合成等。

一般来说,制备的过程中需要控制好复合材料中石墨烯与其它材料之间的相互作用,以提高石墨烯的分散性和稳定性。

例如,通过表面修饰或化学反应,能够将石墨烯上的氧化物或氨基替换为有机基团,从而有效地降低石墨烯的亲水性,提高其在有机载体中的分散性。

石墨烯纳米复合材料具有多种精密仪器领域的应用,例如在传感器和电子器件的设计中扮演了重要角色。

特别是石墨烯与金属复合的导电性能优异,可以应用在高灵敏度传感器的设计中。

此外,石墨烯与聚合物复合的力学性能也得到了广泛关注,它们在制备高强度复合材料、飞机零部件等方面的应用也表现出出色的潜力。

总之,石墨烯纳米复合材料具有优良的性能和广泛的应用潜力,制备技术的不断发展和深入研究将有助于其在更多领域的应用。

石墨烯及其复合材料的制备和应用

石墨烯及其复合材料的制备和应用

石墨烯及其复合材料的制备和应用石墨烯是一种由碳原子构成的单层蜂窝状结构的二维材料,它在近年来获得了广泛的关注和研究。

作为一种材料,石墨烯的力学性能、电学性能、热学性能以及光学性能等都十分优异。

因此,石墨烯的制备和应用成为了当前材料科学领域的研究热点之一。

石墨烯的制备方法主要有化学气相沉积和机械剥离两种方式。

化学气相沉积是一种通过高温化学反应在金属基板上合成石墨烯的方法。

在高温下,石墨烯的前体气体会在金属表面上沉积,最终形成石墨烯薄膜。

机械剥离是一种在石墨烯母体上通过机械手段剥离出石墨烯片的方法。

这种方法是最早被发现的石墨烯制备方法之一,并且也是目前制备石墨烯的主流方法之一。

尽管这两种方法都能够有效地制备出石墨烯,但是它们都存在着一定的缺陷。

化学气相沉积方法制备的石墨烯片表面质量较好,但是薄膜的制备过程比较昂贵,而机械剥离方法制备的石墨烯片可以获得较大尺寸的石墨烯,但是质量较差。

随着对石墨烯性能的深入研究,石墨烯复合材料逐渐成为了研究的重点之一。

石墨烯复合材料是将石墨烯与其他材料复合而成的材料。

这种材料由于石墨烯的优异性能加入到其他材料中,其性能将会得到有效提升。

例如,在高分子材料中加入小量的石墨烯,可以获得更好的机械性能和热导率,从而有助于其在电子器件和为汽车轻量化而设计的材料的应用中。

石墨烯与纳米颗粒复合材料也是另一个热门领域。

这种材料将石墨烯和纳米颗粒复合,可以获得更好的电催化性能和光电性能,从而有助于其在太阳能电池和电化学传感器等领域的应用。

除了在材料科学领域的应用外,石墨烯在生物医学和能源存储等领域也展现出了巨大的应用潜力。

在生物医学领域,石墨烯的生物相容性和生物活性可以帮助其在医学诊断和治疗领域的应用。

例如,将石墨烯与荧光探针复合,可以制备出可以用于癌症早期诊断和治疗的荧光探针。

在能源存储领域,石墨烯的大比表面积和优异的导电性能可以有效提升电化学性能,有助于其在高能量密度的电池和超级电容器等领域的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北工业大学材料科学与工程学院石墨烯及其纳米复合材料发展概况专业金属材料班级材料116学号111899姓名李浩槊2015年01月05日摘要自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。

石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。

石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。

石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。

因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。

由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。

石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。

这种稳定的晶格结构使石墨烯具有优秀的导热性。

但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。

本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。

关键词:石墨烯纳米材料制备复合材料目录第一部分.........................石墨烯的性质第二部分........................石墨烯的制备方法第三部分........................石墨烯的研究成果第四部分........................石墨烯的应用前景第五部分........................参考文献第一部分石墨烯的性质1、力学性质石墨烯受到外部作用力时,碳原子面可以通过弯曲形变使其适应外力而不需重新排列,这种原子间的柔韧性连接可以有效的保持石墨烯结构的稳定。

