集成运放及其应用

合集下载

第11章 集成运算放大器及其应用

第11章  集成运算放大器及其应用

上式表明,差动放大电路的差模电压放大倍数和 单管放大电路的电压放大倍数相同。多用一个放大管 后,虽然电压放大倍数没有增加,但是换来了对零漂 的抑制。这正是差动放大电路的优点。
差动放大电路对共模输入信号的放大倍数叫做共 模电压放大倍数,用Auc表示,可以推出,当输入共 模信号时,Auc为
Au c u o u C1 u C 2 0 0 ui c ui1 ui1
由于集成运放的电压放大倍数Ao d和输入电阻Ri d 都非常大(理想情况下,两者约等于∞),于是可以 推得 u u
i i 0
注意:“虚短”和“虚断”是理想运放工作在线 性区时的两个重要特点。这两个特点常常作为今后分 析运放应用电路的出发点,因此必须牢固掌握。
(2)集成运放工作在非线性区的特性 如果运放的工作信号超出了线性放大范围,则输 出电压与输入电压不再满足式(11-1),即uo不再随 差模输入电压(u+ - u -)线性增长,uo将达到饱和。 此时集成运放的输出电压uo只有两种取值:或等于运 放的正向最大输出电压+UOM,或等于其负向最大输 出电压-UOM,具体为 当u + >u - 时,uo = +UOM 当u + <u - 时,uo = -UOM 另外,因为集成运放的输入电阻Ri d很大,故在 非线性区仍满足输入电流等于零,即式(11-3)对非 线性工作区仍然成立。
有时,为了简化起见,常常不把恒流源式差动放 大电路中恒流管T3的具体电路画出,而采用一个简化 的恒流源符号来表示,如图11-7所示。
二、输出级——功率放大电路 集成运放的输出级是向负载提供一定的功率,属 于功率放大,一般采用互补对称的功率放大电路。 1. 功率放大电路的特点 (1)因为信号的幅度放大在前置电路中已经完成, 所以功率放大电路对电压放大倍数并无要求。由于射 极输出器的输出电流较大,能使负载获得较大输出功 率,并且它的输出电阻小,带负载能力强,因此通常 采用射极输出器作为基本的功率放大电路。不过单个 的射极输出器对信号正负半周的跟随能力不同,在实 用的功率放大电路中大多采用双管的互补对称电路形 式。

集成运算放大器原理及应用(含习题)

集成运算放大器原理及应用(含习题)

集成运算放大器原理及应用将电路的元器件和连线制作在同一硅片上,制成了集成电路。

随着集成电路制造工艺的日益完善,目前已能将数以千万计的元器件集成在一片面积只有几十平方毫米的硅片上。

按照集成度(每一片硅片中所含元器件数)的高低,将集成电路分为小规模集成电路(简称SSI) ,中规模集成电路(简称MSI), 大规模集成电路(简称LSI)和超大规模集成电路(VLSI)。

运算放大器实质上是高增益的直接耦合放大电路,集成运算放大器是集成电路的一种,简称集成运放,它常用于各种模拟信号的运算,例如比例运算、微分运算、积分运算等,由于它的高性能、低价位,在模拟信号处理和发生电路中几乎完全取代了分立元件放大电路。

集成运放的应用是重点要掌握的内容,此外,本章也介绍集成运放的主要技术指标,性能特点与选择方法。

一、集成运算放大器简介1. 集成运放的结构与符号1. 结构集成运放一般由4部分组成,结构如图1所示。

142图1 集成运放结构方框图其中:输入级常用双端输入的差动放大电路组成,一般要求输入电阻高,差摸放大倍数大,抑制共模信号的能力强,静态电流小,输入级的好坏直接影响运放的输入电阻、共模抑制比等参数。

中间级是一个高放大倍数的放大器,常用多级共发射极放大电路组成,该级的放大倍数可达数千乃数万倍。

输出级具有输出电压线性范围宽、输出电阻小的特点,常用互补对称输出电路。

偏置电路向各级提供静态工作点,一般采用电流源电路组成。

2. 特点:○1硅片上不能制作大容量电容,所以集成运放均采用直接耦合方式。

○2运放中大量采用差动放大电路和恒流源电路,这些电路可以抑制漂移和稳定工作点。

○3电路设计过程中注重电路的性能,而不在乎元件的多一个和少一个○4用有源元件代替大阻值的电阻○5常用符合复合晶体管代替单个晶体管,以使运放性能最好3. 集成运放的符号从运放的结构可知,运放具有两个输入端v P和v N和一个输出端v O,这两个输入端一个称为同相端,另一个称为反相端,这里同相和反相只是输入电压和输出电压之间的关系,若输入正电压从同相端输入,则输出端输出正的输出电压,若输入正电压从反相端输入,则输出端输出负的输出电压。

