计量经济学第一章
潘省初计量经济学——第一章
两个基本要素的结合
计量经济研究方法的下一步也是核心一步,是两个 基本要素的结合,即用加工好的数据估计计量经济模 型。这一步需要使用一批计量经济技术。计量经济技 术是经典统计学方法特别是统计推断技术的扩展。这 种扩展是必要的,因为在估计计量经济模型时会遇到 一些特别的问题。
上述过程的结果是一个估计好的计量经济模型,所 谓估计模型就是依据有关数据估计模型的参数,估计 好的模型可用于计量经济学的三个主要目的:结构分 析,预测和政策评价。
8
计量经济学的三个要素
计量经济学的三个要素是经济理论、经济数据和统 计方法。对于解释经济现象来说,“没有计量的理论 ”和“没有理论的计量”都是不够的,正如计量经济 学创始人之一的弗里希所强调的那样,它们的结合是 计量经济学的发展能够取得成功的关键。
9
计量经济学是经济预测的科学
计量经济学从根上说,是对经验规律的认识以及将 这些规律推广为经济学“定律”的系统性努力,这些 “定律”被用来进行预测,即关于什么可能发生或者 什么将会发生的预测。因此,广义地说,计量经济学 可以称为经济预测的科学。
12
2. 时代背景
计量经济学的产生,与当时的时代背景是密切相关 的。上世纪二十年代末期,在资本主义世界发生了严 重的经济危机,原有的经济理论失灵,产生了所谓的 “凯恩斯革命”。
在这种背景下,各国政府出于对经济的干预政策的 需要,企业管理层为了摆脱或减少经济危机的打击, 在经济繁荣时期获取更多的利润,要求采用计量经济 理论和方法,进行经济预测,加强市场研究,探讨经 济政策的效果,因而计量经济学应运而生。
结论:现实中经济变量之间 的关系一般是一种
不精确的关系,因此用(1)式这样的数学模型描述 是不合适的,因为它不能正确反映客观实际情况。
计量经济学第1章
—— R.Frish
§1.2 计量经济学的内容体系
一、广义计量经济学和狭义计量经济学
广义计量经济学是利用经济理论、统计学 和数学定量研究经济现象的经济计量方法 的统称,包括回归分析方法、投入产出分 析方法、时间序列分析方法等。
狭义计量经济学就是我们通常所说的计 量经济学,以揭示经济现象中的因果关 系为目的,在数学上主要应用回归分析 方法。 本课程中的计量经济学模型,就是狭义 计量经济学意义上的经济数学模型。
其中:Y为消费支出 X为收入 α、β为模型参数
(1 )
斜率β为边际消费倾向(MPC)
Y X
Y 称为被解释变量
(2) Y
X 称为解释变量 μ称为随机干扰项或随机误差项 0
X
确定模型的数学形式
利用经济学和数理经济学的成果
根据样本数据作出的变量关系图(散点图)
选择可能的形式试模拟
计量经济学
Econometrics
参考书
《计量经济学》 (美)古扎拉蒂编著 林少宫译,人大出版社 《计量经济学》 李子奈、潘文卿编著 高等教育出版社 《计量经济学简明教程》 廖明球、李雪编著 首都经济贸易大学出版 社
第一章 绪论
计量经济学 计量经济学的内容体系 计量经济学模型的建立步骤 计量经济学模型的应用
二、样本数据的收集
1、获取数据的途径
官方公布的数据 中国统计年鉴 中国统计摘要 地方性统计年鉴 联合国的统计年鉴 世行的统计年鉴 网络 实际调查 换算
2、样本数据的类型 时间序列数据 截面数据 虚变量数据 3、样本数据的质量 完整性 准确性 可比性 一致性
三、模型参数的估计
计量经济学第一章
乘数分析
结构式模型的解释变量中可以出现内生变量 简化式的解释变量中全部为外生或滞后内生变量
比较静力分析:是比较经济系统的不同平衡 位置之间的联系,探索经济系统从一个平衡 点到另一个平衡点时变量的变化,研究系统 中某个变量或参数的变化对另外变量或参数 的影响。
弹性分析、乘数分析都是比较静力分析的形式
四、检验和发展经济理论
检验理论:根据经济理论 建立模型 以样本数据进行拟合 发现和发展理论:样本数据 拟合模型 得出经济规律
单方程模型:研究单一经济现象,揭示单向因果 关系 联立方程模型:研究一个经济系统,揭示复杂的 因果关系
2、初、中、高级计量经济学
初级:数理统计学基础知识,经典线性单方程 模型的理论与方法。 中级:矩阵描述的经典线性单方程模型理论与 方法,经典线性联立方程模型理论与方法,传 统的应用模型。 高级:非经典的、现代的计量经济学模型理论、 方法与应用 本书属于初、中级计量经济学
3、理论计量经济学和应用计量经济学
理论计量经济学:以介绍、研究计量经济学的 理论与方法为主要内容,侧重于理论与方法的 数学证明与推导
数学理论基础 参数估计方法 检验方法
应用计量经济学:以建立、应用计量经济学模 型为主要内容,侧重于实际问题的处理。
4、经典计量经济学和非经典计量经济学
2、统计检验
拟合优度检验 变量的显著性检验 方程的显著性检验 随机误差项的序列相关性检验 异方差性检验 解释变量的多重共线性检验
3、计量经济学检验
计量经济学 第一章
ECONOMETRICS
金融系
第一章 绪 论
什么是计量经济学 计量经济学研究内容与目的 计量经济学的发展 计量经济学的方法论
概率论与数理统计基础
什么是计量经济学?
