立体几何第三讲 空间几何体得最值问题学生

合集下载

2020高考数学(文理通用)大二轮课件:专题五立体几何第3讲

2020高考数学(文理通用)大二轮课件:专题五立体几何第3讲
以 D 为坐标原点,D→A的方向为 x 轴正方向,|D→A|为单位长度,建立如图所示 的空间直角坐标系 D-xyz,
则 C(0,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),C→B=(1,0,0),C→E=(1,-1,1), CC1=(0,0,2).
设平面 EBC 的法向量为 n=(x1,y1,z1), 则CC→→BE··nn==00,,即xx11=-0y1,+z1=0,
第一部分
专题强化突破
专题五 立体几何
第三讲 用空间向量的方法解立体几何问题(理)
高考考点
考点解读
利用空间向量证明平 1.建立空间直角坐标系,利用向量的知识证明平行与垂直
行与垂直关系
2.考查向量的数量积与向量垂直的关系以及建立空间直
角坐标系的方法
利用空间向量求线线 以具体几何体为命题背景,直接求角或已知角求相关量
• (3)线面平行 • l∥α⇔a⊥μ⇔a·μ=_0____a⇔1a3+__b1_b_3+_c_1c_3=__0___________.
• (4)线面垂直 • l⊥α⇔a∥μ⇔a=
a1=ka3,b1=kb3,c=kc3
• k(5μ)⇔面_面_平__行__________a_3_=_ka_4_,_b_3=_k_b_4,__c3_=_k_c4.
4.(2019·北京卷,16)如图,在四棱锥 P-ABCD 中, PA⊥平面 ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2, BC=3.E 为 PD 的中点,点 F 在 PC 上,且PPCF=13.
(1)求证:CD⊥平面 PAD. (2)求二面角 F-AE-P 的余弦值. (3)设点 G 在 PB 上,且PPGB=23.判断直线 AG 是否在平面 AEF 内,说明理由.

高数140招之71-立体几何中的最值问题的解题策略

高数140招之71-立体几何中的最值问题的解题策略

一、与线段长有关的最值问题【典例1】在直三棱柱ABC ­A 1B 1C 1中,底面为直角三角形, ∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,如图所示,则CP +PA 1的最小值为________.[解析]PA 1在平面A 1BC 1内,PC 在平面BCC 1内,将其铺平后转化为平面上的问题.铺平平面A 1BC 1,平面BCC 1,如图所示,计算得A 1B =AB 1=210,BC 1=2.又A 1C 1=6,故△A 1BC 1是∠A 1C 1B =90°的直角三角形. 设P 是BC 1上任一点,CP +PA 1≥A 1C ,即当A 1,P ,C 三点共线时,CP +PA 1有最小值. 在△A 1C 1C 中,由余弦定理得A 1C =62+ 2 2-2×6×2×cos 135°=52, 故(CP +PA 1)min =52.【变式练习】1.如图所示,在棱长为1的正方体ABCD ­A 1B 1C 1D 1的面对角线A 1B 上存在一点P ,使得AP +D 1P 取得最小值,则此最小值为()A .2B.6+22C .2+2 D.2+2解析:选D将△A 1AB 与△A 1BD 1放在同一平面内,如图所示.连接AD 1,则AD 1为AP +D 1P 的最小值.因为AA 1=A 1D 1=1,∠AA 1D 1=90°+45°=135°,所以由余弦定理得AD 1=AA 21+A 1D 21-2×AA 1×A 1D 1×cos 135°=2+2. 2.某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为________.解析:由三视图知三棱锥如图所示,底面ABC 是直角三角形,AB ⊥BC , PA ⊥平面ABC ,BC =27, PA 2+y 2=102,(27)2+PA 2=x 2, 因此xy =x 102-[x 2- 27 2] =x128-x 2≤x 2+ 128-x 22=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64.3.