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。

本文将介绍一些集成运算放大器的应用。

一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。

在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。

二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。

集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。

例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。

三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。

集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。

例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。

四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。

集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。

例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。

五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。

集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。

集成运放的类型及应用

集成运放的类型及应用

集成运放的类型及应用集成运放(即集成式运算放大器)是一种高增益、高输入阻抗以及低输出阻抗的电子放大器,广泛应用于电路设计和信号处理等领域。

下面将详细介绍集成运放的类型及应用。

1. 类型:目前,常见的集成运放有多种类型,包括普通运放、仪表运放、高速运放、低功耗运放等。

普通运放:普通运放是最常见的一种集成运放,具有宽带宽、高增益、高输入阻抗和低输出阻抗的特点。

它的主要应用领域包括信号放大、滤波、理想运算放大器电路设计等。

仪表运放:仪表运放是一种精密运放,具有高共模抑制比、低偏置电流和低噪声的特点。

它的主要应用领域包括电压、电流、温度等测量,以及精密仪器和设备的信号放大等。

高速运放:高速运放是一种具有高增益带宽积(GBW)和快速响应特性的运放,适用于高频信号处理和快速信号放大等应用。

它的主要应用领域包括通信系统、高速数据传输、高速采样和测量等。

低功耗运放:低功耗运放是针对低电源电压和低功耗要求而设计的集成运放。

它可以在低电源电压下正常工作,并具有低静态功耗和低失调电压的特点。

它的主要应用领域包括移动设备、便携式仪器和电池供电系统等。

2. 应用:集成运放作为一种重要的电子器件,在电路设计和信号处理等领域应用广泛。

下面列举一些常见的应用示例:信号放大:集成运放最常见的应用就是信号放大。

通过调整运放的增益,可以将微弱的传感器信号放大到适合后续处理的范围,如压力传感器、温度传感器等。

滤波器:集成运放可以被用来设计各种类型的滤波器,如低通滤波器、高通滤波器、带通滤波器等。

滤波器的设计可以通过选择运放的反馈电阻和电容来实现。

运算放大器电路设计:运算放大器电路是运放最重要的应用之一。

基于运算放大器的电路可以实现加法、减法、乘法、除法、积分、微分等运算,并被广泛应用于模拟电路设计、自动控制系统等领域。

电压和电流测量:仪表运放常用于电压和电流测量。

通过仪表运放的高共模抑制比和低偏置电流特性,可以实现高精度和高稳定性的电压和电流测量。

集成运算放大器全篇

集成运算放大器全篇
要求。
习题判16
七、 微分器
iF R
i1 C ui
R2
– +
+
u–= u+= 0
uo
若输入: ui sin t
ui
则:uo RC cost RC sin(t 90 ) 0 uo
0
iF
uo R
i1
C
dui dt
i1 iF
uo
RC
dui dt
t t 习题判19
微分是积分的逆运算。因此,只要将积分运算电路 中R和C的位置互换,就能形成微分器基本电路。如果 说,积分电路能够延缓信号的传输,那么微分电路则能 加快信号的传输过程,微分器又称D调节器。
(2)无调零引出端的运放调零。有些运放是不设调零引出端 的,特别是四运放或双运放等因引脚有限,一般都省掉调零端。 用作电压比较器的运放,无需调零;用作弱信号处理的线性电 路,需要通过一个附加电路,引入一个补偿电压,抵消失调参 数的影响,几种附加的调零电路如图1-14所示。 调零电路的接人对信号的传输关系应无影响,故图l-14a和图l14b加入了限流电阻R3,R3的阻值要求比R1大数十倍,若R1 =10 kΩ, R3可取200 kΩ。图l-14c和图l-14d为不用调零电源 (+U和-U)的调零电路,通过调节电位器RP,可以改变输入偏置 电流的大小,以调整电消振措施 1)区分内外补偿。从产品手册或产品说明书上可查到补偿方法, 如F007型运放往往把消振用的RC元件制作在运放内部。大部分 没有外接相位补偿(校正)端子的运放,均列出补偿用RC元件 的参考数值,按厂家提供的参数,一般均能消除自激。 2)补偿电容与带宽的关系。有时按厂家提供的RC参数不能完全 消除自激。此时若加大补偿电容的容量,可以消除自激。对于 交流放大器,则必须注意补偿元件对频带的影响,不应取过大 的电容值,要选取适当的电容值,使之既能消除振荡,又能保 持一定的频带宽度。此外,对应不同的闭环增益,所需的补偿 电容和补偿电阻也不同。在选取补偿元件时,可以按以下原则 掌握:在消除自激的前提下,尽可能使用容量小的补偿电容和 阻值大的补偿电阻。

