实验六随机区组试验设计方法

合集下载

玉米制种实验报告(3篇)

玉米制种实验报告(3篇)

第1篇一、实验背景与目的玉米作为一种重要的粮食作物,其制种技术在农业生产中具有至关重要的地位。

为了提高玉米产量和品质,本实验旨在通过玉米制种实验,探究不同种植技术、品种特性以及环境因素对玉米制种效果的影响,为我国玉米制种产业提供科学依据和技术支持。

二、实验材料与方法1. 实验材料:- 玉米品种:利合16、华美1号- 实验地点:张掖市甘州区大满镇朝元村,分三个试验点- 实验设备:测产工具、土壤养分测定仪、气候记录仪等2. 实验方法:- 种植技术:- 精细整地:深耕整地,冬前完成,深度以25-30厘米为宜。

- 施肥:底肥为主,有机肥3000-6000千克/亩,追施过磷酸钙25-30千克,氮素化肥15-20千克。

- 覆膜:选用厚度为0.008毫米左右,宽度70-90厘米的无色透明超薄膜,每亩用量3-4千克。

- 适期播种:按满天星加行比法种植父本,母本易宽窄行种植,宽行60厘米,窄行50厘米,打穴点播。

- 观察指标:- 产量:以每亩产量为主要观察指标。

- 品质:观察玉米籽粒饱满度、色泽、大小等。

- 抗病性:观察玉米植株的抗病能力。

三、实验结果与分析1. 产量:- 利合16品种平均产量为750千克/亩,华美1号品种平均产量为800千克/亩。

- 实验结果表明,华美1号品种产量略高于利合16品种。

2. 品质:- 利合16品种籽粒饱满度、色泽、大小等指标均达到优良水平。

- 华美1号品种籽粒饱满度、色泽、大小等指标略优于利合16品种。

3. 抗病性:- 利合16品种抗病性较好,发病率较低。

- 华美1号品种抗病性略低于利合16品种。

四、实验结论与建议1. 结论:- 本实验结果表明,华美1号品种在产量、品质和抗病性方面均优于利合16品种。

- 通过精细整地、合理施肥、适期播种等种植技术,可有效提高玉米制种效果。

2. 建议:- 在玉米制种过程中,应根据当地气候、土壤条件选择适宜的品种。

- 加强田间管理,提高玉米制种技术水平。

质量管理工程中的实验设计与优化

质量管理工程中的实验设计与优化

质量管理工程中的实验设计与优化在质量管理工程中,实验设计与优化是一项关键的工作。

通过科学合理的实验设计和优化方法,可以帮助企业提高产品质量、降低成本、提高生产效率,从而获得更好的竞争优势。

本文将探讨质量管理工程中的实验设计与优化的重要性以及常用的方法。

一、实验设计的重要性实验设计是质量管理工程中的重要环节,它可以帮助企业确定影响产品质量的关键因素,并找出最佳的工艺参数组合。

通过合理的实验设计,可以降低试验成本,提高试验效率,缩短产品开发周期。

同时,实验设计还可以帮助企业了解产品的稳定性和可靠性,为产品质量的持续改进提供依据。

二、常用的实验设计方法1. 完全随机设计完全随机设计是最简单和最常用的实验设计方法之一。

它的特点是试验对象被随机分配到各个实验组,每个实验组之间的差异仅仅是由于随机因素引起的。

完全随机设计适用于试验对象数量较少、试验条件较简单的情况。

2. 随机区组设计随机区组设计是一种常用的实验设计方法,它可以消除试验对象之间的差异,提高试验的可靠性。

随机区组设计将试验对象分为若干个区组,每个区组内的试验对象具有相似的特征。

在每个区组内,试验对象被随机分配到不同的实验组中,以消除试验对象之间的差异。

3. 因子水平设计因子水平设计是一种常用的实验设计方法,它可以帮助企业确定影响产品质量的关键因素及其不同水平的影响程度。

通过对不同因子水平的组合进行试验,可以找出最佳的工艺参数组合,从而实现产品质量的最优化。

三、实验优化的方法1. 响应面分析响应面分析是一种常用的实验优化方法,它可以帮助企业建立数学模型,分析各个因素对产品质量的影响程度,并找出最佳的工艺参数组合。

通过响应面分析,可以实现产品质量的最优化,提高产品的性能和稳定性。

2. Taguchi方法Taguchi方法是一种常用的实验优化方法,它通过设计正交实验表,确定关键因素及其水平的组合,从而实现产品质量的最优化。

Taguchi方法注重寻找稳健的工艺参数组合,以提高产品的可靠性和稳定性。

最经典的DOE培训资料

最经典的DOE培训资料

最经典的DOE培训资料一、DOE培训简介DOE(Design of Experiments)即试验设计,是一种科学的统计方法,用于优化和改进产品、流程或系统。

本文将介绍最经典的DOE培训资料,帮助读者快速掌握DOE的基本概念和应用技巧。

二、DOE基本原理DOE的基本原理是通过合理安排实验来获取尽可能多的有用信息,以便推断出因果关系和优化条件。

在DOE中,研究者通过改变实验因子的水平,观察响应变量的变化情况,从而确定影响响应变量的主要因素,并找到最优的因素水平组合。

三、DOE的常用方法1. 完全随机设计(Completely Randomized Design):在完全随机设计中,实验因子的各个水平组合以完全随机的方式分配给试验单元。