已知直三棱柱ABC ­A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为()A .22B .3C .23D .4解析:选C 如图,不妨设N 在B 处,设AM =h ,CQ =m ,则MB 2=h 2+4,BQ 2=m 2+4,MQ 2=(h -m )2+4,由MB 2=BQ 2+MQ 2,得m 2-hm +2=0.Δ=h 2-8≥0⇒h 2≥8,该直角三角形斜边MB =4+h 2≥23,故该直角三角形斜边长的最小值为23.故选C.二、与面积有关的最值问题【典例2】已知正四面体S ­ABC 的棱长为1,如果一个高为36的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形的面积的最大值为________.解析:如图,易知正四面体S ­ABC 的内切球的球心O 必在高线SH 上,延长AH 交BC 于点D ,则D 为BC 的中点,连接SD ,设内切球切SD 于点E ,连接AO .因为H 是正三角形ABC 的中心,所以AH ∶DH =2∶1.易得Rt △OAH ∽Rt △DSH ,所以OA OH =DSDH=3,可得OA =3OH =SO ,因此SH =4OH ,可得内切球的半径R =OH =14SH .因为正四面体S ­ABC 的棱长为1,所以在Rt △DSH中,DS =SH 2+DH 2= 4R 2+(13×32)2=32,解得R 2=124.要满足一个高为36的长方体能在该正四面体内任意转动,则长方体的体对角线长不超过正四面体内切球的直径,设该长方体的长和宽分别为x ,y ,其长和宽形成的长方形的面积为S ,则4R 2≥(36)2+x 2+y 2,所以x 2+y 2≤112,所以S =xy ≤x 2+y 22≤124,当且仅当x =y =612时等号成立,即该长方体的长和宽形成的长方形的面积的最大值为124. 【变式练习】1.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A .334B .233C .324D .32【答案】A【解析】如图所示,在正方体ABCD ­A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD ­A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin 60°=334.故选A.2.已知球O 是正三棱锥A ­BCD 的外接球,BC =3,AB =23,点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是________.【答案】2π【解析】如图,设△BCD 的中心为点O 1,球O 的半径为R ,则A ,O ,O 1三点共线.连接O 1D ,O 1E ,OD ,OE ,则O 1D =3,AO 1=AD 2-O 1D 2=3.在Rt △OO 1D 中,R 2=3+(3-R )2,即R =2,所以OO 1=1.在△O 1DE 中,DE =23BD =2,∠O 1DE =30°,所以由余弦定理得O 1E =3+4-2×3×2× cos 30°=1.所以OE =2.过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,此时截面圆的半径为22-(2)2=2,所以截面圆的面积为2π.3.在长方体ABCD ­A 1B 1C 1D 1中,AB =AD =4,AA 1=2.过点A 1作平面α与AB ,AD 分别交于M ,N 两点,若AA 1与平面α所成的角为45°,则截面A 1MN 面积的最小值是________.【答案】2π【解析】如图,过点A 作AE ⊥MN ,连接A 1E ,因为A 1A ⊥平面ABCD ,所以A 1A ⊥MN ,所以MN ⊥平面A 1AE ,所以A 1E ⊥MN ,平面A 1AE ⊥平面A 1MN ,所以∠AA 1E 为AA 1与平面A 1MN 所成的角,所以∠AA 1E =45°,在Rt △A 1AE 中,因为AA 1=2,所以AE =2,A 1E =22,在Rt △MAN 中,由射影定理得ME ·EN =AE 2=4,由基本不等式得MN =ME +EN ≥2ME ·EN =4,当且仅当ME =EN ,即E 为MN 的中点时等号成立,所以截面A 1MN 面积的最小值为12×4×22=42.