简单地说,计量经济学(Econometrics)就是经济的计 量分析。如对国民生产总值、失业、通货膨胀、进口、 出口等经济变量及相互关系的定量分析。 计量经济学是利用经济理论、数学、统计学等工具对 经济现象进行分析的一门社会科学。 计量经济学运用数理统计知识分析经济数据,对构建 于数理经济学基础之上的数学模型提供经验支持,并 得出数量结果。 它是用定量的方法研究经济活动规律及其应用的科学, 是由经济学与统计学、数学相结合形成的边缘学科。
计理论”方面作出了很大贡献。
2008年:保罗-克鲁格曼(Paul
Krugman)曾任 美国麻省理工学院经济学教授。成功预言 “1997年亚洲金融危机” ,新凯恩斯主义 学派,研究领域主要集中在贸易模式和区域 经济活动。 2009年:埃莉诺· 奥斯特罗姆(Elinor Ostrom)1933年出生于美国,自1968年诺贝尔 经济学奖成立以来首位获得此殊荣的女性; 新制度学派经济学家奥利弗· 威廉姆森 E· (Oliver E. Williamson),两人因经济治理 领域方面的卓越贡献而获奖。
1971年:西蒙· 库兹列茨(SIMON KUZNETS,美,1901-1985)计量经 济学家,在研究人口发展趋势及人口结构对经济增长和收入分配 关系方面做出了巨大贡献。 1972年:约翰· 希克斯(JOHN R. HICKS,英,1904-1989) 肯尼 斯· 约瑟夫· 阿罗(KENNETH J. ARROW,美,1921-) 他们深入研究了 经济均衡理论和福利理论。 1973年:华西里· 列昂惕夫(WASSILY LEONTIEF,苏,1916-) 发展 了投入产出方法,该方法在许多重要的经济问题中得到运用。 1974年 弗· 哈耶克(FRIEDRICH AUGUST VON HAYEK,澳,1899冯· 1982) 纲纳· 缪达尔(GUNNAR MYRDAL,瑞典,1898-1987) 他们深 入研究了货币理论和经济波动,并深入分析了经济、社会和制度 现象的互相依赖。
《计量经济学》各章主要知识点
第一章:绪论1.计量经济学的学科属性、计量经济学与经济学、数学、统计学的关系;2.计量经济研究的四个基本步骤(1)建立模型(依据经济理论建立模型,通过模型识别、格兰杰因果关系检验、协整关系检验建立模型);(2)估计模型参数(满足基本假设采用最小二乘法,否则采用其他方法:加权最小二乘估计、模型变换、广义差分法等);(3 )模型检验:经济意义检验(普通模型、双对数模型、半对数模型中的经济意义解释,见例1、例2 ),统计检验(T检验,拟合优度检验、F检验,联合检验等);计量经济学检验(异方差、自相关、多重共线性、在时间序列模型中残差的白噪声检验等);(4 )模型应用。
例1:在模型中,y某类商品的消费支出,x收入,P商品价格,试对模型进行经济意义检验,并解释A"》的经济学含义。
In X = 0.213 +0.25 In 一0.31£其中参数卩'",都可以通过显著性检验。
经济意义检验可以通过(商品需求与收入正相关、与商品价格负相关\商品消费支出关于收入的弹性为0.25 ( 1心/畑)=0.251】心/仏));价格增加一个单位,商品消费需求将减少31%。
例2 :硏究金融发展与贫富差距的关系,认为金融发展先使贫富差距加大(恶化), 尔后会使贫富差距降<氐(好转),成为倒U型。
贫富差距用GINI系数表示,金融发展用(贷款余额/存款总额)表示。
回归结果G/^VZ r =2.34 + 0.641;-1.29x;/模型参数都可以通过显著性检验。
在X的有意义的变化范围内,GINI系数的值总是大于1 ,细致分析后模型变的毫无意义;同样的模型还有:GINI系数的值总是为负= —13.34 + 7.12 兀一14.31#O3.计量经济学中的一些基本概念数据的三种类型:横截面数据、时间序列数据、面板数据;线性模型的概念;模型的解释变量与被解释变量,被解释变量为随机变量(如果—个变量为随机变量,并与随机扰动项相关,这个变量称为内生变量),被解释变量为内生变量,有些解释变量也为内生变量。
计量经济学第1章
➢ 边际消费倾向是否存在?即参数是否为零(假设检验) ➢ 若存在其数值估计为多少?(点估计和区间估计)
5
1.1 计量经济学的基本概念
▪ 与理论经济学的区别:经济理论所作的陈述、假 说和分析都大多数是定性的,而计量经济学对大 多数经济理论赋予定量的经验内容。
➢ 与经济统计的区别:统计学则主要关心收集、加工和 以适当的形式表现经济数据。
Cˆt1 ˆ0 ˆ1Yt1
14
▪ 所估计的消费函数是
Cˆ 231.8 0.7194Y
从方程中看出:在1980-1991年间,斜率系数(即MPC) 约为0.72,表明在此样本期间,实际收入每增加一美元, 平均而言,实际消费支出将增加约72美分。这里用“平 均而言”来表述,是因为消费和收入之间没有准确的关 系。
➢ 与数理统计的区别:数理统计提供工具,但数据的特 征不同
数理统计学所使用的数据往往是自然科学中的实验数据 (experimental data),它通常是在实验环境中获得的。
计量经济学所使用的数据大多数是从对个人、企业或经济系 统中的某些部分的控制实验或观测得到的非实验数数据 (non-experimental data)。这样一来便产生了不是数理统 计学所正常遇到的一些特殊问题。
➢ 如:在一定时期间隔内对教育问题的调查。在每一时 期的调查中,同样的(或居住在同一地区的)家庭被调 查,以观察自上一次调查以来,其教育和经济状况是 否有变化。
11
C(个人消费)和Y(国内生产总值)数据, 1980-1991,均以10亿1987年美元为单位
年份
1980 1981 1982 1983 1984 1985 1986 1987 1988 19447.1 2476.9 2503.7 2619.4 2746.1 2865.8 2969.1 3052.2 3162.4 3223.3 3260.4 3240.8
计量经济学教学课件第一章.详解
第 一 节 计量经济学概述
第 二节 计量经济学的基本概念
第 三节 建立与应用计量经济模型 的主要步骤
第一节 计量经济学概述
一、计量经济学的产生和发展
(一)计量经济学的产生
计量经济学其实也一门有相当长历史的学科。 从古典学者开始就有了对经济问题的数量分析, 威廉.配第的《政治算术》于1676年问世,作为计 量经济分析基本工具的最小二乘法是19世纪产生 的。
Q b 0 b 1 P b 2 P r b 3 Y u 入, u为随机误差项.
B
三、计量经济学的内容体系
(目概 特一的念 点):从为研 侧 运应究 重 用内用如 于 理容计何计论量建量经的经立经济角济合济学学度适模提提的型供区供方的方分法数工法去学具论测理,。定论以由 基建计 础立量与、经应参济用数模计估
济变断学量,的参方 统数法 计有论 规特基 律定础 ;的。经济意义,标准假定经常不能满足,需要 建立专门的经济计量方法。研究结果不仅要看在数学上能通 过,而且要看是否与实际经济内容一致。
B
计量经济学与其他相关学科的关系(续)
而在4计例(. 量12与如)经数:数济理理根学经据经,济经建济学济立学虽和的理的有理相论数论应,比学经的数较表济模理达学型经为式都济:,把学经但用济不线变象性量计需间量求的经函关济数系学表
相关学科的关系如图:
计量经济学是数理经 济学、经济统计学、 数理统计学的交集。
每一交集都形成了一 个特定的学科,有其 独立的研究对象或特 点,这些学科彼此不 能混淆代替。
B
计量经济学与其他相关学科的关系(续)
1. 与理论经济学的比较
联系
计量经济学研究的主体是经济现象和经济关系的数 量规律;
计量经济学重点