这种设计适用于因素水平较少的情况,能够较好地估计因素效应。

2. 随机区组设计(Randomized Complete Block Design):随机区组设计将试验区分为几个均匀分布的区块,每个区块内的试验因子水平组合是随机分配的。

这种设计适用于试验区存在显著差异的情况,能够减小区组间的差异对因素效应评估的影响。

3. 多因子实验设计(Factorial Design):多因子实验设计同时考虑两个或多个因素对响应变量的影响。

通过观察各个因素水平组合下的响应变量值,可以评估因素间的交互作用,并确定最佳的因素组合。

4. 响应曲面法(Response Surface Methodology):响应曲面法利用数学模型来描述因素和响应变量之间的关系。

通过在响应曲面图上寻找最大或最小值点,可以找到最优的因素组合。

四、DOE的应用领域DOE广泛应用于各个领域,包括制造业、医药、食品、化工等。

以制造业为例,DOE可以用于优化工艺参数,提高产品质量和生产效率;在医药领域,DOE可以用于药物配方的优化和剂量的确定。

DOE的灵活性和可迅速得到结果的特点,使其成为许多领域中问题解决和优化的重要工具。

随机化区组设计

随机化区组设计
5
随机化区组设计案例
在完全随机化实验中,工人作为随机样本被分配给每个操作系统。 但是,不同工人在面对新的操作系统时的适应能力有可能存在个体 差异,因此再考虑到变异的组内来源(MSE)时,我们必须意识到: 该变异既包括随机误差,又包括工人个人差异导致的误差。
6
随机化区组设计案例
针对这种情况,我们设计了随机化区组实验来剔除工人个体差异导 致的误差。在本实验中,随机化区组需要该工厂工人的一个单样 本,——样本中每名工人分别要使用三种操作系统。用实验设计的 术语,操作系统是影响因子,工厂工人是区组。与操作系统有关的 三个处理(或水平)对应三种操作系统方案。
8
随机化区组设计的方差分析
ANOVA方法
随机化区组设计要求我们将总离差平方和(SST) 分解成为三个部分: 处理平方和(SSTR)、区组平方和(SSBL)和误差平方和(SSE)
SST = SSTR + SSBL + SSE 其中,k代表处理的个数;b代表区组的个数;nT总代表总样本容量 (nT=kb)。自由度 nT - 1被分解成处理的自由度k - 1、区组的自由 度 b - 1和误差项的自由度(k - 1)(b - 1) 的和
现随机选择六名工人使用三种系统进行模拟生产,依照评分体系对 六名工人的表现进行打分,具体得分如下:
7
随机化区组设计案例
工人编号 1 2 3 4 5 6
均值
系统一 系统二 系统三 均值
15
15
18
16
14
14 14 14
10
11
15
12
13
12
17
14
16
13
16
15
13
13

随机分组原理与方法案例

随机分组原理与方法案例

随机分组原理与⽅法案例简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的概率相等,样本的每个单位完全独⽴,彼此间⽆⼀定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较⼩和数⽬较少时,才采⽤这种⽅法。

适⽤于总体量⼤、差异程度较⼤的情况。

先将总体单位按其差异程度或某⼀特征分类、分层,然后在各类或每层中再随机抽取样本单位。

分层抽样实际上是科学分组、或分类与随机原则的结合。

分层抽样有等⽐抽样和不等⽐抽样之分,当总数各类差别过⼤时,可采⽤不等⽐抽样。

除了分层或分类外,其组织⽅式与简单随机抽样和等距抽样相同。

随机抽样设计⼀、纯随机抽样:对总体的所有容量不做任何的分类和排队,完全按随机原则逐个抽取样本容量。

纯随机抽样的常⽤抽样⽅法1)抽签法:将总体容量全部加以编号,并编成相应的号签,然后将号签充分混合后逐个抽取,直到抽到预定需要的样本容量为⽌。

缺点:总体容量很多时,编制号签的⼯作量很⼤,且很难掺和均匀。

2)随机数字法:⽤字母顺序或⾝份证号等任何⽅便的⽅法对总体容量编者按号,利⽤随机数表从1到总体容量N中随机抽取n(样本容量数)个数,遇到那些不在编号⾥的数字需跳过。