三、与体积有关的最值问题【典例3】(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.【答案】415【解析】如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,设OG =x ,则BC =23x ,DG =5-x , S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2× 5-x 2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈(0,52),则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2; 令f ′(x )<0,得2<x <52,则当x ∈(0,52)时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.【变式练习】1.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为()A .123B .183C .243D .543【答案】B【解析】由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC的外接圆的半径为r =33AB =23.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D ­ABC 高的最大值为2+4=6,所以三棱锥D ­ABC 体积的最大值为13×93×6=183.2.已知圆锥的侧面展开图是半径为3的扇形,则该圆锥体积的最大值为________. 【答案】23π【解析】由题意得圆锥的母线长为3,设圆锥的底面半径为r ,高为h ,则h =9-r 2,所以圆锥的体积V =13πr 2h =13πr 29-r 2=13π9r 4-r 6.设f (r )=9r 4-r 6(r >0),则f ′(r )=36r 3-6r 5,令f ′(r )=36r 3-6r 5=6r 3(6-r 2)=0,得r =6,所以当0<r <6时,f ′(r )>0,f (r )单调递增;当r >6时,f ′(r )<0,f (r )单调递减,所以f (r )max =f (6)=108,所以V max =13π×108=23π.3.已知A ,B ,C 是球O 的球面上三点,且AB =AC =3,BC =33,D 为该球面上的动点,球心O 到平面ABC 的距离为球半径的一半,则三棱锥D ­ABC 体积的最大值为________.【答案】274【解析】如图,在△ABC 中, ∵AB =AC =3,BC =33, ∴由余弦定理可得cos A =32+32- 33 22×3×3=-12,∴sin A =32.设△ABC 外接圆O ′的半径为r ,则3332=2r ,得r =3.设球的半径为R ,连接OO ′,BO ′,OB , 则R 2=(R 2)2+32,解得R =23.由图可知,当点D 到平面ABC 的距离为32R 时,三棱锥D ­ABC 的体积最大,∵S △ABC =12×3×3×32=934,∴三棱锥D ­ABC 体积的最大值为13×934×33=274.4.如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 的中点,将△ADE 沿AE 折到△APE 的位置.(1)证明:AE ⊥PB ;(2)当四棱锥P ­ABCE 的体积最大时,求二面角A ­PE ­C 的余弦值.解:(1)证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O , ∵AB ∥CE ,AB =CE ,∴四边形ABCE 为平行四边形, ∴AE =BC =AD =DE ,∴△ADE 为等边三角形, ∴在等腰梯形ABCD 中,∠C =∠ADE =π3,BD ⊥BC ,∴BD ⊥AE .如图,翻折后可得OP ⊥AE ,OB ⊥AE ,又OP ⊂平面POB ,OB ⊂平面POB ,OP ∩OB =O ,∴AE ⊥平面POB ,∵PB ⊂平面POB ,∴AE ⊥PB .(2)当四棱锥P ­ABCE 的体积最大时,平面PAE ⊥平面ABCE .又平面PAE ∩平面ABCE =AE ,PO ⊂平面PAE ,PO ⊥AE ,∴OP ⊥平面ABCE .