集成运放的分类及应用

集成运放的分类及应用

集成运放的分类及应用集成运放(Operational Amplifier, OP-AMP)是一种基本的电子元件,具有非常广泛的应用。

根据性能特点和应用功能的不同,可以将集成运放分为以下几类。

1. 低噪声运放:低噪声运放在信号处理、放大和传输等领域中应用广泛。

这些运放通常具有非常低的输入等效噪声、电压噪声和电流噪声,能够保持信号的高精确度。

它们常用于音频放大器、传感器信号放大、音频电平计等高要求的应用上。

2. 高速运放:高速运放具有快速的频率响应和瞬态响应,可以实现高速信号处理。

这些运放主要应用于高速数据转换、通信、视频处理、宽带放大器等领域。

高速运放还常用于模拟环路控制系统、高速采样和保持电路等。

3. 低功耗运放:低功耗运放适用于需要长时间使用,对电源的耗电量要求较低的应用。

它们通常具有低功耗和低供电电压,能够降低系统的能耗。

这种运放广泛应用于便携式设备、传感器网络、能量收集系统等。

4. 高精度运放:高精度运放能够实现精确的信号测量和放大,具有高精度的增益、低偏移电压、低温漂移等特点。

这些运放适用于精密测量、自动控制、医疗仪器等需要高精度信号处理的应用。

5. 低电压运放:低电压运放适用于低电压供电系统,能够在低电源电压下正常工作。

这些运放通常具有低电源电压、低功耗和低电流功耗等特点。

它们广泛应用于便携式设备、电池供电系统、太阳能电池等。

6. 特殊功能运放:这类运放具有特殊的性能或功能,用于特定的应用。

例如,差分放大器用于抑制共模噪声,比较器用于信号比较和触发,自耦变压器用于隔离输入和输出信号等。

这些特殊功能运放能够满足特定应用的需求。

集成运放广泛应用于各种电路和系统中,包括:- 信号放大和处理:可以将微弱的传感器信号放大到合适的范围,如温度传感器、压力传感器等。

- 运算放大器:可以实现加法、减法、乘法、积分、微分等运算,用于信号处理、滤波和控制电路等。

- 比较器:用于信号比较和触发,常用于开关控制、触发器电路、模拟开关等。

集成运算放大器及应用

集成运算放大器及应用

由此可得:
uo
RC
dui dt
输 出电压与 输入电 压对时 间的微分 成正
比。
若 ui 为恒定电压 U,则在 ui 作用于电路 的 瞬间,微 分电路 输出一个 尖脉冲 电压,波
形如图所示。
2021/4/8
26
2.积分运算电路
由于反相输入端虚地,且 i i , 由图可得:
iR iC
iR
ui R
电路实现了中权减法运算。若取R1=R2=R3=RF时,则 u0=uI2-uI1
2021/4/8
24
例5.2.1 某理想集成运算放大器电路如图所
示。求输出电压u0。
解:由于集成运算放大器A1构成电压跟随器,所以
u01=2 V。集成运算放大器A2构成同相比例运算,由 式(5.2.2)可得
u02
1
2R 2R
, iC
C duC dt
C
duo dt
由此可得:
uo
(t)
1 RC
t
0 u1(t)dt
输 出电压 与输入 电压对 时间的 积分
成正比。
2021/4/8
27
例5.2.2 分析如图所示集成运算放大器应用电路中,
输出电压与输入电压的关系。
解:集成运算放大器A1实现了减法运算,由式
(5.2.8)可得
1.开环电压放大倍数Au0 , 104~107
2.最大A输u0 出 2电0 l压g UUUoiopp
dB
在一定电源电压下,集成运算放大器输出电压和输入
电压保持不失真关系的输出电压的峰-峰值。
3.最大差模输入电压Uid max 反向输入端和同相输入端之间所能承受的最大电压值。
4.最大共模输入电压Uic max 集成运算放大器所能承受的最大共模输入电压

集成运算放大器

集成运算放大器

量精度的影响
在集成电路的输入与输出接入不同的反馈网络,可实现不同用途的电路,例如利用集成运算放大器可
4 非常方便的完成信号放大、信号运算(加、减、乘、除、对数、反对数、平方、开方等)、信号的处理
(滤波、调制)以及波形的产生和变换
集成运算放大器
01.
集成运算放大器的种类非常多,可适用于不同的场合.运算放大器在电路中发挥重要的 作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面 扮演重要角色
02.
在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电 电路设计、偏置电路设计、PCB设计等方面的问题
-TLeabharlann ANKS载的电源为可变电压电源,R1负载的电流也是保持固定不变,达到恒流的效果
2 1.9 热电阻测量电路
电路是典型的热电阻 / 电偶的测量电路,其测量思路为:将 1-10mA 的恒流源加于负载,将会在负载
3
上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后 将信号送入 ADC 接口。该电路应用时,要注意在输入端施加保护,可以并 TVS,但要注意节电容对测
1.6 滤波器
集成运算放大器
由集成运放可以组成一阶滤波器和二阶滤波器,其中一阶滤波器有20dB每倍频的幅频特 性,而二阶滤波器有40dB每倍频的幅频 特性。为了阻挡由于虚地引起的直流电平,在运放的输入端 串入了输入电容Cin,为了不影响电路的幅频特性,要求这个电容是 C1的100倍以上,如果滤波器还 具有放大作用,则这个电容应是C1的1000倍以上,同时,滤波器的输出都包含了Vcc/2的直流偏 置,如果电路是最后一级,那么就必须串入输出电容
1.3 数字信号处理

集成运算放大器及其应用

集成运算放大器及其应用

相当于两输入端之间短路
u + O
3 “虚地”的概念
当同相输入端接地时,
u i 由“虚断路”原则 i = 0 , 有 +=0
u u 由“虚短路”原则
+
–=0
u R1
i
R2
结论:反相输入端为 “虚地”。
注意
R1
在右图所示电路中,
相因输为入存端在负不反是馈“信虚号地, 同”!u


i
R 第3章 3 3
io
uo RL
u u f
R1 RF RL
第3章 3 4
RF
u u f
=
——R1–
R1+ RF
o
R1
u 虚短路
i R2
uo
u+
故有:
=u – uo =
1+
RRF1 u+
=
1+
u RF
R1
i
同相跟随器
RF
第3章 3 4
uo= ui
ui R
uo
若接入电阻R、RF,运算关系不变
3. 差动比例运算电路
第3章 3 4
利用叠加原理进行分析
RF
u u u ′O = - RRF1 i1
第3章 3 4
uo
3.4.3 减法运算电路 1. 差动比例运算电路
第3章 3 4
RF
u 差动比例运算
R1
i2
是减法运算电
u 路的一种形式
i1
R2
uo
R3
u u u o = 1+ RR1F R2R+3R3
i2 -
RF R1