计量经济学重点第一章经济计量学的特征及研究范围1、经济计量学的定义P11经济计量学是利用经济理论、数学、统计推断等工具对经济现象进行分析的一门社会科学;2经济计量学运用数理统计学分析经济数据,对构建于数理经济学基础之上的模型进行实证分析,并得出数值结果;2、学习计量经济学的目的计量经济学与其它学科的区别P1-P21计量经济学与经济理论经济理论:提出的命题和假说,多以定性描述为主计量经济学:依据观测或试验,对大多数经济理论给出经验解释,进行数值估计2计量经济学与数理经济学数理经济学:主要是用数学形式或方程或模型描述经济理论计量经济学:采用数理经济学家提出的数学模型,把这些数学模型转换成可以用于经验验证的形式3计量经济学与经济统计学经济统计学:涉及经济数据的收集、处理、绘图、制表计量经济学:运用数据验证结论3、进行经济计量的分析步骤P2-P31建立一个理论假说2收集数据3设定数学模型4设立统计或经济计量模型5估计经济计量模型参数6核查模型的适用性:模型设定检验7检验源自模型的假设8利用模型进行预测4、用于实证分析的三类数据P3-P41时间序列数据:按时间跨度收集到的定性数据、定量数据;2截面数据:一个或多个变量在某一时点上的数据集合;3合并数据:包括时间序列数据和截面数据;一类特殊的合并数据—面板数据纵向数据、微观面板数据:同一个横截面单位的跨期调查数据第二章线性回归的基本思想:双变量模型1、回归分析P18用于研究一个变量称为被解释变量或应变量与另一个或多个变量称为解释变量或自变量之间的关系2、回归分析的目的P18-P191根据自变量的取值,估计应变量的均值;2检验建立在经济理论基础上的假设;3根据样本外自变量的取值,预测应变量的均值;4可同时进行上述各项分析;3、总体回归函数PRFP19-P221概念:反映了被解释变量的均值同一个或多个解释变量之间的关系2表达式:①确定/非随机总体回归函数:EY|Xi =B1+B2XiB1:截距;B2:斜率从总体上表明了单个Y同解释变量和随机干扰项之间的关系②随机/统计总体回归函数:Yi =B1+B2Xi+μiμi:随机扰动项随机误差项、噪声B1+B2Xi:系统/确定性部分μi:非系统/随机部分4、随机误差项P221定义:代表了与被解释变量Y有关但未被纳入模型变量的影响;每一个随机误差项对于Y的影响是非常小的,且是随机的;随机误差项的均值为02性质①误差项代表了未纳入模型变量的影响;②反映人类行为的内在随机性;③代表了度量误差;④反映了模型的次要因素,使得模型描述尽可能简单;5、样本回归函数P22-P251概念:是总体回归函数的近似2表达式①确定/非随机样本回归函数:i =b1+b2Xib 1:截距;b2:斜率②随机/统计样本回归函数:Yi =b1+b2Xi+eiei :残差项残差,ei= Yi-iB1+B2Xi:系统/确定性部分μ:非系统/随机部分6、条件期望与非条件期望1EY|Xi条件期望:在解释变量X给定条件下Y的条件期望,可以通过X给定条件下的条件概率分布得到;2非条件期望:在不考虑其他随机变量取值情况时,某个随机变量的期望值;它可以通过该随机变量的非条件分布或边缘分布得到;6、线性回归模型回归参数为线性B的模型7、回归系数/回归参数线性回归模型中的B参数8、回归系数的估计量bs说明了如何通过样本数据来估计回归系数Bs,计算出的回归系数的值称为样本回归估计值9、随机总体回归函数与随机样本回归函数的关系1随机样本回归函数:从所抽取样本的角度说明了被解释变量Yi 同解释变量Xi及残差ei之间的关系;2随机总体回归函数:从总体的角度说明了被解释变量Yi 同解释变量Xi及随机误差项μ之间的关系;10、关于线性回归的两种解释P25-P261变量线性:应变量的条件均值是自变量的线性函数此解释下的非线性回归:EY= B1+B2Xi2;EY= B1+B2×1/Xi2参数线性:应变量的条件均值是参数B的线性函数此解释下的非线性回归:EY= B1+B22Xi线性回归在教材中指的是参数线性的回归11、多元线性回归的表达式P261确定/非随机总体回归函数:EX=B1+B2X2i+B3X3i+B4X4i2随机/统计总体回归函数:Yi = B1+B2X2i+B3X3i+B4X4i+μi12、最小二乘法OLS法P26-P281最小二乘以残差被解释变量的实际值同拟合值之间的差平方和最小的原则对回归模型中的系数进行估计的方法;1表达式2重要性质①用OLS法得出的样本回归线经过样本均值点:;②残差的均值总为0;③对残值与解释变量的积求和,其值为0,即这两个变量不相关:④对残差与i 估计的Yi的积求和,其值为0,即第三章双变量模型:假设检验1、古典线性回归模型的假设P41-P441回归模型是参数线性的,但不一定是变量线性的:Yi =B1+B2Xi+μi2解释变量X与扰动误差项μ不相关3给定Xi ,扰动项的期望或均值为0:Eμ| Xi=04μi 的方差为常数,或同方差:varμi=σ2每个Y值以相同的方差分布在其均值周围,非这种情况为异方差5无自相关假定:两个误差项之间不相关,covμi ,μj=06回归模型是正确假定的:实证分析的模型不存在设定偏差或设定误差2、OLS估计量运用最小二乘法计算出的总体回归参数的估计量3、普通最小二乘估计量的方差与标准误P44-P461的方差与标准误①方差:②标准误:2的方差与标准误①方差:②标准差:3的计算公式n-2为自由度:独立观察值的个数4:回归标准误,常用于度量估计回归线的拟合优度,值越小,Y的回归值越接近根据回归模型得到的估计值4、OLS估计量的性质P461b1和b2是线性估计量:它们是随机变量Y的线性函数2b1和b2是无偏估计量:Eb1=B1,Eb2=B23Eσ^2=σ^2:误差方差的OLS估计量是无偏的4b 1和b 2是有效估计量:varb 1小于B 1的任意一个线性无偏估计量的方差,varb 2小于B 2的任意一个线性无偏估计量的方差 5、OLS 估计量的抽样分布或概率分布P47-P481新加的假设:在总体回归函数Yi=B 1+B 2X i +μi 中,误差项μi 服从均值为0,方差为σ^2的正态分布:μi ~N0,σ^2 2OLS 估计量服从的分布情况:b 1~NB 1,σ2b1 b 2~NB 2,σ2b26、假设检验P48-P53 1使用公式近似2方法①置信区间法②显着性检验法:对统计假设的检验过程 3几个相关检验①t 检验法:基于t 分布的统计假设检验过程 ②双边检验:备择假设是双边假设的检验 ③单边检验:备择假设是单边假设的检验 7、判定系数r 2P53-P56 1重要公式:TSS=ESS+RSS①总平方和TSS=:真实Y 值围绕其均值的总变异;②解释平方和ESS=:估计的Y值围绕其均值=的变异,也称为回归平方和由解释变量解释的部分③残差平方和RSS=:Y变异未被解释的部分2r2判定系数的定义:度量回归线的拟合程度回归模型对Y变异的解释比例/百分比3r2的性质①非负性②0≤r2≤14r2的计算公式5r的计算公式8、同方差性方差相同9、异方差性方差不同10、BLUE最佳线性无偏估计量,即该估计量是无偏估计量,且在所有的无偏估计量中方差最小11、统计显着拒绝零假设的简称第四章多元回归:估计与假设检验1、三变量线性回归模型EYi =B1+B2Xt+ B3X3tY i =B1+B2X2t+ B3X3t+μi2、偏回归系数B2,B3:1B2:在X3保持不变的情况下,X2单位变动引起Y均值EY的变动量2B3:在X2保持不变的情况下,X3单位变动引起Y均值EY的变动量3、多元线性回归模型的若干假定P73-P74 1回归模型是参数线性的,并且是正确设定的2X2,X3与扰动误差项μ不相关①X2,X3非随机:自动满足②X2,X3随机:必须独立同分布于误差项μ3误差项的期望或均值为0:Eμi=04同方差假定:varμi=σ25误差项μi ,μi无自相关:两个误差项之间不相关,covμi,μji≠j6解释变量X2和X3之间不存在完全共线性,即两个解释变量之间无严格的线性关系X2不能表示为另一变量X3的线性函数7随机误差μ服从均值为0,同方差为σ^2的正态分布:μi~N0,σ2 4、多重共线性问题1完全共线性:解释变量之间存在的精确的线性关系2完全多重共线性:解释变量之间存在着多个精确的线性关系5、多元回归函数的估计P74-P756、OLS估计量的方差与标准误P75-P761b1的方差与标准误2b1的方差与标准误3b3的方差与标准误7、多元判定系数P76-P778、多元回归的假设检验P78 方法类似于第三章9、检验联合假设P80-P811联合假设:H0:B2=B3=0H:R2=0多元回归的总体显着性检验2三变量回归模型的方差分析表2F分布公式10、F与R2之间的重要关系P82-P83 1关系式2R2形式的方差分析表11、设定误差P84会导致模型中遗漏相关变量12、校正判定系数P84-P851作用衡量了解释变量能解释的离差占被解释变量总离差的比例2公式3性质①如果k>1,则≤R2,即随着模型中解释变量个数的增加,校正判定系数越来越小于非校正判定系数②虽然未校正判定系数R2总为正,但校正判定系数可能为负13、受限最小二乘法P86-P871受限模型:B2=B3=02非受限模型:包含了所有相关变量3受限最小二乘法:对受限模型用OLS估计参数4非受限最小二乘法:对非受限模型用OLS估计参数5判定对模型施加限制是否有效的F分布公式14、显着性检验1单个多元回归系数的显着性检验①提出零假设和备择假设;②选择适当的显着性水平;③在零假设为真的情况下,计算t统计量;④将t统计量的绝对值|t|同相应自由度和显着性水平下的临界值相比较;⑤如果t统计量大于临界值,则拒绝零假设;该步骤中务必要使用合适的单边或双边检验;2所有偏斜率系数的显着性检验①零假设:H0:B2=B3=...=Bk=0,即所有的偏回归系数均为0;②备择假设:至少一个偏回归系数不为0;③运用方差分析和F检验;④如果F统计量的值大于相应显着性水平下的临界值,拒绝零假设,否则接受;⑤3在1和2中可以不事先选择好显着性水平,只需得到相应统计量的p值,如果p 值足够小,我们就可以拒绝零假设;第五章回归模型的函数形式1、不同的函数形式P121模型形式斜率强性线性双对数对数—线性线性—对数倒数逆对数2、多元对数线性回归模型P104-P1073、线性趋势模型P1104、多项式回归模型P116-P1175、过原点的回归P1186、标准化变量的回归P120第六章虚拟变量回归模型1、虚拟变量P133-P134因变量受到一些定性变量的影响,这类定性变量称为虚拟变量,用D表示虚拟变量,虚拟变量的取值通常为0和12、虚拟变量陷阱P136引入的虚拟变量个数应该比研究的类别少一个,否则就会造成完全多重共线,即通常说的虚拟变量陷阱3、虚拟变量回归模型的类型包含一个定量变量、一个定性变量的回归模型1只影响截距加法模型2只影响斜率乘法模型3同时影响截距与斜率混合模型4、交互效应P142:交互作用虚拟变量5、分类变量和定性变量这类变量的取值不是一般的数据数值变量或定量变量,它们通常代表所研究的对象是否具有的某种特征;6、方差分析模型ANOVA解释变量仅包含定型变量或虚拟变量的回归模型;7、协方差分析模型ANOCVA回归模型中的解释变量有些是线性的,有些是定量的;8、差别截距虚拟变量包含此变量的模型能够分辨被解释变量的均值在不同类别之间是否相同; 9、差别斜率虚拟变量包含此变量的模型能够分辨不同类别之间被解释变量均值变化率的变化范围第七章模型选择:标准与检验1、好的模型具有的性质P164-P1651简约性:模型应尽可能简单;2可识别性:每个参数只有一个估计值;3拟合优度:用模型中所包含的解释变量尽可能地解释应变量的变化;4理论一致性:构建模型时,必须有一定的理论基础;5预测能力:选择理论预测与实践吻合的模型;2、产生设定误差的原因1研究者对所研究问题的相关理论了解不深2研究者没有关注本领域前期的研究成果3研究者在研究中缺乏相关数据4数据测量时的误差3、设定误差的类型P1651遗漏相关变量:“过低拟合”模型P165-P168实际模型:估计模型:后果:①如果遗漏变量X3与模型中的变量X2相关,则a1和a2是有偏的;也就是说,其均值或期望值与真实值不一致;②a1和a2也是不一致的,即无论样本容量有多大,偏差也不会消失;③如果X2和X3不相关,则b32为零,即a2是无偏的,同时也是一致的;④根据两变量模型得到的误差方差是真实误差方差σ2的有偏估计量;⑤此外,通常估计的a2的方差是真实估计量方差的有偏估计量;即使等于零,这一方差仍然是有偏的;⑥通常的置信区间和假设检验过程不再可靠;置信区间将会变宽,因此可能会“更频繁地”接受零假设:系数的真实值为零;2包括不相关变量:“过度拟合”模型P168-169正确模型:错误模型:后果:①过度拟合模型的估计量是无偏的也是一致的;②从过度拟合方程得到的σ2的估计量是正确的;③建立在t检验和F检验基础上的标准的置信区间和假设检验仍然是有效的;④从过度拟合模型中估计的a是无效的——其方差比真实模型中估计的b的方差大;因此,建立在a的标准误上的置信区间比建立在b的标准误上的置信区间宽,尽管前者的假设检验是有效的;总之,从过度拟合模型中得到的OLS估计量是线性无偏估计量,但不是最优先性无偏估计量;3不正确的函数形式P170-171如果选了错误的函数形式,则估计的系数可能是真实系数的有偏估计量;4度量误差①应变量中度量误差对回归结果的影响i. OLS估计量是无偏的;ii. OLS估计量的方差也是无偏的;iii. 估计量的估计方差比没有度量误差时的大,因为应变量中的误差加入到了误差项中;②解释变量的度量误差对回归结果的影响i. OLS估计量是有偏的;ii. OLS估计量也是不一致的;③解决方法:如果解释变量中存在度量误差,建议使用工具变量或替代变量;4、设定误差的诊断1诊断非相关变量P172-P1742对遗漏变量和不正确函数形式的检验P174-P175①判定系数R2和校正后的R2;②估计的t值;③与先验预期相比,估计系数的符号;3在线性和对数线性模型之间选择:MWD检验P175-P176:线性模型:Y是X的线性函数①设定如下假设;HH:对数线性模型:lnY是X或lnX的线性函数1②估计线性模型,得到Y的估计值③估计线性对数模型,得到lnY的估计值④求⑤做Y对X和的回归,如果根据t检验的系数是统计显着的,则拒绝H0⑥求⑦做lnY对X或lnX和的回归,如果的系数是统计显着的,则拒绝H14回归误差设定检验:RESETP177-P178①根据模型估计出Y值;②把的高次幂,,等纳入模型以获取残差和之间的系统关系;由于上图表明残差和估计的Y值之间可能存在曲线关系,因而考虑如下模型③令从以上模型中得到的为,从前一个方程得到的为,然后利用如下F检验判别从以上方程中增加的是否是统计显着的;④如果在所选的显着水平下计算的F值是统计显着的,则认为原始模型是错误设定的;第八章多重共线性:解释变量相关会有什么后果1、完全多重共线性P183-P185回归模型的某个解释变量可以写成其他解释变量的线性组合;设X2可以写成其他某些解释变量的线性组合,即:X 2=a3X3+a4X4…+akXk至少有一个ai≠0,i= 2,3,…k称存在完全多重共线性2、高度多重共线性P185-P187X2与其他解释变量高度共线性,即可以近似写成其他解释变量的线性组合X 2=a3X3+a4X4…+akXk+i至少有一个ai ≠0,i= 2, 