以O 为坐标原点,OE所在的直线为x 轴,OB 所在的直线为y 轴,OP 所在的直线为z轴,建立空间直角坐标系,由题意得,P(0,0,32),E(12,0,0),C(1,32,0),∴PE―→=(12,0,-32),EC―→=(12,32,0),设平面PCE的法向量为n1=(x,y,z),则{·n1=0,·n1=0,)即{12x-32z=0,12x+32y=0,)设x=3,则y=-1,z=1,∴n1=(3,-1,1)为平面PCE的一个法向量,易知平面PAE的一个法向量为n2=(0,1,0),cos n1,n2 =n1·n2|n1||n2|=-11×5=-55.由图知所求二面角A­PE­C为钝角,∴二面角A­PE­C的余弦值为-5 5 .[解题技法]立体几何中的最值问题的解题策略空间几何体中的某些对象,如点、线、面,在约束条件下运动,带动相关的线段长度、体积等发生变化,进而就有了面积与体积的最值问题.定性分析:在空间几何体的变化过程中,通过观察运动点的位置变化,确定其相关量的变化规律,进而发现相关面积或体积的变化规律,求得其最大值或最小值.定量分析:将所求问题转化为某一个相关量的问题,即转化为关于其中一个量的函数,求其最大值或最小值的问题.根据具体情况,有函数法、不等式法、三角函数法等多种方法可供选择.。

2020年高考数学专题复习第2课时空间距离与立体几何中的最值(范围)问题(选用)

2020年高考数学专题复习第2课时空间距离与立体几何中的最值(范围)问题(选用)

空间距离与立体几何中的最值(范围)问题(选用)空间中的距离问题如图,平面PAD ⊥平面ABCD ,四边形ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:平面EFG ⊥平面PAB ; (2)求点A 到平面EFG 的距离.【解】 如图,建立空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:因为EF →=(0,1,0),AP →=(0,0,2),AB →=(2,0,0),所以EF →·AP →=0×0+1×0+0×2=0,EF →·AB →=0×2+1×0+0×0=0,所以EF ⊥AP ,EF ⊥AB .又因为AP ,AB ⊂平面PAB ,且PA ∩AB =A ,所以EF ⊥平面PAB . 又EF ⊂平面EFG ,所以平面EFG ⊥平面PAB . (2)设平面EFG 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EF →=(x ,y ,z )·(0,1,0)=0,n ·EG →=(x ,y ,z )·(1,2,-1)=0,所以⎩⎪⎨⎪⎧y =0,x +2y -z =0.取n =(1,0,1),又AE →=(0,0,1),所以点A 到平面EFG 的距离d =|AE →·n ||n |=12=22.(1)空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. ①点点距:点与点的距离,以这两点为起点和终点的向量的模;②点线距:点M 到直线a 的距离,若直线的方向向量为a ,直线上任一点为N ,则点M 到直线a 的距离为d =|MN →|·sin〈MN →,a 〉;③线线距:两平行线间的距离转化为点线距离,两异面直线间的距离转化为点面距离或者直接求公垂线段的长度;④点面距:点M 到平面α的距离,若平面α的法向量为n ,平面α内任一点为N ,则点M 到平面α的距离d =|MN →||cos 〈MN →,n 〉|=|MN →·n ||n |.(2)利用空间向量求空间距离问题,首先应明确所求距离的特征,恰当选用距离公式求解.1.如图,P ­ABCD 是正四棱锥,ABCD ­A 1B 1C 1D 1是正方体,其中AB =2,PA =6,则B 1到平面PAD 的距离为________.解析:以A 1B 1所在直线为x 轴,A 1D 1所在直线为y 轴,A 1A 所在直线为z 轴建立空间直角坐标系,则AD →=(0,2,0),AP →=(1,1,2),设平面PAD 的法向量是m =(x ,y ,z ), 所以由⎩⎪⎨⎪⎧m ·AD →=0,m ·AP →=0,可得⎩⎪⎨⎪⎧2y =0,x +y +2z =0.