平面六杆机构设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械原理大作业
姓名:
班级:材料124
小组数据: 3 B
一、题目:计算平面连杆机构的运动学分析
1,图a 所示的为一平面六杆机构。设已知各构件的尺寸如表1所示,原动件1以等角速度ω1=1rad/s 沿着逆时针方向回转,试求各从动杆件的角位移、角速度和角加速度以及E 点的位移、速度和加速度的变化情况。
表1 平面六杆机构的尺寸参数(单位:mm)
mm l 0.652=',mm x G 5.153= mm y G 7.41=
L1
L2
L3 L4 L5
L6
α A B C
26.5 105.6 95
87.5
48.4 39
60°
L3=95
A
1
B 2
C 3
4
D
A
2'
G
6
5
E
F
y
x
θ1
ω1α
%crank_rocker222_main
clear;
l1=26.5;
l2=105.6;
l3=95;
l4=87.5;
l5=48.4;
l6=39.0;
l9=65.0;
lag=159.1;
xg=153.5;
yg=41.7;
omega1=1;
theta7=60;
alpha1=0;
hd=pi/180;du=180/pi;
m=-1;
for n1=1:360
theta1=(n1-1)*hd;
aa=2*l1*l3*sin(theta1);
bb=2*l3*(l1*cos(theta1)-l4);
cc=l2*l2-l1*l1-l3*l3-l4*l4+2*l1*l4*cos(theta1);
theta3(n1)=2*atan((aa+m*sqrt(aa*aa+bb*bb-cc*cc))/(bb-cc));
s1=l3*sin(theta3)-l1*sin(theta1);
theta2(n1)=atan(s1/(l4+l3*cos(theta3)-l1*cos(theta1)));
xe=l1*cos(theta1)+l2*cos(theta2)+l9*cos(theta2-theta7);
ye=l1*sin(theta1)+l2*sin(theta2)+l9*sin(theta2-theta7);
s2=yg-ye;
theta8(n1)=atan(s2/(xg-xe));
s3=(xe-xg).*(xe-xg)+(ye-yg).*(ye-yg)+l5*l5-l6*l6;
theta9(n1)=acos(s3/(2*l5*sqrt((xe-xg).*(xe-xg)+(ye-yg).*(ye-yg)))); theta5(n1)=theta8(n1)-theta9(n1)+pi;
s4=ye+l5*sin(theta8-theta9)-yg;
theta6(n1)=atan(s4/(xe+l5*cos(theta8-theta9)-xg));
theta9(n1)=2*pi-(theta7-theta2(n1));
omega3(n1)=omega1*l1*sin(theta1-theta2)/l3/sin(theta3-theta2);
omega2(n1)=-omega1*l1*sin(theta1-theta3)/l2/sin(theta2-theta3);
omega5(n1)=omega2(n1)*(l2*sin(theta2(n1)-theta6(n1))+l9*sin(theta2(n1 )-theta7-theta6(n1)))+omega1*l1*sin(theta1-theta6(n1))/l5/sin(theta5( n1)-theta6(n1));
omega6(n1)=-omega2(n1)*(l2*sin(theta2(n1)-theta5(n1))+l9*sin(theta2(n 1)-theta7-theta5(n1)))+omega1*l1*sin(theta1-theta5(n1))/l6/sin(theta5 (n1)-theta6(n1));
s4=l2*omega2(n1)*omega2(n1)+l1*omega1*omega1*cos(theta1-theta2)-l3*om ega3(n1)*omega3(n1)*cos(theta3-theta2);
s5=l3*omega3(n1)*omega3(n1)-l1*omega1*omega1*cos(theta1-theta3)-l2*om ega2(n1)*omega2(n1)*cos(theta2-theta3);
s6=omega1*omega1*l1*cos(theta1-theta6(n1))+omega2(n1)*omega2(n1)*(l2* cos(theta2(n1)-theta6(n1))+l9*cos(theta2(n1)-theta7-theta6(n1)))-l5*o mega5(n1)*omega5(n1)*cos(theta5(n1)-theta6(n1))-l6*omega6(n1)*omega6( n1);
s7=omega1*omega1*l1*cos(theta1-theta5(n1))+omega2(n1)*omega2(n1)*(l2* cos(theta2(n1)-theta5(n1))+l9*cos(theta2(n1)-theta7-theta5(n1)))-l5*o mega5(n1)*omega5(n1)-l6*omega6(n1)*omega6(n1)*cos(theta6(n1)-theta5(n 1));
alpha3(n1)=s4/(l3*sin(theta3-theta2));
alpha2(n1)=s5/(l2*sin(theta2-theta3));
alpha5(n1)=(s6+alpha2(n1)*(l2*sin(theta2(n1)-theta6(n1))+l9*sin(theta 2(n1)-theta7-theta6(n1))))/l5/sin(theta5(n1)-theta6(n1));
alpha6(n1)=-(s7+alpha2(n1)*(l2*sin(theta2(n1)-theta5(n1))+l9*sin(thet a2(n1)-theta7-theta5(n1))))/l6/sin(theta5(n1)-theta6(n1));
vex=-l1*omega1.*sin(theta1)-l2*omega2.*sin(theta2)-l9*omega2.*sin(the ta2-theta7);
vey=l1*omega1.*cos(theta1)+l2*omega2.*cos(theta2)+l9*omega2.*cos(thet a2-theta7);
ve=sqrt(vex.*vex+vey.*vey);
aex=-l1*alpha1.*sin(theta1)-l1*omega1.*omega1.*cos(theta1)-l2*omega2. *omega2.*cos(theta2)-l2*alpha2.*sin(theta2)-l9*alpha2.*sin(theta2-the ta7)-l9*omega2.*omega2.*cos(theta2-theta7);
aey=l1*alpha1.*cos(theta1)-l1*omega1.*omega1.*sin(theta1)+l2*alpha2.* cos(theta2)-l2*omega2.*omega2.*sin(theta2)+l9*alpha2.*cos(theta2-thet a7)-l9*omega2.*omega2.*sin(theta2-theta7);
ae=sqrt(aex.*aex+aey.*aey);
end
figure(1);
n1=1:360;
subplot(2,3,1);
plot(n1,real(theta2*du),n1,real(theta3*du),n1,real(theta5*du),n1,real (theta6*du),'k');
title('角位移线图');