3,…k, vi是随机误差项;3、产生多重共线的原因1时间序列解释变量受同一因素影响经济发展、政治事件、偶然事件、时间趋势经济变量的共同趋势2模型设立:解释变量中含有当期和滞后变量4、多重共线性的理论后果P187-P188OLS估计量仍然是最优无偏估计量1在近似共线性的情形下,OLS估计量仍然是无偏的;2近似共线性并未破坏OLS估计量的最小方差性;3即使在总体回归方程中变量X之间不是线性相关的,但在某个样本中,X变量之间可能线性相关;5、多重共线性的实际后果P188-P1891OLS估计量的方差和标准误较大;2置信区间变宽;3t值不显着;4R2值较高;5OLS估计量及其标准误对数据的微小变化非常敏感6回归系数符号有误;7难以评估各个解释变量对回归平方和ESS或者R2的贡献6、多重共线性的诊断P189-P1921观察回归结果R2较高,F很大,但t值显着的不多;多重共线性的经典特征R2较高,F检验拒绝零假设,但各变量的t检验表明,没有或少有变量系数是统计显着的;2简单相关系数法解释变量两两高度相关;变量相关系数比如超过,则可能存在较为严重的共线性;这一标准并不总是可靠,相关系数较低时,也有可能存在共线性3检查偏相关系数不一定可行4判定系数法辅助回归某个解释变量对其余的解释变量进行回归如果判定系数很大,F检验显着,即X与其他解释变量存在多重共线i5方差膨胀因子7、多重共线性的补救P195-P1981从模型中删除引起共线性的变量①找出引起多重共线性的解释变量,将它排除出去最为简单的克服多重共线性问题的方法;②逐步回归法i. 逐步引入如果拟合优度变化显着—新引入的变量是一个独立解释变量;选择解释变量的原则:a. 调整的R2增加,每个∣t∣增加,则保留引入变量;b. 调整的R2下降,每个∣t∣变化不大,则删除引入变量;ii. 逐步剔除①排除变量时应该注意:i. 由实际经济分析确定变量的相对重要性,删除不太重要的变量;ii. 如果删除变量不当,会导致模型设定误差;2获取额外的数据或新的样本3重新考虑模型4先验信息5变量变换将原模型变换为差分模型可有效消除存在于原模型中的多重共线性一般,增量之间的线性关系远比总量之间的线性关系弱得多; 第九章异方差:如果误差方差不是常数会有什么后果1、异方差的定义随机误差项ui 的方差随着解释变量Xi的变化而变化,即:2、异方差的性质P205-P208OLS估计仍是线性无偏,但不具最小方差1线性性2无偏性3方差式1不具有最小方差,式2具有最小方差3、异方差性的后果P209-P210经典模型假定下,OLS估计量是最优线性无偏估计量BLUE;去掉同方差假定:1OLS估计量仍是线性的;2OLS估计量仍是无偏的;3OLS估计量不再具有最小方差性,即不再是最优有效估计量;4OLS估计量的方差通常是有偏的;5偏差的产生是由于,即不再是真实σ2的无偏估计量;6建立在t分布和F分布之上的置信区间和假设检验是不可靠的,如果沿用传统的检验方法,可能得出错误的结论;4、异方差的检验1图形检验P211-P212e2对一个或多个解释变量或Y的拟合值作图; 2帕克检验Park TestP212-P214假定误差方差与解释变量相关形式:步骤:①做OLS估计求平方,取对数②对ei③做辅助回归④检验零假设:B=023格莱泽检验Glejser TestP214假定误差方差与解释变量相关形式:步骤:①做OLS估计②对e求绝对值i③做辅助回归方程=0④检验零假设:B24怀特检验White TestP215-P216和交叉乘积呈线性关系假定误差方差与X、X2步骤:①OLS估计得残差②做辅助回归③检验统计量5、异方差的修正1加权最小二乘法WLSWeighted Least SquaresP217-P222①方差已知原模型:加权后的模型:误差项的方差为:1加权的权数:②方差未知成比例:i. 误差方差与Xi模型变换:ii. 误差方差与Xi2成比例:模型变换:2怀特异方差校正的标准误P222-P223①如果存在异方差,则对于通过OLS得到的估计量不能进行t检验和F检验;②怀特估计方法③大样本情形下回归标准差和回归系数的一致估计量,可以进行t检验和F检验;第十章自相关:如果误差项相关会有什么结果1、自相关的定义P233按时间或空间顺序排列的观察值之间存在的相关关系;2、自相关的性质P233-P2341若古典线性回归模型中误差项ui不存在自相关Covui,uj=Eui,uj=0,i≠j2若误差项之间存在着依赖关系—ui存在自相关Covui,uj=Eui,uj≠0,i≠j3、产生自相关的原因P235-P2361惯性2设定偏误①模型中遗漏了重要变量;②模型选择了错误的函数形式;i. 从不正确的模型中得到的残差会呈现自相关;ii. 检验是否由于模型设定错误而导致残差自相关的方法:3蛛网现象4数据的加工①在用到季度数据的时间序列回归中,这些数据通常来自于每月数据;这种数据加工方式减弱了每月数据的波动而引进数据的匀滑性;②用季度数据描绘的图形要比用月度数据看来匀滑得多;这种匀滑性本身可能使扰动项中出现自相关;③内插法或外推法:用这些方法加工得到的数据都会给数据带来原始数据没有的系统性,这种系统性可能会造成误差自相关;4、自相关的后果P236-P2371OLS估计得到的仍为线性、无偏估计;2OLS估计不再具有有效性;3OLS估计量的方差有偏:低估了估计量的标准差;4通常所用的t检验和F检验是不可靠的;5计算得到的误差方差是真实σ2的无偏估计量,并且很有可能低估了真实的σ2;6通常计算的R2不能测度真实的R27通常计算的预测方差和标准误也是无效的5、自相关的诊断1图形法—时序图P237-P239①误差u并不频繁地改变符号,而是几个正之后跟着几个负,几个负之后跟着t几个正,则呈正自相关;②扰动项的估计值呈循环型,而是相继若干个正的以后跟着几个负的,表明存在正自相关;③扰动项的估计值呈锯齿型一个正接一个负,随时间逐次改变符号,表明存在负自相关;2检验P239-P242①定义值d值近似1 =-1完全负相关d=42 =0无自相关d=23 =1完全正相关d=0②DW检验的判断准则6、自相关的修正ρ的估计主要方法1ρ=1:一阶差分方法P244假定误差项之间完全正相关 Y t = α+βX t +u tu t = u t-1+tY t - Y t-1= βX t -X t-1+t2从DW 统计量中估计ρP244-P245 3从OLS 残差e t 中估计Cochrane-OrcuttP245-P246①e t = e t-1+t②利用OLS 残差,得的估计量 ③迭代,得的收敛值。
计量经济学-1-绪论
数据类型
❖ 时间序列数据(time series data): 由不同时点或时期观测值所构成,其特点在于: 往往不能满足回归分析的基本假定。
❖ 混合横截面数据(pooled cross-sectional data): 不同年份的横截面数据混合,但不同年份的样本 点不同
❖ 时序横截面数据(panel data): 不同年份的横截面数据混合且每年样本点相同
统计图
1、散点图 2、折线图 3、条形图与直方图
1、散点图
经常用以观察两个变量之间的关系 利用散点图可以判断用以拟合的函数形式
Y
X
1、散点图
Y
X
Y a bln X
2、折线图
经常用以观察一个变量随时间发生变化的规律并进 行不同观察对象的比较
GDP指数(%) 118 116 114 112 110 108 106 104 102 100 98
1996 1555
1993
增加值用水系数 直接用水系数 完全用水系数 考虑占用的完全用水系数 对本地区的完全用水系数(考虑占用)
1500
1000 500 0
农业
662
561
543
241 62
一般工业
267 387 302 25 12
服务业
二、建立计量经济学模型的步骤和要点
理论模型的设计
样本数据的收集
1000.0
1500.0
2000.0
2500.0
3000.0
3500.0
250.0
750.0
1250.0
1750.0
2250.0
2750.0
3250.0