取z =1,得m =(-2,0,1),因为B 1A →=(-2,0,2),所以B 1到平面PAD 的距离d =|B 1A →·m ||m |=65 5.答案:6552.如图,在长方体ABCD ­A 1B 1C 1D 1中,AB =4,BC =3,CC 1=2.(1)求证:平面A 1BC 1∥平面ACD 1; (2)求平面A 1BC 1与平面ACD 1的距离.解:(1)证明:因为AA 1綊CC 1,所以四边形ACC 1A 1为平行四边形,所以AC ∥A 1C 1. 又AC ⊄平面A 1BC 1,A 1C 1⊂平面A 1BC 1, 所以AC ∥平面A 1BC 1.同理可证CD 1∥平面A 1BC 1. 又AC ∩CD 1=C ,AC ⊂平面ACD 1,CD 1⊂平面ACD 1, 所以平面A 1BC 1∥平面ACD 1.(2)以B 1为原点,分别以B 1A 1→,B 1C 1→,B 1B →的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,则A 1(4,0,0),A (4,0,2),D 1(4,3,0),C (0,3,2),A 1A →=(0,0,2),AC →=(-4,3,0),AD 1→=(0,3,-2),设n =(x ,y ,z )为平面ACD 1的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-4x +3y =0,3y -2z =0,取n =(3,4,6),所以所求距离d =|A 1A →|×|cos 〈n ,A 1A →〉|=|n ·A 1A →||n |=1232+42+62=126161,故平面A 1BC 1与平面ACD 1的距离为126161.立体几何中的最值(范围)问题(1)(2019·宁波十校联考)如图,平面PAB ⊥平面α,AB ⊂α,且△PAB 为正三角形,点D 是平面α内的动点,ABCD 是菱形,点O 为AB 中点,AC 与OD 交于点Q ,l ⊂α,且l ⊥AB ,则PQ 与l 所成角的正切值的最小值为( )A . -3+372B . 3+372C .7D .3(2)(2019·温州高考模拟)如图,在三棱锥A ­BCD 中,平面ABC ⊥平面BCD ,△BAC 与BCD 均为等腰直角三角形,且∠BAC =∠BCD =90°,BC =2,点P 是线段AB 上的动点,若线段CD 上存在点Q ,使得直线PQ 与AC 成30°的角,则线段PA 长的取值范围是( )A .⎝ ⎛⎭⎪⎫0,22 B .⎣⎢⎡⎦⎥⎤0,63 C .⎝⎛⎭⎪⎫22,2 D .⎝⎛⎭⎪⎫63,2 【解析】 (1)如图,不妨以CD 在AB 前侧为例.以O 为原点,分别以OB 、OP 所在直线为y 、z 轴建立空间直角坐标系,设AB =2,∠OAD =θ(0<θ<π),则P (0,0,3),D (2sin θ,-1+2cos θ,0),所以Q ⎝ ⎛⎭⎪⎫23sin θ,23cos θ-13,0,所以QP →=⎝ ⎛⎭⎪⎫-23sin θ,13-23cos θ,3,设α内与AB 垂直的向量n =(1,0,0),PQ 与l 所成角为φ,则cos φ=⎪⎪⎪⎪⎪⎪⎪⎪QP →·n |QP →||n |=⎪⎪⎪⎪⎪⎪⎪⎪-23sin θ329-49cos θ=sin θ8-cos θ=1-cos 2θ8-cos θ.令t =cos θ(-1<t <1),则s =1-t 28-t ,s ′=t 2-16t +1(8-t )2,令s ′=0,得t =8-37,所以当t =8-37时,s 有最大值为16-67.则cos φ有最大值为16-67,此时sin φ取最小值为67-15. 所以正切值的最小值为67-1516-67=3+372.故选B.(2) 以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,过C 作平面BCD 的垂线为z 轴,建立空间直角坐标系,则A (0,1,1),B (0,2,0),C (0,0,0),设Q (q ,0,0),AP →=λAB →=(0,λ,-λ)(0≤λ≤1),则PQ →=CQ →-CP →=CQ →-(CA →+AP →)=(q ,0,0)-(0,1,1)-(0,λ,-λ)=(q ,-1-λ,λ-1),因为直线PQ 与AC 成30°的角, 所以cos 30°=|CA →·PQ →||CA →|·|PQ →|=22·q 2+(1+λ)2+(λ-1)2=2q 2+2λ2+2=32, 所以q 2+2λ2+2=83,所以q 2=23-2λ2∈[0,4],所以⎩⎪⎨⎪⎧23-2λ2≥023-2λ2≤4,解得0≤λ≤33,所以|AP →|=2λ∈⎣⎢⎡⎦⎥⎤0,63,所以线段PA 长的取值范围是⎣⎢⎡⎦⎥⎤0,63. 