⼆、等距抽样:先将总体各单位按某⼀有关标志(或⽆关标志)排队,然后相等距离或相等间隔抽取样本单位。

根据需要抽取的样本单位数(n)和全及总体单位数(N),可以计算出抽取各个样本单位之间的距离和间隔,即:K=N/n,然后按此间隔依次抽取必要的样本单位。

等距抽样的⼀个例⼦某企业有职⼯5000名,现要随机抽取100⼈进⾏家庭收⼊⽔平调查。

抽取⽅法:按与研究⽬的⽆直接关系的姓名笔划对总体进⾏排列,把总体划分为K=5000/100=50个相等的间隔,在第1⾄第50⼈中随机抽取⼀名,如抽到第10名,后⾯间隔依次抽取第60,110,160,210,…直到4960为⽌,总共抽取50同名职⼯组成⼀个抽样总体。

随机化区组设计随机化区组设计.pptx

随机化区组设计随机化区组设计.pptx
2
第3页/共59页
第一节 实验法的内涵与特点
实验法的基本要素
• 一个完整的实验,需要具备自变量与因变量、实验组与控制组、实验环境、 实验操作环节和实验结果五个因素。
• 1.自变量与因变量 • 自变量是指不受其他研究变量影响而自身变化的变量。 • 因变量是指随着其他研究变量变化而变化的变量。 • 在实验研究中,自变量是我们做实验控制的变量,而因变量是因为自变量改
• 所谓操作定义就是通过一些具体的、可测量的指标对概念所作的说明。其做 法是把抽象定义所界定的概念一步一步从抽象层次下降到经验层次,分解为 一些具体的、可测量的指标,这些指标一般都是与概念中的变量相对应的。
• 概念操作化的关键就是寻找一定的、能够明显区分的测量指标来说明概念的 属性。寻找测量指标可以综合采用经验的办法和理性的办法。
第二节 实验法的分类和操作程序
(一)选择研究课题,提出研究假设
• 必须从理论和实际的需要以及现实可行性出发,选择公 共管理研究课题。从理论方面看,课题应有助于促进当 前公共管理理论和公共管理科学的发展,最好是学科核 心领域的前沿性专题和重大公共管理理论问题。从实际 的需要看,研究课题要紧密结合公共管理发展的客观需 要,能够解决社会实际问题,对公共管理实践有较大的 促进作用。从可行性看,要选择通过公共管理实验研究 可以解答的课题;要根据研究者的主客观条件来选题。
变而发生改变的变量,也就是实验所得到的结果。 • 实验研究的基本目标是探讨变量之间的因果关系,研究自变量对因变量的影
响。
3
第4页/共59页
第一节 实验法的内涵与特点
• 2.实验组与控制组 • 实验组(experimental group)是实验过程中接受实验
剌激的那一组对象。 • 控制组(controlled group)也称为对照组,它是各方面

临床试验中随机分组的概述

临床试验中随机分组的概述
2011-1-6 9
不同设计科学论证的强度
• 一级设计方案
前瞻性、 有对照、 前瞻性、随机性、有对照、能主动干预
• 二级设计方案
前瞻性、 有对照、 前瞻性、随机性、有对照、不能主动干预
• 三级设计方案
回顾性、有对照、 回顾性、有对照、横断面
• 四级设计方案
叙述性、 叙述性、个案分析
2011-1-6
2011-1-6
18
的操作步骤: 例1的操作步骤: 的操作步骤
第一步:确定区组长度:4 第二步:确定每个区组中可能有的排列组 合,并对组合进行编号
2011-1-6
19
的操作步骤: 例1的操作步骤: 的操作步骤
步骤三:通过随机数字表确定组合的顺序, 从大到小排列
原组号 1 A 2 A 3 A 4 B 5 B 6 B
2011-1-6
选择发病在5天以内的病 对照组 人加用小剂量干扰素和三 73例 氮唑核苷,疗程5—7天
轻型:18例 普通型:32例 重型:17例 极重型:6例
24
七、随机分配方案的隐藏
有研究发现未隐藏分配方案或分配方案 隐藏不完善的试验,常常夸大治疗效果 30%~41%
2011-1-6
25
通过EXCEI表格进行完 八、通过 表格进行完 全随机分组的演示
6 5
患者序号: 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
A
A
B
B
B
B
A
A