Lee等研究发现:世界上目前己知的强度最高的材料就是石墨烯。

用金刚石探针对石墨烯施加作用力,研究表明,每1OOnm 的石墨烯可以承受的最大压力达到2.9μm。

2、热学性质石墨烯是一种稳定材料。

导热系数高达5300 W/(m·K),高于碳纳米管和金刚石石墨烯的发现震撼了凝聚态物理的研究领域,打破了“在有限温度下,热力学涨落不允许任何二维晶体存在”的理论。

这归结于石墨烯在纳米级别上的微观扭曲,其表面有很多微小的起伏,自由悬浮的石墨烯表面存在褶皱,或边缘卷曲。

这样看来,石墨烯的存在与理论并不矛盾。

图1.1石墨烯的原子结构和电子结构:(a)石墨烯翘曲成零维富勒烯,卷成一维碳纳米管或堆砌成三维的石墨,是构成其他石墨材料的基本单元;(b)非支撑单层石墨烯的能带结构[1]3、电学性质石墨烯的价带和导带相交于费米能级处,在其附近石墨烯的载流子呈现线性的色散关系(如图1.1a)。

石墨烯因此也成为凝聚态物理学中特殊的描述无质量狄拉克费米子的模型体系[2]。

这也赋予了石墨烯许多新奇的电学性质,例如,在4K以下的反常量子霍尔效应(anomalous quantum hall effects)、室温下的量子霍尔效应、双极性电场效(ambipolar electric field effects)等。

石墨烯还具备超强导电能力,常温下其电子迁移率超过15 000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6 Ω·cm,比铜或银更低,为世上电阻率最小的材料,所以它还可以作为电极材料使用。

石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。

在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路.4、光学性质石墨烯几乎是完全透明的,它只吸收2.3%的光,可以作为液晶显示屏的透明电极。

第二部分石墨烯的制备方法目前,石墨烯的制备方法有很多种,主要分为机械方法和化学方法两大类。

机械方法主要包括:机械分离法和石墨插层法。

化学方法包括:化学气相沉积、表面外延生长法和氧化石墨还原法[3]。

1、机械剥离法2004年安德烈·海姆和康斯坦丁·诺沃肖洛夫就是运用机械剥离法在实验室首次成功制备出了石墨烯。

机械分离法就是将石墨烯薄片从较大的石墨晶体上用外力直接剥离下来。

典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。

利用机械剥离法可以得到目前最高质量的石墨烯,从而被广泛用于基础研究以获得石墨烯本征的物理、化学性质。

然而机械剥离法耗时长、产率很低、无法控制石墨烯的层数与尺寸,且单层石墨烯分散于多层石墨烯之中,很难被辨别和分离出来,因此无法用于规模化生产。

2、石墨插层法石墨插层复合物(GICs)是将一些非碳质的原子、分子、离子甚至原子团通过一定的手段插入到鳞片石墨的层与层之间后形成的一种新的层状化合物。

这种新型的化合物在保留了石墨烯优异性能的同时也使其拥有一些新的性质,例如制备的物质具有较高的导电性。

并且当其他物质进入石墨片层之间的时候,可以削弱石墨片的层间力,有利于其进一步的剥离。

3、化学气相沉积法早在20世纪70年代就有用CVD法制备石墨烯的报道,但由于当时科技手段的局限,这种方法制备的石墨烯的质量很难表征清楚。

直到2009年J.Kong等人利用CVD法在沉积有多晶Ni膜的硅片基体上制备出大面积少层石墨烯,并成功将产物从集体上完整转移。

由于Ni具有较高的溶碳量,碳源裂解产生的碳原子在高温时渗入金属基体内,在降温时再从其内部吸出成核,进而生长成石墨烯。

因此采用Ni膜作为基体生长的石墨烯晶粒尺寸较小,层数不均匀且难以控制。

随后,为了解决CVD法制备的石墨烯的晶粒尺寸小、层数难以控制等问题,Li等人利用甲烷作为碳源,利用铜箔作为基体,制备出以单层为主的大面积石墨烯。

由于铜箔的溶碳量低,石墨烯的在其上的生长遵循表面生长机理:高温下气态碳源裂解生成的碳原子吸附在金属表面,进而成核生长出”石墨烯岛”,并通过“石墨烯岛”的二维长大合并得到连续的石墨烯薄膜[4]。