集成运算放大器的发展与应用

集成运算放大器的发展与应用

集成运算放大器的发展与应用1.引言集成运算放大器(Integrated Operational Amplifier,简称集成运放)是现代电子电路中的重要组成部分。

它的发展与应用经历了多个阶段,从早期的晶体管放大器到现代的高性能集成运放,其应用领域也在不断扩展。

本文将详细介绍集成运放的发展历程、应用领域、优势以及未来趋势。

2.集成运算放大器的发展2.1早期阶段在集成运放发展的早期阶段,人们主要使用晶体管搭建放大电路。

然而,这种方法的电路复杂,调试困难,且性能不稳定。

2.2晶体管放大器阶段随着晶体管技术的进步,人们开始将多个晶体管集成到一起,形成了晶体管放大器。

这种放大器具有更稳定的性能和更小的体积,但在使用上仍然存在一些不便。

2.3集成电路放大器阶段随着集成电路技术的发展,人们开始将多个晶体管和其他元件集成到一块芯片上,形成了集成电路放大器。

这种放大器具有更高的性能和更小的体积,同时降低了成本。

2.4现代集成放大器阶段随着电子技术的不断进步,现代集成放大器在性能、体积、成本等方面都得到了极大的提升。

同时,为了满足不同应用的需求,各种特殊类型的集成运放也应运而生。

3.集成运算放大器的应用领域3.1信号放大集成运放广泛应用于信号放大领域,用于提高信号的幅度和功率。

3.2模拟运算集成运放可以实现模拟运算,如加法、减法、乘法、除法等,广泛应用于模拟电路中。

3.3数字运算通过数字电路与集成运放的结合,可以实现数字信号的处理与运算。

3.4自动控制集成运放在自动控制系统中起到关键作用,用于实现各种控制算法。

3.5音频处理在音频处理领域,集成运放被广泛应用于音频放大和音效处理。

3.6其他领域除了上述应用领域外,集成运放还广泛应用于通信、测量、电力电子、医疗器械等多个领域。

4.集成运算放大器的优势4.1高增益集成运放具有较高的增益,能够实现对微弱信号的放大。

4.2低失真相比于分立元件搭建的放大电路,集成运放的失真更低。

集成运算放大器及其应用

集成运算放大器及其应用
当UR=0时,电压比较器为 输入电压和零电平旳比较器, 称为过零比较器(解释)
电路、电压传播特征如上图
可经过一种例题进一步了解
单门限比较器虽然构造简朴,但抗干扰能 力差,采用滞回比较器(也叫施密特触发器) 可很好处理这一问题
滞回比较器电路如左上图,可求出电压传播特征如 右上图(解释)
第8章第4课
常采用传递函数(或转移
函数)来分析电路旳频率 特征。
相频特 征函数
幅频特 征函数
电路旳输出电压与输入电 压旳比值称为电路旳传递函 数,用T(jω)表达,它是 一种复数
由相量图可写出RC 低通滤波器旳传递 函数(解释)
相频特 征函数
幅频特 征函数
由幅频特征函数、相频特征函数 可做出电路旳幅频特征曲线和相 频特征曲线如左图(解释)
第8章第2课
在此次课中,我们将结协议相百分比运算电路、 差动百分比运算电路简介怎样用集成运放构成 放大电路及信号旳加、减运算。
一.反相百分比运算电路
放大功能是集成运放 旳基本功能,利用集 成运放可以便构成多 种要求旳放大器
同相(回忆)、反相百
分比运算电路是集成运放 线性应用旳基础电路。
记住我!
电压输出体现式如左 输出uo与输入ui为线性百分比 关系,相位相反,故称为反相百 分比运算电路
显然,集成运放旳输出不可能无限制旳增长,当积 分时间足够长时,集成运放将进入非线性区(如图 8-3-5),输出与输入不再保持积分关系
二.微分运算电路
微分运算是积分运算旳逆运算,只需将图8-3-4中反 相输入端旳电阻和反馈电容调换位置,就成为微分 运算电路
由上式,左图示电路实 现了输出uO对输入信 号ui旳微分
五.电压比较器
理想运放开环工作时,其输出电压uo只有两种状态: Uopp或-Uopp(Uopp为最大输出电压),由此可构 成电压比较器