各省级固行定政资产区投投资 资数量的分布
计量经济学:第1章 总论
一、计量经济学的定义
称上强调它是一门计量经济活 动方法论的学科;后者试图通 过名称强调它是一门经济学科。
计量经济学是以经济理论为指导,以事 实为依据,以数学和统计推断为方法, 以电脑技术为工具,以建立经济计量模 型为手段,定量分析研究具有随机性特 征的经济变量关系的经济学科。
企业和政府都十分重视基于计量经济学关于经 济景气、循环周期的研究,以及政策模拟、预 测分析。于是计量经济学就应运而生。
近70年来,理论计量经济学取 得了长足的进步。
1.最初10年,主要研究微观经济问题 2.40-70年代,重点是研究宏观经济问
题 3.计量经济学之今日 4.计量经济学在西方国家经济学科中的
二、计量经济学的种类
广义上讲,计量经济学有两个主要的研究
内容:
一是如何运用、改进和发展数理统计方法,
使之成为适合测定随机性特征的经济关系的特
殊方法——计量经济学方法,这部分研究内容称
为理论计量经济学,也称经济计量方法。
二是在一定的经济理论指导下,以反映事
实的统计数据为依据,以经济计量方法研究经
济数学模型,探索实证经济规律,这一方面的
研究内容称为应用计量经济学。
三、经济计量模型是计量经济 学研究的核心
计量经济学方法及其应用,都是围绕建立、估 计、检验和运用经济计量模型这一核心进行的。
人们可以通过各种各样的模型来揭示、阐明自 然相象和社会经济现象的本质与发展规律。例 如,物理模型,几何模型,传统经济学的文字 模型等等。
模型是对现实抓住本质的抽象与简化,更深刻 地揭示出现实的本质与规律。
1.研究有关经济理论
2.确定变量和函数形式
1.研究有关经济理论
《计量经济学讲义》新
第一章绪论§计量经济学一、计量经济学的产生与发展计量经济学是经济学的一个分支,是以揭示经济活动中的客观存在的数量关系为容的分支学科。
其创立者R.弗里希将其定义为经济理论、统计学、数学三者的结合,但它又完全不同于这三个学科的每一个分支。
计量经济学(Econometrics)1926年由挪威经济学家弗里希(R.Frish)仿造生物计量学(Biometrics)一词提出的。
1930年12月弗里希、丁百根和费歇耳等经济学家在美国克利夫兰市成立经济计量学会。
1933年出版《计量经济学杂志》在发刊词中弗里希将计量经济学定义为:经济理论、数学、统计学的结合。
计量经济学的学术渊源和社会历史根源:17世纪英国经济学家威廉.配弟在《政治算术》一书中应用“数字、重量或尺度”来阐述经济现象19世纪法国经济学家古尔诺《财富理论的数学原理研究》中认为:某些经济畴、需求、价格、供给可以视为互为函数关系,从而有可能用一系列的函数方程表述市场中的关系,并且可以用数学语言系统地阐述某些经济规律(数理学派的奠基者)其后瑞士经济学家瓦尔拉斯创立了一般均衡理论,利用联立方程研究一般均衡的决定条件(洛桑学派的先驱)意大利经济学家帕累托发展了一般均衡理论。
用立体几何研究经济变量之间的关系。
1890年(剑桥学派的创始人)马歇尔的《经济学原理》的问世,使数学成为经济学研究不可缺少的描述与分析推理的工具为计量经济学奠定了基础计量经济学从二十世纪三十年代诞生起就显示了极强的生命力。
一方面出于对经济的干预政策的需要,许多国家都广泛采用经济计量理论和方法,进行经济预测,加强市场研究,探讨经济政策的效果。
另一方面随着科学技术的发展与进步,各门科学相互协作、相互渗透,计算机科学、数学、系统论、信息论、控制论等相继进入了经济研究领域。
特别是计算机技术的高速发展为计量经济学广泛应用铺平了道路。
计量经济学的发展过程是计量经济模型的建立、应用和发展的过程。
计量经济学 第一章
数据
§2 计量经济学的研究方法和步骤
计量经济模型
yi 0 1 xi ui
一、计量经济模型的制定 1. 模型的设定条件
2. 确定模型所包含的变量
3. 确定模型中变量关系的数学形式 4. 拟定模型中参数的符号、大小等。 二、样本数据的收集 (时间序列数据、横截面数据、面板数据)
三、计量经济模型参数的估计 (最小二乘法、加权最小二乘法、 广义最小二乘法、…) 四、计量经济模型的检验 1. 经济意义检验(参数的符号、大小、…) 2. 统计检验(估计量的统计特性,统计推断) 3. 计量经济检验(异方差、序列相关、多重共线性) 4. 预测检验 五、计量经济学的应用
服从正态分布。
i
E (u ) 0
i
,
2 u
i 1,2,, n
,
3、
4、
var(ui )
(常数)
i 1,2,, n
u ,u
i
相互独立或不相关, 当
j
i j
时;
即
5、
cov(u , u ) 0, i j; i, j 1,2,, n
i j
x
i
与
u
i
i
不相关; ,
即
cov( x , u ) 0
ZGDP 13.5 8.8 11.6 11.3 4.1 3.8 9.2 14.2 14.0 13.1 10.9 10.0 9.3
ZM1 5.8 20.1 16.2 22.5 6.3 20.2 24.2 35.9 21.6 26.2 16.8 18.9 16.5
年份 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
计量经济学第一章PPT课件
02 回归分析基础
回归分析的定义
回归分析
是一种统计学方法,用于研究变 量之间的关系,特别是当一个变 量受到其他变量的影响时。
线性回归
在回归分析中,当自变量和因变 量之间的关系为线性时,即可以 用一条直线来描述它们之间的关 系。
非线性回归
在回归分析中,当自变量和因变 量之间的关系为非线性时,即不 能用一条直线来描述它们之间的 关系。
最小二乘法
01
最小二乘法是一种数学优化技 术,用于找到最佳拟合数据点 的函数。
02
在回归分析中,最小二乘法的 目标是找到最佳拟合数据的直 线,使得实际观测值与预测值 之间的平方和最小。
03
最小二乘法通过求解线性方程 组来找到最佳拟合直线的参数 。
模型的检验与诊断
R方值
用于衡量模型拟合优度的统计量,其值越接近于1,说明模型拟合 效果越好。
计量经济学的研究范围涵盖了微观经济学、宏观 经济学、国际经济学、金融学等多个领域。
计量经济学的发展历程
19世纪末期
统计学和经济学的结合,产生了经济计量学。
20世纪30年代
经济大萧条,人们开始利用计量经济学方法 分析经济问题。
20世纪50年代
线性代数和计算机技术的发展,推动了计量 经济学的发展。
21世纪
模型的参数估计
总结词
参数估计是根据样本数据估计线性回归模型中未知参数的过 程。
详细描述
最小二乘法是最常用的参数估计方法,它通过最小化残差平 方和来估计参数。即,对于给定的样本数据,找到一组参数 值,使得实际观测值与模型预测值之间的残差平方和最小。
模型的假设检验
总结词
假设检验是用于评估线性回归模型是否满足某些假设的过程。
计量经济学(共11张PPT)
分析与模型应 用阶段
是否可用于决策? 应用
修改整理模型
结构分析
预测未来
模拟
检验发展理论
第五节 经济计量学和其它学科的关系
数理经济学是运用数学研究有关经济理论
数理统计学是运用数学研究统计问题 经济统计学是对经济现象的统计研究
经济计量学是经济学、统计学、数学三者结合在一起的交叉学科。
经济学
数理经济学
经济统计学
四、我国经济计量学的发展
70-80年代
80-90年代 1998年
开始介绍《经济计量学》的学科内 容和国外发展情况
1995年《经济计量学》的教学大纲 正式发表;全国许多高校相继开设 《经济计量学》课程。
将《经济计量学》列入经济类各专 业八门公共核心课程之一
五、经济计量学的内容体系
按照研究的方 法不同
《Econometrics》。