因此,采用铜箔为基体制备石墨烯具有良好的可控性,加上铜箔价格低,易于规模化制备等,使得CVD法成为制备均匀单层石墨烯的最佳方法。

4、表面外延生长法外延生长法是通过加热单晶6H-sic脱除Si,在单晶面上分解出石墨烯片层。

Berger等[5]人在高真空下通过电子轰击加热将经氧气或氢气刻蚀处理得到的样品,除去氧化物,从而形成极薄的石墨层,研究结果表明该方法能可控地制备出单层或是多层石墨烯。

5、氧化还原石墨法氧化还原法是一种常见的制备石墨烯的方法.石墨是一种憎水性物质,经过氧化反应后其氧化物边缘含有经基、竣基,层间含有环氧和梭基等含氧基团,该氧化反应的过程可以使石墨的层间距扩大,由0.34nm扩大为0.78nm,为下一步工作提供方便.再通过剥离的方法得到只有单原子层厚度的氧化石墨烯,最后通过化学还原反应将氧化石墨烯还原得到石墨烯,其基本流程如图1.2所示[6]。

从流程图中我们可以看出氧化还原法制备石墨烯的过程可以分为三个阶段:第一阶段为氧化反应过程得到氧化石墨;第二个阶段是剥离的过程,得到氧化石墨烯;第三个阶段是还原反应的过程得到石墨烯。

6、电化学还原法2008年,R. S. Sundaram等人首先用电化学沉积的方法在氧化石墨烯的表面修饰金属纳米粒子,开拓了石墨烯的电化学应用领域。

随后,M. Zhou等人利用相似的电化学还原法改性氧化石墨烯的表面,制备了石墨烯。

具体操作是将沉积在玻璃或者塑料载体上的氧化石墨烯薄膜置于磷酸钠缓冲溶液中,膜的两端接上电极,接通电源,控制电压为-0.6V~0.87V电化学还原30~120min就可制得石墨烯。

从理论上讲,电化学还原法代替化学还原法制备石墨烯,可以避免毒性还原剂带来的副产物后处理问题。

但实验发现,由于还原的氧化石墨烯容易在电极上沉积而阻碍电化学反应的发生,这种方法很难在大面积的氧化还原石墨烯上进行。

除了以上化学还原和热还原法,Ai研究组和Pham研究组分别将氧化石墨烯在高沸点溶剂中直接加热至沸点,也得到了还原的石墨烯;Williarris等人在紫外光作用下制备了石墨烯[7]。

第三部分石墨烯的研究成果1、国内研究成果2012年,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)的纳米物理与器件实验室张广宇课题组,利用自制的远程电感耦合等离子体系统,首次在多种基底(半导体、金属、绝缘体等表面)上实现了纳米石墨烯膜的低温直接生长,研究了膜的输运及光学性能。

该组张广宇研究员、时东霞研究员、博士生何聪丽等将这种直接生长的纳米石墨烯膜用于低成本RRAM器件的研究。

纳米石墨烯作为电极用于RRAM平面结构器件的研究有以下几个优点:1)易于制备。

此方法在SiO2/Si衬底上直接低温生长纳米石墨烯膜,避免了转移的复杂步骤。

2)电阻率可调。

该方法生长的纳米石墨烯膜电阻率可以通过控制生长条件来控制。

3)器件加工兼容性。

该两端器件制备过程全是基于现有的标准的曝光与刻蚀技术,与现有CMOS工艺兼容。

4)大面积可集成。

此方法生长的纳米石墨烯膜可以均匀的沉积到4英寸的衬底上,在开发大规模、低成本的非易失性存储器方面具有优势。

2014年,中国石油大学(华东)理学院研究生陶叶晗等发现多孔石墨烯PG-ES薄膜可高效将氢气从混合气体中分离出来,并利用“能量势垒”的模型阐述了分离原理。

专家认为,此研究成果有望推动新型气体分离膜工艺的研发和技术革,并在产业化推广中具有潜在的应用价值。

据介绍,氢能作为目前最具发展潜力的清洁能源,但其分离与提纯方法是当前制约氢能广泛应用的关键问题。

陶叶晗等发现,孔洞石墨烯具有较易控制的孔结构。

该团队采用计算机模拟方法,研究不同结构及条件下,石墨烯对不同气体分子的选择性吸附和分离的影响,进而探索石墨烯在气体分离方面的应用。

这种理论对设计新型高效的氢气分离膜具有重要意义。

2、国外研究成果2009年11月日本东北大学与会津大学通过合作研究发现,石墨烯可产生太赫兹光的电磁波。

相关文档
最新文档