随机区组设计方差分析

随机区组设计方差分析
0
H 1 :三个总体均数不全相等,即A、B、C三种方案的效果不全相同
对于区组:
H 0 :十个总体均数不全相等 H 1 :十个总体均数全相等
均取 0.05
第14页,本讲稿共33页
(2)计算检验统计量 F
表9-8 随机区组设计方案方差分析的计算公式
变异来源
SS
df
MS
F
2
处理组
ni Xi X
i
第21页,本讲稿共33页
在随机区组设计的方差分析中,总变异分为三部分,即
SS总
2
Xij X
ij
=
2
ni Xi X
2
nj Xj X
2
Xij Xi Xj X
i
j
ij
=SS处 理SS区 组SS误 差
且 v 总 N 1 k 1 b 1 N k b 1 v 处 理 v 区 组 v 误 差
35459.1 42205.0
110447.5
第9页,本讲稿共33页
b
例9-2 为探索丹参对肢体缺血再灌注损伤的影响,将30 只纯种新西兰实验用大白兔,按窝别相同、体重相近划 分为10个区组。每个区组3只大白兔随机采用A、B、C三 种处理方案,即在松止血带前分别给予丹参 2ml / kg 、丹参 1ml / kg 、生理盐水 2ml / kg ,在松止血 带前及在松后1小时分别测定血中白蛋白含量 ( L / g ), 算出白蛋白减少量如下表9-6所示,问A、B两方案与C 方案的处理效果是否相同?
第4页,本讲稿共33页
双因素方差分析的特点: 按照随机区组设计的原则来分析两个因素对试验结果
的影响及作用。其中一个因素称为处理因素,一般作为列 因素;另一个因素称为区组因素或配伍组因素,一般作为 行因素。两个因素相互独立,且无交互影响。双因素方差 分析使用的样本例数较少,分析效率高,是一种经常使用 的分析方法。

随机区组设计五个品种

随机区组设计五个品种

随机区组设计五个品种摘要:一、引言二、五个品种的概述1.品种12.品种23.品种34.品种45.品种5三、随机区组设计介绍四、五个品种的随机区组设计方法五、实验结果与分析六、结论正文:一、引言在农业生产和科学研究中,对不同品种的农作物进行对比实验是常见的方法,以期找出产量高、品质好、抗病性强等特性的品种。

为了提高实验的准确性和可靠性,常常采用随机区组设计来进行实验。

本文将对五个品种的农作物进行随机区组设计实验,并分析实验结果。

二、五个品种的概述1.品种1:水稻,产量高、品质好,但对某种病害较敏感。

2.品种2:小麦,耐寒性强,抗病性好,但产量较低。

3.品种3:玉米,生长速度快,适应性强,但易受虫害影响。

4.品种4:大豆,蛋白质含量高,抗逆性强,但易受土壤养分限制。

5.品种5:油菜,油脂含量高,生长期短,但对环境适应性较差。

三、随机区组设计介绍随机区组设计是一种常用的实验设计方法,它将实验对象分为若干个区组,每个区组内的实验对象分别接受不同的处理,以消除实验误差,提高实验效果。

四、五个品种的随机区组设计方法以品种1 为例,首先将品种1 分为若干个区组,每个区组分别进行不同的处理,如施肥、灌溉、病虫害防治等。

然后,在每个区组内,分别观察和记录五个品种的生长情况、产量、品质等指标。

五、实验结果与分析经过一段时间的观察和记录,得到五个品种在各区组内的实验数据。

通过分析这些数据,可以发现每个品种在不同处理下的优缺点,以及各品种之间的差异。

例如,在施肥处理下,品种1 的产量显著提高,品种2 的品质得到改善;在灌溉处理下,品种3 的生长速度加快,品种4 的抗逆性增强等。

六、结论通过对五个品种进行随机区组设计实验,可以较为准确地了解各品种在不同处理下的表现,为农业生产和品种选育提供科学依据。

常用医学实验设计

常用医学实验设计

用随机排列表实现随机化举例3续
对象 编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 随机 数字 8 7 6 11 14 2 13 5 9 12 0 1 4 10 3 组别 乙 乙 乙 丙 丙 甲 丙 乙 乙 丙 甲 甲 甲 丙 甲
分组结果】6,11,12,13,15号小兔进入甲组; 1,2,3,5,9号小兔进入乙组; 4,5,7,10,14号小兔进入丙组。
完全随机设计数据分析
效应指标为数值变量
参数检验:t检验,u检验或单因素方差分析法;
非参数检验:Wilcoxon符号秩和检验,Kruskal Wallis法秩和检验;
效应指标为分类变量
两个样本率比较的u检验、χ2检验或Fisher’s精
确概率法,秩和检验(Kruskal Wallis法)或Ridit 分析
三、随机区组设计
A 接受甲处理 实验对象→配成区组→随机分配区组中 B 接受乙处理
C 接受丙处理 D 接受丁处理
……
三、随机区组设计
按随机区组设计, 将15只小白鼠分成5个区组,每 个区组的3只小白鼠分别接受A、B、C三种处理
将小白鼠的体重从轻到重编号,体重相近的3只小 白鼠配成一个区组,在随机数字表中任选一行一列开 始的2位数作为一个随机数,如从第8行第3列开始记 录,在每个区组内将随机数按大小排序;各区组序号 为1的接受A药,序号为2的接受乙药、序号为3的接 受C药。
常用医学实验设计
Medical Experimental Design
张合喜 hexich@ 新乡医学院公共卫生学系
实验设计的基本要素
处理因素
降压药
受试对象
高血压病人
实验效应
血压值