故选B.【答案】 (1)B (2)B(1)求解立体几何中的最值问题,需要先确定最值的主体,确定题目中描述的相关变量,然后根据所求,确定是利用几何方法求解,还是转化为代数(特别是函数)问题求解.利用几何方法求解时,往往利用几何体的结构特征将问题转化为平面几何中的问题进行求解,如求几何体表面距离的问题.利用代数法求解时,要合理选择参数,利用几何体中的相关运算构造目标函数,再根据条件确定参数的取值范围,从而确定目标函数的值域,即可利用函数最值的求解方法求得结果.(2)用向量法解决立体几何中的最值问题,不仅简捷,更减少了思维量.用变量表示动点的坐标,然后依题意用向量法求其有关几何量,构建有关函数,从而用代数方法即可求其最值.1.(2019·浙江省五校联考模拟)如图,棱长为4的正方体ABCD ­A 1B 1C 1D 1,点A 在平面α内,平面ABCD 与平面α所成的二面角为30°,则顶点C 1到平面α的距离的最大值是( )A .2(2+2)B .2(3+2)C .2(3+1)D .2(2+1)解析:选B.如图所示,作C 1O ⊥α,交ABCD 于O ,交α于E ,由题得O 在AC 上,则C 1E 为所求,∠OAE =30°, 由题意,设CO =x ,则AO =42-x ,C 1O =16+x 2,OE =12OA =22-12x ,所以C 1E =16+x 2+22-12x ,令y =16+x 2+22-12x ,则y ′=x16+x 2-12=0,可得x =43,所以x =43时,顶点C 1到平面α的距离的最大值是2(3+2).2.(2019·浙江省名校协作体高三联考)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠ABC =60°,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,CF =1.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为θ(θ≤90°),试求cos θ的取值范围.解:(1)证明:在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =1,∠ABC =60°,所以AB =2,所以AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3, 所以AB 2=AC 2+BC 2,所以BC ⊥AC ,因为平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ⊂平面ABCD ,所以BC ⊥平面ACFE .(2)如图所示,由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的空间直角坐标系,令FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),所以AB →=(-3,1,0),BM →=(λ,-1,1),设n 1=(x ,y ,z )为平面MAB 的一个法向量,由⎩⎪⎨⎪⎧n 1·AB →=0n 1·BM →=0,得⎩⎨⎧-3x +y =0λx -y +z =0,取x =1,则n 1=(1,3,3-λ),因为n 2=(1,0,0)是平面FCB 的一个法向量, 所以cos θ=|n 1·n 2||n 1|·|n 2|=11+3+(3-λ)2×1 =1(λ-3)2+4,因为0≤λ≤3,所以当λ=0时,cos θ有最小值77, 当λ=3时,cos θ有最大值12,所以cos θ∈⎣⎢⎡⎦⎥⎤77,12.空间中的距离(1)点与点之间的距离⎩⎪⎨⎪⎧利用空间两点间的距离公式利用空间向量的模长利用辅助线转化为平面距离(2)点线距离⎩⎪⎨⎪⎧转化为两点间距离求解利用向量法求解(3)点面之间距离⎩⎪⎨⎪⎧等积法求解向量法求解立体几何中的最值(范围)问题 (1)几何体的面积、体积的最值(范围) (2)空间角(或空间角三角函数值)的最值(范围) (3)空间距离的最值(范围) 求解方法⎩⎪⎨⎪⎧①构造函数法②转化为平面问题③引入参数利用向量法[基础达标]1.