从30年代到今天,尤其是二次大战以后,计量经济学在西方各 国的影响迅速扩大。曾说:“二次世界大战以后的经济学是计量经 济学的时代”。1969年首届诺贝尔经济学奖授予弗里希和丁伯根。 自1996年设立诺贝尔经济学奖至1989年27为获奖者中有15位是计量 经济学家,其中10位是世界计量经济学会的会长。
(时间序列数据、截面数据)
二、参数估计
三、模型检验(拟合优度、t 检验、F 检验) 四、模型应用(预测、结构分析、 模拟)
第三节 经济计量学的特点
1.它是研究经济现象的,它不但给出质的解释,而且给出确切的量的 描述,从而使经济学成为一门精密的科学。 定性分析-定量分析(简单的数量对比-模型分析)
2.能综合考虑多种因素,通过描述客观经济现象中极为复杂的因果关系,对 影响某一经济现象的众多因素(哪些是主要、次要因素)给出一目了然的 回答。
计量经济学导论第四版第一章
第三篇 高深专题探讨
■ 第十三章 跨时横截面的混合:简单面板 数据方法
■ 第十四章 高深的面板数据方法
5 ■ 第十六章 联立方程模型
第一章:计量经济学的性质 与经济数据
什么是计量经济学 经验经济分析的步骤 经济数据的结构
计量经济分析中的因果关系和其他条件 不变的概念
6
什么是计量经济学
计量经济学的用处
■ 检验经济模型 ■ 解释经济人的行为 ■ 政策制定
非实验数据与实验数据
■ 非实验数据(nonexperimental data) ■ 实验数据(experimental data)
7
经验经济分析的步骤
经验分析(empirical analysis)
■ 定义:利用数据来检验某个理论或者估计某 种关系
12336
185808.6 184937.4 22420.0 87598.1 77230.8 10367.3 74919.3
14185
217522.7 216314.4 24040.0 103719.5 91310.9 12408.6 88554.9
16500
267763.7 265810.3 316228.8 314045.4 343464.7 340506.9
2012 邢恩泉
20
计量经济分析中的因果关系和 其他条件不变的概念
因果效应
■ 经济学家的目标就是要推定一个变量对另一 个变量具有因果关系
其他条件不变
■ 在因果关系中,其他条件不变是具有重要作 用的
21
5
12
5
1
0
9
3.6
12
26
1
0
10
18.18
《计量经济学》课件
序计 量 经 济 研 究 的 工 作 程
(三)参数估计
矩法 常用的参数估计方法极大似然法
最小二乘法
• 矩法——以样本矩代替总体矩建立方程, 求解参数的方法。
• 极大似然法——根据极大似然原理建立方 程,求解参数的方法。
• 最小二乘法——根据最小二乘原理建立方 程,求解参数的方法。
(四)模型的检验
前定变量外 滞生 后变 变量 量
滞后内生变量 滞后外生变量
前期的内生变量 前期的外生变量
• (4)控制变量
• 控制变量——人为设置的反映政策要求、决策 者意愿、经济系统的运行条件和运行状态等方 面的变量。
模型设计工作
经济变量的确定 模型方程的设定
• 计量经济模型——为了研究分析经济系统中的经 济变量之间的数量关系而采用的随机性 的数学方程。 y f (x1, x2 ,, xn ) u
• 结构分析包括:(1)利用模型分析和测度系统 中某一变量的(绝对和相对)变化对其他变量 的影响;(2)比较分析变量及参数变化对经济 系统平衡的影响;(3)分析与研究变量相互关 系的变化对经济系统平衡点位移的内在联系。
• 政策评价——利用计量经济模型和计算机技术, 模拟在不同政策(或决策)条件下,经济系统 运行的态势和结果,对政策(或决策)进行评 价和优选。
济 学 概
• 数理经济学为计量经济学提供经济模型; • 经济统计学为计量经济学提供经济数据;
述 • 数理统计学为计量经济学提供分析工具和
研究方法;
计量经济学与相关学科的关系图
经济学
数理经 济学
计量经 济学
经济统 计学
数学
数理统 计学
统计学
(四) 计量经济学的分类
计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、计量经济学的性质
若干代表性表述: ●“计量经济学是统计学、经济学和数学的结合。”
(弗瑞希) ●“计量经济学是用数学语言来表达经济理论,以便通过统计方法来论述这些理论的一门经济学
分支。” (美国现代经济词典)
●“计量经济学可定义为:根据理论和观导, 对实际经济现象进行的数量分析。” (萨谬尔逊等)
解释变量(自变量)—说明应变量变动主要原 因的变量(非主要原因归入随机误差项)
从变量的性质区分 内生变量—其数值由模型所决定的变量,是
模型求解的结果 外生变量—其数值由模型以外决定的变量
(相关概念:前定内生变量、前定变量) 注意: 外生变量数值的变化能够影响内生变量的变化,内生变量却不能反过来影响外生变量
对计量经济模型检验的方式
►经济意义检验 所估计的模型与经济理论是否相符
►统计推断检验 检验参数估计值是否抽样的偶然结果
►计量经济学检验 是否符合计量经济方法的基本假定
►预测检验 将模型预测的结果与经济运行的实际对比
四、模型应用
► 经济结构分析 分析变量之间的数量比例关系(如: 边际分析、弹性分析、乘数分析) 例:分析消费增加对GDP的拉动作用
1、计量经济学与经济学的关系 联系: ●计量经济学研究的主体—经济现象和经济关 系的数量规律 ●计量经济学必须以经济学提供的理论原则和经 济运行规律为依据 ●经济计量分析的结果:对经济理论确定的原则 加以验证、充实、完善
区别: ●经济理论重在定性分析,并不对经济关系提供数量上的具体度量 ●计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容
●《概率论与数理统计》基础 如随机变量、概率分布、期望、方差、协方差、点估计、区间估计、假设检验、方差分析、正态分布、 t 分布、F分布等概念和性质
●《线性代数》基础 矩阵及运算、线性方程组等
●《经济统计学》知识 经济数据的收集、处理和应用
教 材及参考书
李子奈.计量经济学(第2版).高教,2005. 潘文卿,李子奈.计量经济学习题集.高教,2005. 古扎拉蒂.计量经济学基础 (第四版).人大,2005. 高铁梅.计量经济分析方法与建模.清华,2006 伍德里奇.计量经济学导论(第三版),清华,2007 格林.计量经济分析(第五版).人大,2007 约翰斯顿.计量经济学方法(第四版).中国经济,2002 谢识予.高级计量经济学.复旦,2005
数据的要求: 真实性、完整性、可比性
四、计量经济模型的建立
经济模型是对实际经济现象或过程的一种数学模 拟,是对复杂经济现象的简化与抽象
特点:只能在一定假定前提下 忽略次要因素,突出主要因素
可用来建立计量经济模型的关系: 行为关系(如生产、投资、消费) 生产技术关系 (如投入产出关系) 制度关系(如税率) 定义关系
注意:计量经济研究的三个方面
理论:说明所研究对象经济行为的经济理论 ——计量经济研究的基础
数据:对所研究对象经济行为观测所得到的信息 ——计量经济研究的原料或依据
方法:模型的方法与估计、检验、分析的方法 ——计量经济研究的工具与手段
三者缺一不可
计量经济学研究的基本概述:
经济 理论
数量化
经济 模型
事实
反映为
统计 数据
数理 统计
补充改造 准备阶段
经济计量 模型
加工的 数据
根据数据 运用方法 对模型估 计、检验
经济计 量方法 计量过程 运用阶段
结构分析 经济预测 政策评价
计量经济学的学科类型
●理论计量经济学 研究经济计量的理论和方法
●应用计量经济学 应用计量经济方法研究某些领域的具体经济问题
三、计量经济学与其他学科的关系
第一章结束了!