第六章 方差分析3——单因素随机区组设计

第六章 方差分析3——单因素随机区组设计
• 优点:既能较有效地将被试个体差异从误差变 异中分解出来;又能避免重复测量设计的顺序 效应。
• 缺点:区组的划分难度较大,同质性不好把握。
SPSS的数据格式
“分析”——“一般线性模型”——“单变量”
SPSS结果
结果分析
• 方差分析的结果表明,不同的教学方法会 对作文成绩产生显著影响。
实验结果
实验处理
教学方法
区组
1
2
15
10
区组1:优良
9
6
12
11
3
4
20
12
18
15
25
17
10
15
区组2:中等
18
19
12
12
25
20
30
15
18
18
2
6
10
6
区组3:一般
6
3
7
8
5
7
13
11
分析
• 这是一个单因素随机区组设计。 – 因变量:作文平均数提高的成绩。 – 自变量:教学方法,它有4个水平。 – 区组变量:不同的被试组,它有3个水平。 – 控制变量:自变量的呈现顺序。
• 区组效应显著表明区组设计是合理的。 • 进一步的多重比较发现,教学方法Ⅲ条件
下的作文成绩显著高于其它3种条件下的成 绩;教学方法Ⅳ条件下作文成绩显著高于 Ⅰ和Ⅱ条件下的成绩;教学方法Ⅰ和Ⅱ之 间的作文成绩不存在显著性差异。
ቤተ መጻሕፍቲ ባይዱ方差分析——
单因素随机区组设计
举例
• 某教师为了研究四种不同的写作训练方法中, 哪种方法更有效,选择了36名高一学生。按 照前一学期历次作文成绩的平均分数将36名 学生划分为优良、中等、一般三个写作水平, 每个水平均有12名学生,而12名学生被随机 分到各实验处理。经一学期的写作训练后进 行写作能力测试,计算出每一学生的得分比 前一学期历次作文平均分提高的分数。结果 如下。

随机分组方法

随机分组方法

随机分组方法随机分组是一种常见的实验设计方法,它可以有效地避免实验结果受到外部因素的干扰,确保实验结果的客观性和可靠性。

在科学研究、教育实践、市场调研等领域都有着广泛的应用。

本文将介绍几种常见的随机分组方法,以及它们的优缺点和适用范围。

首先,最简单的随机分组方法是简单随机分组。

在这种方法中,实验对象被随机地分配到不同的实验组中,每个实验组的样本数量可以相等,也可以不等。

简单随机分组的优点是操作简单,易于实施,能够有效地避免实验结果的偏倚。

然而,它也存在着分组不均匀的缺点,可能导致实验结果的可比性受到影响。

其次,分层随机分组是一种更加复杂但也更加精确的随机分组方法。

在这种方法中,实验对象根据某些特定的特征进行分层,然后在每个分层内进行简单随机分组。

这样做可以确保每个实验组在某些特征上的分布是均匀的,从而提高了实验结果的可比性和可靠性。

然而,分层随机分组的实施难度较大,需要充分考虑实验对象的特征和分层标准,否则可能导致分层不准确,影响实验结果的客观性。

另外,双盲随机分组是一种在临床试验中常用的随机分组方法。

在这种方法中,不仅实验对象被随机分组,实验人员也被随机分组,既不知道实验对象的分组情况,也不知道实验对象的分组情况。

这样做可以有效地避免实验结果受到实验人员主观因素的影响,提高了实验结果的客观性和可靠性。

然而,双盲随机分组的实施难度较大,需要严格的实验管理和监督,否则可能导致实验结果的失真。

总的来说,随机分组方法是一种有效地避免实验结果受到外部因素影响的实验设计方法,它在科学研究、教育实践、市场调研等领域都有着广泛的应用。

不同的随机分组方法有着不同的优缺点和适用范围,实验设计者应根据具体的实验目的和条件选择合适的随机分组方法,以确保实验结果的客观性和可靠性。

田间技术小麦实验报告(3篇)

田间技术小麦实验报告(3篇)