第2章 集成运放及其基本应用

第2章   集成运放及其基本应用

集成运放的电压传输特性
uO=f(uP-uN)
在线性区: uO=Aod(uP-uN) Aod是开环差模放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。 (uP-uN)的数值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。
RL
RE2
RC4
T9
R2
第2级:差动放大器
第3级:单管放大器
Hale Waihona Puke -UEE集成运算放大器符号
国内符号:
反相输入端 u- 同相输入端 u+
- + +
输出端 uo
同相输入端: 该端输入信号变化的极性与输出端相同
反相输入端: 该端输入信号变化的极性与输出端相反
美国符号:
u- u+


uo
运 算 放 大 器 外 形 图
集成电路运算放大器
集成运算放大器是一种高电压增益,高输入 电阻和低输出电阻的多级直接耦合放大电路。
运算放大器方框图
1.输入级 使用高性能的差分放大电路,它必 须对共模信号有很强的抑制力,而且采用双端输 入双端输出的形式。
2.电压放大级 要提供高的电压增益,以保证 运放的运算精度。中间级的电路形式多为差分电 路和带有源负载的高增益放大器。 3.输出级 由PNP和NPN两种极性的三极 管或复合管组成,以获得正负两个极性的输出电 压或电流。具体电路参阅功率放大器。
4.偏置电路 提供稳定的几乎不随温度而变化 的偏置电流,以稳定工作点。 另举例说明集成运放内部结构
集成运放内部结构(举例)
极 性 判 RC1 断 RC2

集成运算放大器及应用—集成运放的线性应用(电子技术课件)

集成运算放大器及应用—集成运放的线性应用(电子技术课件)
图3.2.6 减法运算电路
图3.2.6 减法运算电路
根据叠加原理,先求ui1单独作用时的输
出电压uo1为:
uo1
Rf R1
ui1
再求出ui2单独作用时的输出uo2压为:

(1
Rf R1
)( R3 R2
R3
)ui 2
图3.2.6 减法运算电路
若 R1 R2 , R f R3 代入
二、集成运放的线性应用
集成运放可以应用在各种运算电路上,以输入电压作为自变量,输 出电压按一定的数学规律变化,反映出某种运算的结果。
常见的运算电路有比例、加减、积分、微分等,利用这些运算电路 实现同相放大、反相放大、差分放大以及信号的变换。
注意:集成运放作运算电路时必须工作在线性区。
1.反相比例运算电路
到了微分运算电路,如图3.2.9所示。
图3.2.9 微分运算电路
图3.2.9 微分运算电路
根据“虚短”和“虚断”的概念, u u 0 ,
为“虚地”,因而:
ic
iR
C
dui dt
输出电压为:uo iR R
R C dui dt
RC = — 时间常数
表明输出电压与输入电压的微分成正比,而 duI 也 dt
集成运放的线性应用(二)
3.2.2 集成运放的线性应用(二)
一、反相加法运算电路 在反相比例运放电路的基础上, 增加1个或者多个输入支路就
可构成反相加法运算电路。下面以二个输入信号同时作用于集成运 放的反相输入端为例,介绍反相加法运算电路。
图3.2.5 反相加法运算电路
由叠加原理可知,当ui1单独作用时:
uid
–UOM
图3.1.6 电压传输特性

集成运算放大器及应用—集成运放的非线性应用(电子技术课件)

集成运算放大器及应用—集成运放的非线性应用(电子技术课件)
集成运放的内部结构。无论是输入信号的正向电压或负向电压超过二极管导通电压, 则V1或V2中就会有一个导通,从而限制了输入信号的幅度,起到了保护作用。
(a)反相输入
(b)同相输入
图3.3.9 输入保护电路
(3)输出保护 利用稳压管V1和V2接成反向串联电路。若输出端出现过高电压,集成运放输
出端电压将受到稳压管稳压值的限制,从而避免了损坏。
由于大部分集成运放内部电路的改进,已不需要外加补偿网络。
3.保护电路 (1)电源极性的保护 利用二极管的单向导电特性防止由于电源极性接反而造成的损坏。当
电源极性错接成上负下正时,两二极管均不导通,等于电源断路,从而起 到保护作用。
图3.3.8 电源极性保护电路
(2)输入保护 利用二极管的限幅作用对输入信号幅度加以限制,以免输入信号超过额定值损坏
由图可见,他们之间存在差值称为回差电 压或迟滞宽度u,用 表示,即:
图3.3.7 滞回电压比较器的传输特性
u Uth1 Uth2
三、集成运放使用常识 1.零点调整 方法:将输入端短路接地,调整调零电位器,使输出电压为零。 2.消除自激振荡 方法:加阻容补偿网络。具体参数和接法可查阅使用说明书。目前,
滞回比较器具有两个不同的阈值,且相差较大(通常称我电压 滞回特性),即惯性,因而也就具有一定的抗干扰能力。
(1)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相
输入端的电位为:
u
R1 R1 R2
F
Uth1
(2)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相输入端
的电位为:
u

集成运放及应用实验报告

集成运放及应用实验报告

一、实验目的1. 理解集成运算放大器(运放)的基本原理和特性。

2. 掌握集成运放的基本线性应用电路的设计方法。

3. 通过实验验证运放在实际电路中的应用效果。

4. 了解实验中可能出现的误差及分析方法。

二、实验原理集成运算放大器是一种高增益、低噪声、高输入阻抗、低输出阻抗的直接耦合多级放大电路。

它广泛应用于各种模拟信号处理和产生电路中。

本实验主要研究运放的基本线性应用电路,包括比例、加法、减法、积分、微分等运算电路。

三、实验仪器与器材1. 集成运放(如LM741)2. 模拟信号发生器3. 示波器4. 数字多用表5. 电阻、电容等电子元件6. 面包板四、实验内容1. 反相比例运算电路(1) 设计电路:根据实验要求,搭建一个反相比例运算电路,其中输入电阻R1和反馈电阻Rf的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