谢谢
2020/11/26
构成计量经济模型的基本要素
经济变量 不同时间、不同空间的表现不同,取值不同,是可以观测的因素。是模型的研究对象或影响 因素。
经济参数 表现经济变量相互依存程度的、决定经济结构和特征的、相对稳定的因素,通常不能直接观 测。
设定计量经济模型的基本要求
●要有科学的理论依据 ●选择适当的数学形式
类型: 单一方程、联立方程 线性形式、非线性形式 ● 模型要兼顾真实性和实用性 两种不好的模型: 太过复杂—真实但不实用 过分简单—不真实 ● 包含随机误差项 经济模型与计量经济模型的重要区别 ● 方程中的变量要具有可观测性
► 经济预测 由预先测定的解释变量去预测应变量在样本以外的数据 (动态预测、空间预测)
例:预测股票市场价格的走势
►政策评价 用模型对政策方案作模拟测算,对政策方案作评价把计量经济模型作为经济活动的实验室) 例:分析道路收费政策对汽车市场的影响
计量经济学的研究过程
修订模型 不符合
结构分析
设定计量模型
各种表述的共性: 计量经济学与经济理论、统计学、数学都有关系
一般性定义
计量经济学是以经济理论和经济数据为依据,运用数学和统计学的方法,通过建立计量模型来 研究经济数量关系和规律的一门经济学科。
研究的主体(出发点、归宿、核心): 经济现象及数量变化规律
研究的工具(手段): 模型、数学和统计方法
必须明确: 方法手段要服从研究对象的本质特征(与数学不同), 方法是为经济问题服务
2、计量经济学与经济统计学的关系
联系: ●经济统计侧重于对社会经济现象的描述性计量 ●经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据 ●经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数
据
区别: ●经济统计学主要用统计指标和统计分析方法对经济现象进行描述和计量 ●计量经济学主要利用数理统计方法对经济变量间的关系进行计量
第二节 计量经济学的研究方法
需要做的工作 选择变量和数学关系式 —— 模型设定 确定变量间的数量关系 —— 估计参数 检验所得结论的可靠性 —— 模型检验 作经济分析和经济预测 —— 模型应用
一、模型设定
经济模型及设定 模型:对经济现象或过程的一种数学模拟 设定(Specification):
▲模型只能抓主要因素和主要特征,不得不舍弃某些因素 ▲对所研究经济变量之间的关系选用适当的数学关系式近似地、简化地表达出来 ▲模型的设计和形式的取舍具有一定主观性
计量经济学产生的意义 从定性研究到定量分析的发展,是经济学更精密、更科学的表现,是现代经济学的重要特征
计量经济学的发展
●计算机应用 ●模型的变量和方程
由少到多,又趋向较少,多个模型归并为整体模型 ●应用领域的拓展
宏观、微观经济领域应用 ,由预测为主转向更多地对经济理论假设和政策假设的检验
●理论与方法的新突破 除了经典线性计量经济学模型以外,出现非线性模型、合理预期模型、非参数、半参数模型、 动态模型、时间序列模型、协整理论、Panel Data数据模型、贝叶斯方法、小样本理论等新 的研究领域
计量经济学 第一章 导 论
第一章 导 论
对《计量经济学》的概略认识 ●什么是计量经济学 ●计量经济学的研究方法 ●计量经济学中最基本的概念 ——— 变量、参数、数据与模型
第一节 什么是计量经济学
本节基本内容: ●计量经济学的产生与发展 ●计量经济学的性质 ●计量经济学与其他学科的关系
一、计量经济学的产生与发展
参数估计 模型检验 是否符合标准
符合 模型应用
经济预测
经济理论 实际经济活动 搜集统计数据
政策评价
第三节 变量、参数、数据与模型
本节基本内容: ●计量经济模型中的变量 ●参数的估计方法 ●计量经济学中应用的数据 ●计量经济模型的建立
一、计量经济模型中的变量
从变量的因果关系区分: 被解释变量(应变量)——要分析研究的变量
参数估计的常用方法 普通最小二乘、广义最小二乘、极大似然估计、二段最小二乘、三段最小二乘、其它估计方法
三、模型检验
为什么要检验? ● 建模的理论依据可能不充分 ● 统计数据或其他信息可能不可靠 ● 样本可能较小,结论只是抽样的某种偶然
结果 ● 可能违反计量经济方法的某些基本假定 对模型检验什么?
对模型和所估计的参数加以评判,判定在理 论上是否有意义,在统计上是否可靠
教 材及参考书
伍德里奇.横截面与面板数据的经济计量分析.人大,2007 应用计量经济学:时间序列分析(第二版).高教,2006 布鲁克斯.金融计量经济学导论.西南财大,2005. 古亚拉提.经济计量学精要(原书第三版).机械工业,2006. 庞皓.计量经济学.科学出版社,2007 邹平. 金融计量学.上海财经大学出版社,2005.
计量经济模型的数学形式: 线性模型:如 非线性模型:如
Y i12 X 2 i3 X 3 i u i Y i12lnX 2 i3 X 3 2 i u i
本章学习要点
1. 计量经济学的性质 2. 计量经济学与相关学科的联系与区别 3. 学习计量经济学的必要性 4. 计量经济学研究的基本思路和步骤 5. 模型的设定、参数估计、模型检验的要求 6. 模型中的变量及其类型 7. 计量经济研究中数据的类型 8. 参数估计的方法类型 9. 建立计量经济模型的依据
3、计量经济学与数理统计学的关系
联系: ●数理统计学是计量经济学的方法论基础 区别: ●数理统计学是在标准假定条件下抽象地研究一 般的随机变量的统计规律性; ●计量经济学是从经济模型出发,研究模型参数 的估计和推断,参数有特定的经济意义,标准 假定条件经常不能满足,需要建立一些专门的 经济计量方法
二、估计参数
为什么要对参数作估计? 一般来说参数是未知的,又是不可直接观测的。由于随机项的存在,参数也不能通过变量值去精 确计算。只能通过变量样本观测值选择适当方法去估计。 (如何通过变量样本观测值去科学地估计总体模型的参数是计量经济学的核心内容)
两个概念 参数的估计值:所估计参数的具体数值 参数的估计式:估计参数数值的公式