第1篇一、实验背景随着我国农业现代化进程的加快,小麦作为我国主要粮食作物之一,其产量和品质的提升对保障国家粮食安全具有重要意义。

为了探索提高小麦产量和品质的田间技术,我们于2023年在XX县XX镇XX村开展了小麦田间技术实验。

本实验旨在研究不同播种密度、施肥量、灌溉制度对小麦产量和品质的影响,为小麦生产提供科学依据。

二、实验材料与方法1. 实验材料:实验小麦品种为XX,供试土壤为壤土,有机质含量为1.5%,pH值为7.5。

2. 实验设计:采用随机区组设计,共设置5个处理,每个处理3次重复,共15个小区。

具体处理如下:- 处理1:播种密度为300万株/公顷,施肥量为纯氮225kg/公顷、磷肥150kg/公顷、钾肥75kg/公顷;- 处理2:播种密度为400万株/公顷,施肥量为纯氮300kg/公顷、磷肥150kg/公顷、钾肥75kg/公顷;- 处理3:播种密度为500万株/公顷,施肥量为纯氮375kg/公顷、磷肥150kg/公顷、钾肥75kg/公顷;- 处理4:播种密度为600万株/公顷,施肥量为纯氮450kg/公顷、磷肥150kg/公顷、钾肥75kg/公顷;- 处理5:播种密度为700万株/公顷,施肥量为纯氮525kg/公顷、磷肥150kg/公顷、钾肥75kg/公顷。

3. 实验方法:- 播种:于2023年10月20日进行播种,采用机械播种,播种深度为2-3cm。

- 施肥:基肥于播种前施入,追肥于拔节期施入。

- 灌溉:根据土壤水分状况,适时进行灌溉。

- 病虫害防治:采用生物防治和化学防治相结合的方法,及时防治病虫害。

- 测产:于2024年7月10日进行测产,每个小区随机取5个样点,测量株高、穗长、穗粒数、千粒重等指标。

三、实验结果与分析1. 产量:处理1、2、3、4、5的产量分别为7890kg/公顷、8100kg/公顷、8300kg/公顷、8550kg/公顷、8750kg/公顷。

结果表明,随着播种密度的增加,小麦产量逐渐提高,但超过600万株/公顷后,产量增加幅度逐渐减小。

常用实验动物随机分组方法

常用实验动物随机分组方法

常用实验动物随机分组方法兽医卫生常用实验动物随机分组方法赵伟,孙国志(佳木斯大学实验动物中心,佳木斯154007)摘要:进行动物实验时,为进行准确的统计检验,动物必须按照随机分配的原则进行随机分组。

其目的是使一切干扰因素造成的实验误差尽量减少,而不受实验者主观因素或其他偏性误差的影响。

随机化的手段通常采用随机数字表法。

关健词:实验动物;随机分组进行动物实验时,统计学要求各实验组间除实验处理因素外,其它条件都完全相同,但事实上不可能完全做到,就是同一种动物而言,即使品系、年龄、窝别、性别、生活条件完全一致,对药物的反应仍不可能完全一致,差异是绝对的,一致是相对的。

减少差异的办法除精选实验动物(或材料)外,就是实行严格的随机原则进行安排,使正性和负性影响随机地分配到各组,得到平衡,而不受任何主观愿望的影响。

应避免人为因素随机把所有动物编号,然后令其双数为A组(实验组),单数为B组(对照组)即可或反之,常应用随机数字表进行完全随机化的分组。

若手边没有随机数字表可用计算器产生的随机数字,每当按下2ndF(第二功能键)和RND(随机数字键)时,就会产生0.000~0.999的随机数字,可将显示的数前两个小数位用作一个样本个体。

研究人员也可将计算器产生的随机数字制作成随机数字表。

从随机数字表任意点开始选取连续的数字,原则自定,可横读、竖读、按斜角线读取。

将动物编号后进行随机分组要根据组数来进行,具体较复杂,以下结合实例说明使用随机数字表进行随机分组的方法。

1配对比较法随机分组在将实验动物分成两组时适用。

是指在分配动物之前,先将动物按性别、年龄、体重、胎别或其它有关因素加以配对,以基本相同的两个动物为一对配成若干对,然后,再将每一对动物随机分配于两组中,这样两组动物数必然相同,而且它们的胎别、性别、年龄以及体重等根本情况也基本相同,从而尽可能减少两组动物的生物差异性。

如,20只动物分成A、B两组,将动物按如上所述方法分成十对,每对编号1、2,从随机数字表连续抄录十个数,奇数则该对第一只动物入A组,第2只入B组;如为偶数,则该对第一只动物入B组,第2只入A组。

方差分析(Anova,Glm过程)

方差分析(Anova,Glm过程)

分析数据集中变量个数(1)
例9-1 某医生为研究一种四类降糖新药的疗 效,以统一的纳入标准和排除标准选择了60 名2型糖尿病患者,按完全随机设计方案将患 者分为三组进行双盲临床试验。其中,降糖新 药高剂量组21人、低剂量组19人、对照组20 人。对照组服用公认的降糖药物,治疗4周后 测得其餐后2小时血糖的下降值(mmol/L), 结果如表9-1所示。问治疗4周后,餐后2小时 血糖下降值的三组总体平均水平是否不同?
3
2.52
1 5.09
2 4.26
3
;
过程步1---正态性检验
proc univariate normal; class g; var x; run;
过程步2--方差分析 proc anova; class g; model x=g; run;
过程步3 --方差分析同时输出统计表 proc anova; class g; model x=g; means g;/*关于均数和标准差的统计表*/ run;
3
数据步
data aa1;
input x g @@;
cards;
2.79
1 3.83
2 5.41
3
2.69
1 3.15
2 3.47
3
3.11
1 4.70
2 4.92
3
3.47
1 3.97
2 4.07
3
1.77
1 2.03
2 2.18
3
2.44
1 2.87
2 3.13
3
2.83
1 3.65
2 3.77
表 9-1 2 型糖尿病患者治疗 4 周后餐后 2 小时血糖的下降值(mmol/L)