2. 同相比例运算电路(1) 设计电路:搭建一个同相比例运算电路,其中输入电阻R1和反馈电阻Rf 的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

3. 加法运算电路(1) 设计电路:搭建一个加法运算电路,实现两个输入信号的求和。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 验证输出波形为两个输入信号的相加。

4. 减法运算电路(1) 设计电路:搭建一个减法运算电路,实现两个输入信号的相减。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

第6章 集成运算放大器及其应用

第6章 集成运算放大器及其应用

6.3 .
一、比例运算电路
集成运算放大器的线性应用
1.反相比例运算电路 反相比例运算电路如下图所示
根据理想运放在线性区“虚短”和“虚断”的特点,有 输入电压ui 通过电阻R1作用于集成运放的反相输入端,故输出电压uo与ui 反 相;电阻Rf 跨接在集成运放的输出端和反相输入端,引入了电压并联负反馈; 同相输入端通过电阻R’ 接地,R’ 为补偿电阻,以保证集成运放输入级差分放 大电路的对称性,其值为ui =0时反相输入端总等效电阻,即R’=R1∥ Rf 。 集成运放两个输入端的电位均为零,但由于它们并没有接地,故称为“虚 地”。节点N的电流方程为 该电路的闭环电路放大倍数为 由于N点虚地(u-=0),整理得出 A= uo /ui = -Rf/ R1 若Rf= R1 ,则A=1,即uo =-ui ,这时电路为倒相器。 uo 与ui 成比例关系,比例系数为-Rf/ R1负号表示uo 与ui 反相。 1
6.2 放大电路中的负反馈 .
一、反馈的基本概念 所谓反馈,就是指连接放大电路输入回路和放大电路输出回路的电路(或元 件),利用反馈元件将输出信号(电压或电流,全部或部分)引回到放大电路输入 回路中,来影响或改变受控元件的净输入信号(电压或电流)的大小或波形,从 而控制输出信号的大小及波形。将放大电路输出端的电压或电流,通过一定的 方式返回到放大器的输入端,对输入端产生作用或影响,称为反馈。 反馈放大电路的方框图如下图所示。

• 放大器的输出信号为 由上式可知,放大器一旦引入深度负反馈,其闭环放大倍数仅与反馈系数 F 有关,而与放大器本身的参数无关。 反馈放大器的放大倍数At(又称为闭环增益)为
其中, 称为反馈深度,是描述反馈强弱的物理量。可见,放大器引 入负反馈后,放大器的放大倍数下降。如果 >>1,则一般认为反馈 已经加得很深,这时的反馈称为深度负反馈,此时上式可简化为

集成运算放大器及其应用

集成运算放大器及其应用

集成运算放⼤器及其应⽤第5章集成运算放⼤器及其应⽤在半导体制造⼯艺的基础上,把整个电路中的元器件制作在⼀块硅基⽚上,构成具有特定功能的电⼦电路,称为集成电路。

集成电路具有体积⼩,重量轻,引出线和焊接点少,寿命长,可靠性⾼,性能好等优点,同时成本低,便于⼤规模⽣产,因此其发展速度极为惊⼈。

⽬前集成电路的应⽤⼏乎遍及所有产业的各种产品中。

在军事设备、⼯业设备、通信设备、计算机和家⽤电器等中都采⽤了集成电路。

集成电路按其功能来分,有数字集成电路和模拟集成电路。

模拟集成电路种类繁多,有运算放⼤器、宽频带放⼤器、功率放⼤器、模拟乘法器、模拟锁相环、模/数和数/模转换器、稳压电源和⾳像设备中常⽤的其他模拟集成电路等。

在模拟集成电路中,集成运算放⼤器(简称集成运放)是应⽤极为⼴泛的⼀种,也是其他各类模拟集成电路应⽤的基础,因此这⾥⾸先给予介绍。

5.1 集成电路与运算放⼤器简介5.1.1 集成运算放⼤器概述集成运放是模拟集成电路中应⽤最为⼴泛的⼀种,它实际上是⼀种⾼增益、⾼输⼊电阻和低输出电阻的多级直接耦合放⼤器。

之所以被称为运算放⼤器,是因为该器件最初主要⽤于模拟计算机中实现数值运算的缘故。

实际上,⽬前集成运放的应⽤早已远远超出了模拟运算的范围,但仍沿⽤了运算放⼤器(简称运放)的名称。

集成运放的发展⼗分迅速。

通⽤型产品经历了四代更替,各项技术指标不断改进。

同时,发展了适应特殊需要的各种专⽤型集成运放。

第⼀代集成运放以µA709(我国的FC3)为代表,特点是采⽤了微电流的恒流源、共模负反馈等电路,它的性能指标⽐⼀般的分⽴元件要提⾼。

主要缺点是内部缺乏过电流保护,输出短路容易损坏。

第⼆代集成运放以⼆⼗世纪六⼗年代的µA741型⾼增益运放为代表,它的特点是普遍采⽤了有源负载,因⽽在不增加放⼤级的情况下可获得很⾼的开环增益。

电路中还有过流保护措施。

但是输⼊失调参数和共模抑制⽐指标不理想。

第三代集成运放代以⼆⼗世纪七⼗年代的AD508为代表,其特点使输⼊级采⽤了“超β管”,且⼯作电流很低。

集成运放及应用实验报告

集成运放及应用实验报告

集成运放及应用实验报告集成运放及应用实验报告引言:集成运放(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,广泛应用于各种电路中。