统计学实验设计

统计学实验设计

统计学实验设计一、实验设计的基本概念实验设计是指在科学研究中,为了得到可靠的结果,按照一定的规律和方法,有计划地安排实验方案和实验过程。

它是科学研究中不可缺少的一个环节,其目的是为了减少误差、提高精度、增强可靠性,使研究结果更加真实可信。

二、实验设计的步骤1. 确定实验目的2. 确定影响因素3. 设计试验方案4. 进行试验5. 收集数据并分析结果6. 得出结论三、常用的统计学实验设计方法1. 随机化对照组设计(RCT)随机化对照组设计是一种常用的控制干扰因素和验证因果关系的方法。

该方法将被试随机分配到两个或多个组中,在保证每个组之间相似性的前提下,通过对比不同组之间的差异来验证因果关系。

2. 因子设计(Factorial Design)因子设计是一种多因素试验设计方法,它可以考虑多个自变量之间以及自变量与因变量之间复杂交互作用关系。

该方法通过正交表法构建实验方案,从而得到较为全面的结果。

3. 随机区组设计(Randomized Block Design)随机区组设计是一种常用的控制干扰因素和提高试验精度的方法。

该方法将被试分为若干个区块,在每个区块内随机分配不同处理,通过对比不同处理之间的差异来验证因果关系。

4. 单因素设计(One-Way Design)单因素设计是一种简单的试验设计方法,它只考虑一个自变量对因变量的影响。

该方法可以通过方差分析等统计方法来验证因果关系。

四、实验设计中需要注意的问题1. 样本大小样本大小是实验设计中一个重要的参数,它直接影响到实验结果的可靠性。

在确定样本大小时需要考虑多个因素,如研究目的、误差范围、统计功效等。

2. 实验过程中可能存在的误差在实验过程中可能存在多种误差,如人为误差、仪器误差、环境误差等。

为了减少误差对实验结果的影响,需要采取一系列措施进行控制和校正。

3. 数据收集和处理数据收集和处理是实验设计中一个重要环节。

在数据收集过程中需要注意数据的准确性和完整性,同时需要对数据进行清洗和转换。

实验设计的主要类型

实验设计的主要类型

实验设计的主要类型一、完全随机设计这种设计就像是抽签一样随机。

把实验对象完全随机地分到不同的组里,不管它们之前有啥差别。

比如说,我们要测试一种新的感冒药效果,找了一群感冒的人,就像把这些人名字写在纸条上,然后打乱放进不同的盒子里,每个盒子代表一个实验组或者对照组。

这样做的好处呢,就是简单直接,不需要考虑太多其他因素的干扰。

但是呢,它也有个小缺点,如果实验对象本身差异比较大,可能会影响结果的准确性。

二、随机区组设计这个设计就稍微复杂一点啦。

我们先把实验对象按照一些共同的特征分成不同的区组,就像是先按照年龄把人分成青年组、中年组、老年组这样。

然后在每个区组里面再随机分组。

这样做就可以减少因为实验对象本身某些特征带来的影响。

比如说,我们还是测试感冒药,先把感冒的人按照体质强弱分成几个区组,然后在每个区组里再随机安排吃新药或者安慰剂,这样结果就会更可靠一点。

三、拉丁方设计拉丁方设计可就更有趣啦。

它主要是用来处理三个因素的实验。

我们要安排实验,让每个因素的每个水平在每一行和每一列都只出现一次。

就像是在一个方格里面填数字,横的竖的都不能重复。

比如说,我们要研究三种不同的施肥量、三种不同的浇水频率和三种不同的光照时间对植物生长的影响,就可以用拉丁方设计来安排实验。

这样可以在较少的实验次数下,得到比较全面的结果。

四、析因设计析因设计是考虑多个因素对实验结果的影响。

它不是单独研究一个因素,而是把所有因素都考虑进去,看它们之间相互作用的效果。

比如说,我们研究温度、湿度和土壤类型对种子发芽的影响,析因设计就可以让我们知道温度和湿度一起变化的时候对种子发芽有啥特殊影响,湿度和土壤类型一起变化的时候又有啥影响,以及三个因素一起变化的时候的影响。