本实验旨在通过实际操作,深入了解集成运放的基本原理、特性以及在电路中的应用。

一、实验目的本实验的目的是通过实际操作,掌握集成运放的基本原理、特性以及在电路中的应用。

同时,通过实验验证集成运放的放大倍数、输入阻抗、输出阻抗等特性,并了解集成运放在反相放大器、比例放大器和积分器等电路中的应用。

二、实验原理集成运放是一种高增益、差模输入、差模输出的放大器,具有很高的输入阻抗和很低的输出阻抗。

它的基本原理是利用负反馈来实现放大器的稳定性和精确性。

在实验中,我们将使用集成运放的基本电路模型,通过接入不同的电阻和电容,实现不同的功能。

三、实验步骤1. 搭建反相放大器电路将集成运放的正极接地,负极接入输入信号源和输入电阻,输出端接入负载电阻。

根据实验要求,选择合适的电阻值,并连接电源。

通过示波器观察输出波形,记录放大倍数。

2. 搭建比例放大器电路在反相放大器的基础上,将输入电阻和负载电阻分别替换为不同的阻值,保持输入信号源不变。

通过示波器观察输出波形,记录放大倍数。

3. 搭建积分器电路将输入电阻和负载电阻分别替换为电容,保持输入信号源不变。

通过示波器观察输出波形,记录积分效果。

四、实验结果与分析1. 反相放大器电路在实验中,我们选择了合适的电阻值,搭建了反相放大器电路。

通过示波器观察到输入信号经过放大后,输出信号与输入信号相反,且放大倍数符合预期。

这验证了反相放大器的基本原理和特性。

2. 比例放大器电路在实验中,我们将输入电阻和负载电阻分别替换为不同的阻值,保持输入信号源不变。

通过示波器观察到输出信号的放大倍数与输入电阻和负载电阻的比例成正比。

这说明比例放大器可以根据电阻值的选择,实现不同程度的信号放大。

3. 积分器电路在实验中,我们将输入电阻和负载电阻分别替换为电容,保持输入信号源不变。

集成运放的基本应用

集成运放的基本应用

集成运放的应用范围
信号放大
集成运放可以用于信号 的放大,实现信号的传
输和处理。
滤波器
集成运放可以用于构成 各种滤波器,如低通、 高通、带通、带阻滤波
器等。
电压比较器
模拟电路
集成运放可以用于构成 电压比较器,用于信号 的阈值检测和波形整形。
集成运放还可以用于模 拟电路中,如模拟运算 放大器、模拟乘法器等。
在模拟运算电路中的应用
01
02
03
加法器
集成运放可以构成加法器 电路,将多个输入信号按 比例相加,输出结果。
减法器
集成运放也可以构成减法 器电路,将两个输入信号 按比例相减,输出结果。
积分器
集成运放还可以构成积分 器电路,用于对输入信号 进行积分运算,输出结果。
在有源滤波器中的应用
低通滤波器
集成运放可以用于低通滤 波器,用于滤除高频噪声 或干扰,保留低频信号。
集成运放的功耗问题
总结词
集成运放的功耗问题主要表现在静态功耗和动态功耗上。
详细描述
静态功耗是指集成运放处于静止状态时的功耗,动态功耗则是指在工作状态下,随着输入 信号的变化而产生的功耗。
解决方案
可以采用低功耗的器件和电路设计,同时优化电源电压和时钟频率来降低功耗。此外,还 可以采用动态功耗管理技术,根据实际需求动态调整功耗。
05
集成运放的常见问题与解决 方案
集成运放的噪声问题
01
总结词
集成运放的噪声问题主要来源于内部元件的不完美性和外部环境的干扰。
02 03
详细描述
集成运放的制造过程中,由于工艺限制,内部元件难免存在不完美性, 这导致了噪声的产生。此外,外部环境的电磁干扰也可能对集成运放造 成噪声干扰。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双极型管输入级约为105~106欧姆,场效应管输入级可 达109欧姆以上。
10.共模抑制比 KCMR :
KCMR=20lg(Avd / Avc ) (dB) 其典型值在80dB以上,性能好的高达180dB。
11.-3dB带宽 f H : 运放的差模电压放大倍数在高频段下降3dB所定义
的带宽 f H 。
(1)元器件具有良好的一致性和同向偏差,因而特别有利于实 现需要对称结构的电路。 (2)集成电路的芯片面积小,集成度高,所以功耗很小,在毫 瓦以下。 (3)不易制造大电阻。需要大电阻时,往往使用有源负载。
( 由于集成电路中,电阻是利用NPN管的基区体电阻构成,电阻 值的范围一般为几十欧~10千欧左右,阻值范围不大,且阻值精度不易 控制,误差可达10%~20%。所以,若需要高阻值电阻,可用BJT或 FET等组成的恒流源代替,或采用外接电阻的方法。)
结构
封装形式: 金属圆形、双列直插式、扁平式 封装材料: 陶瓷、金属、塑料 例: 塑封双列直插式(DIP)CF741
DIP—Dual In-Line Pakage
8 7 6 5
LM741
1 2 3 4
什么是集成运算放大器?
集成运算放大器——高增益的直接耦合的集成 的多级放大器。 集成电路的工艺特点:
(4)只能制作几十pF以下的小电容。因此,集成放大器 都采用直接耦合方式。如需大电容,只有外接。
(电容则采用PN结的结电容构成,约在100PF以下,误差也 较大,因此电路结构只能采用直接耦合方式。)
(5)不能制造电感,如需电感,也只能外接。 (6)在集成电路制造工艺中,制造三极管(特别是NPN管) 比制造其他元件容易,且占用面积小,性能好。 [因此常用BJT(或FET)构成恒流源作偏置电阻;将BJT 的基极和集电极短接构成二极管﹑稳压管等;]\
集成电路的分类
模拟集成电路
数字集成电路 模拟集成电路: 集成运算放大器,集成功放,集成稳压电源,集成模 数A/D转换和数模D/A转换等。
数字集成电路: 门电路,触发器,计数器,存贮器,微处理器等电路。 74 系列, 74LS××, 74HC××, 4000 系列, CMOS 等各 种型号。
集成运放的结构及特点
一、集成运放的组成部分:
1、四个部分:偏置电路、输入级、中间级、输出级 2、各部分的作用、要求和常采用的电路形式: 偏置电路:向各个放大级提供适当的静态偏置电流,决定各
级的静态工作点。要求提供的静态电流小而稳定。 常采用电路:比例电流源、镜像电流源、微电流源
输入级:接收输入信号,对集成运放的多项技术指标起决定
在规定工作温度范围内,输入失调电压随温度的变
化量与温度变化量之比值。
3.输入偏置电流IIB :
输入电压为零时,运放两个输入端偏置电流的平均值, 用于衡量差分放大对管输入电流的大小。
I IB 1 I B1 I B 2 2
4.输入失调电流 IIO :
在零输入时,差分输入级的差分对管基极电流之差,用
级间直接耦合
3、框图:
Vi1
Vi2 差分式输入 偏置电路
输 入 级
中 间 级
输 出 级
Vo
功放
电压(流)放大 恒流源
二、集成运算放大器的主要性能指标
静态和动态指标
1.输入失调电压UIO
输入电压为零时,将输出电压除以电压增益,即为折算到 输入端的失调电压。是表征运放内部电路对称性的指标。
2.输入失调电压温漂 dUIO /dT
于表征差分级输入电流不对称的程度。
I IO I B1 I B2
5.输入失调电流温漂dIIO /dT:
在规定工作温度范围内,输入失调电流随温度的变化量 与温度变化量之比值。
6.最大差模输入电压Uidmax
运放两输入端能承受的最大差模输入电压,超过此电压时,
差分管将出现反向击穿现象。
7.最大共模输入电压Vicmax
性的作用。要求该级抑制零点漂移能力高。 常采用电路:差分放大电路
中间级:提供足够大的电压放大倍数。要求该级电压放大倍
数大且输入电阻高。
常采用电路:共射放大电路(有源负载和复合管)
输出级:处理大信号、带负载。要求设法减小输出 波形的非线性失真,提供较大电流,带负载能力强。 常采用电路:互补对称功放电路
集成电路的技术发展是否有极限?
在一块芯片上能制造的晶体管是否有极限?
如果“有”,它的极限是多少?还有没有新 的方法以求得继续发展。
目前使用的 16 兆位 DRAM 集成电路的线条宽度为 0.5 微米, 64 兆位 DRAM 集成电路的线条宽度为 0.3 微米,继续发展可望达 到 0.01 微米, 0.01 微米的概念相当于 30 个原子排成一列的长度。 这一尺寸在半导体集成电路中,已经成为极限,再小 PN 结的理 论就不存在了,或者说作为电子学范畴的集成电路已达极限,就 会从电子学跃变到量子工学的范畴,由量变到质变,随之而来的 一门新的工程学——对量子现象加以工程应用的“量子工学”也 就诞生了,由这一理论指导而将做成的量子器件,将延续集成电 路的发展。现在美国和日本正投入大量的人力和物力进行这方面 的研究,并且在“原子级加工”方面取得了一定的成果。
12.转换速率S R (压摆率): 反映运放对于快速变化的输入信号的响应能力。 转换速率SR的表达式为:
duo SR dt
max
三、集成运算放大器的模型
国内符号:
V 同相输入端 u + V 反相输入端 u -
+ -
A

+
V
u o 输出端
国际符号:
集成运放的特点:
•电压增益高
u-ቤተ መጻሕፍቲ ባይዱu +
- +
uo
•输入电阻大
•输出电阻小
1、 运放的电压传输特性:
设:电源电压±VCC=±10V。 运放的Aod=104
u oo u
ui
V
+ -
A

+
uo
+10V +10V
+U +Uom om
V
-1mV 0 0 +1mV
u ii u
│Ui│≤1mV时,运放处于线性区。
在保证运放正常工作条件下,共模输入电压的允许范围。 共模电压超过此值时,输入差分对管出现饱和,放大器失
去共模抑制能力。
8.开环差模电压放大倍数 Aod :
无反馈时的差模电压增益。 一般Aod在100~120dB左右,高增益运放可达140dB以上。
Uo Aod U U
9.差模输入电阻rid :
相关文档
最新文档