这样能得到更丰富、更全面的实验结果。

五、正交设计正交设计是一种高效的多因素实验设计方法。

它可以用较少的实验次数,得到较多的信息。

它是根据正交表来安排实验的。

比如说,我们有很多个因素,每个因素又有好几个水平,如果用全面实验的话,那实验次数会超级多。

实验六随机区组试验设计方法

实验六随机区组试验设计方法
实验六随机区组试验设计方法
一目的:掌握常用的单因素,两因裂区组设计方法 二 设计内容: 1 有一小麦品种比较试验,参试8个品种,代号为A B C D E F G H准备重复3次,请你根据下面地形设 计一随机区组试验,划出田间种植图。35m4 Nhomakorabeam肥
3 5

2 有一玉米品种和中耕次数两因素试验,品种为B因素为副 区,B1,B2,B3三个水平,中耕次数A因素为主因素分A1,A2,A3,A4四 个水平,随机区组设计重复2次,请你根据上面地型设计一两因素裂 区组试验,划出田间种植图
其它试验
其它试验 .
B3
A2 B1 B5 B4
A3 A3 B2 B5 B3 B1
A1 A1 B2 B4 B1 B3 B4
B2 B5
A3 B1 B3 B5 B2 B4 B3
A1 B1 B5 B2 B4 B5
A2 B1 B3 B2 B4
B5
A1 B3 B2
A2 B4 B1 B2 B1 B3 B5 B4 B1
A3 B3 B5 B2 B4
实验七 田间试验地参观 目的:对田间试验裂区设计有一直观认识 下图为小麦两因素裂区试验设计: 主区因素为播期(A)有3个水平分别是 A1:9月25号; A2:10月10号; A3:10月25号, 副区因素为播量(B)为5水平,分别为 B1 :10万; B2 :12万; B3:15万; B4 18万. B5: 20万基本苗. 重复3次,

实习课六-方差分析

实习课六-方差分析

SStotal ( xij x ) 2; vtotal n 1
2、组内变异:同一水平处理组内,各个观察值并不完全相等, 该变异称为组内变异或误差变异,主要由个体差异和随机测量误 差造成,统称随机误差;
SSerror ( xij xi ) 2 ;
verror =n k
x1n1
n1 x1
x2n2
n2
x2


……
xknk
nk
xk
n ni
x
10
中 国 医 学 科 学 院
.基 础 医 学 研 究 所
五、问题?
为什么不用t检验?
—两个组之间的比较当然可以!
但是,同批数据多次反复使用t检验显然会使犯α错误的概率增大。
统计学上的显著性差异从来就不是绝对的,而是概率,α=0.05,表示实际无差异,而 检验得到有差异结果的概率。
F值多大算和1差别大呢?和其他假设检验一样,我们可以:
查表:查自由度为ν1 ν2的F界值表 或更省事的办法直接看软件计算的结果
7
中 国 医 学 科 学 院
.基 础 医 学 研 究 所
三、方差分析的基本思想
根据变异的来源,将全部观察值总的离均差平方和及自由度 分解为两个或多个部分,除随机误差外,其余每个部分的变 异可由某些特定因素的作用加以解释。 通过比较不同来源变异的方差(也叫均方MS),借助F分布做 出统计推断,从而判断某因素对观察指标有无影响
2 xj
0.9677
0.2032
9.6148
0.4296
38.7813
0.5133
42.5230
0.4600
( x ) 91.8868
(S )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

其它试验其它试验 .B3A2 B1 B5 B4
A3 A3 B2 B5 B3 B1
A1 A1 B2 B4 B1 B3 B4
B2 B5
A3 B1 B3 B5 B2 B4 B3
A1 B1 B5 B2 B4 B5
A2 B1 B3 B2 B4
B5
A1 B3 B2
A2 B4 B1 B2 B1 B3 B5 B4 B1
A3 B3 B5 B2 B4
实验六随机区组试验设计方法
一目的:掌握常用的单因素,两因裂区组设计方法 二 设计内容: 1 有一小麦品种比较试验,参试8个品种,代号为A B C D E F G H准备重复3次,请你根据下面地形设 计一随机区组试验,划出田间种植图。
35m
40m

3 5

2 有一玉米品种和中耕次数两因素试验,品种为B因素为副 区,B1,B2,B3三个水平,中耕次数A因素为主因素分A1,A2,A3,A4四 个水平,随机区组设计重复2次,请你根据上面地型设计一两因素裂 区组试验,划出田间种植图
实验七 田间试验地参观 目的:对田间试验裂区设计有一直观认识 下图为小麦两因素裂区试验设计: 主区因素为播期(A)有3个水平分别是 A1:9月25号; A2:10月10号; A3:10月25号, 副区因素为播量(B)为5水平,分别为 B1 :10万; B2 :12万; B3:15万; B4 18万. B5: 20万基本苗. 重复3次,
相关文档
最新文档