(2019·宁波市镇海中学高考模拟)在直三棱柱A 1B 1C 1­ABC 中,∠BAC =π2,AB =AC=AA 1=1,已知G 和E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若GD ⊥EF ,则线段DF 的长度的取值范围为( )A .⎣⎢⎡⎭⎪⎫55,1 B .⎣⎢⎡⎦⎥⎤55,1 C .⎝⎛⎭⎪⎫255,1 D .⎣⎢⎡⎭⎪⎫255,1 解析:选A.建立如图所示的空间直角坐标系,则A (0,0,0),E ⎝ ⎛⎭⎪⎫0,1,12,G ⎝ ⎛⎭⎪⎫12,0,1, F (x ,0,0),D (0,y ,0),由于GD ⊥EF ,所以x +2y -1=0,DF =x 2+y 2=5⎝ ⎛⎭⎪⎫y -252+15, 由x =1-2y >0,得y <12,所以当y =25时,线段DF 长度的最小值是15,当y =0时,线段DF 长度的最大值是1,又不包括端点,故y =0不能取,故选A. 2. (2019·杭州市学军中学高考数学模拟)如图,三棱锥P ­ABC 中,已知PA ⊥平面ABC ,AD ⊥BC 于D ,BC =CD =AD =1,设PD =x ,∠BPC =θ,记函数f (x )=tan θ,则下列表述正确的是( )A .f (x )是关于x 的增函数B .f (x )是关于x 的减函数C .f (x )关于x 先递增后递减D .f (x )关于x 先递减后递增解析:选C.因为PA ⊥平面ABC ,AD ⊥BC 于D ,BC =CD =AD =1,PD =x ,∠BPC =θ, 所以可求得AC =2,AB =5,PA =x 2-1,PC =x 2+1,BP =x 2+4, 所以在△PBC 中,由余弦定理知cos θ=PB 2+PC 2-BC 22BP ·PC =2x 2+42x 2+1x 2+4. 所以tan 2θ=1cos 2θ-1=(x 2+1)(x 2+4)(x 2+2)2-1=x2(x 2+2)2.所以tan θ=x x 2+2=1x +2x ≤12x ·2x=24(当且仅当x =2时取等号),所以f (x )关于x 先递增后递减.3.(2019·义乌市高三月考)如图,边长为2的正△ABC 的顶点A 在平面γ上,B ,C 在平面γ的同侧,M 为BC 的中点,若△ABC 在平面γ上的射影是以A 为直角顶点的△AB 1C 1,则M 到平面γ的距离的取值范围是________.解析:设∠BAB 1=α,∠CAC 1=β,则AB 1=2cos α,AC 1=2cos β,BB 1=2sin α,CC 1=2sin β,则点M 到平面γ的距离d =sin α+sin β,又|AM |=3,则|B 1C 1|=23-d 2,即cos 2α+cos 2β=3-(sin 2α+2sin αsin β+sin 2β).也即sin αsin β=12,所以d=sin α+sin β=sin α+12sin α≥2,因为sin α<1,sin β<1,所以12sin α<1,所以12<sin α<1,所以当sin α=12或1时,d =32,则2≤d <32.答案:⎣⎢⎡⎭⎪⎫2,324. (2019·杭州市学军中学高考数学模拟)如图,在二面角A ­CD ­B 中,BC ⊥CD ,BC =CD =2,点A 在直线AD 上运动,满足AD ⊥CD ,AB =3.现将平面ADC 沿着CD 进行翻折,在翻折的过程中,线段AD 长的取值范围是________.解析:由题意得AD →⊥DC →,DC →⊥CB →,设平面ADC 沿着CD 进行翻折的过程中,二面角A ­CD ­B 的夹角为θ,则〈DA →,CB →〉=θ,因为AB →=AD →+DC →+CB →,所以平方得AB →2=AD →2+DC →2+CB →2+2AD →·DC →+2CB →·AD →+2DC →·CB →, 设AD =x ,因为BC =CD =2,AB =3, 所以9=x 2+4+4-4x cos θ,即x 2-4x cos θ-1=0,即cos θ=x 2-14x.因为-1≤cos θ≤1,所以-1≤x 2-14x≤1,即⎩⎪⎨⎪⎧x 2-1≤4x x 2-1≥-4x ,即⎩⎪⎨⎪⎧x 2-4x -1≤0x 2+4x -1≥0,则⎩⎨⎧2-5≤x ≤2+5,x ≥-2+5或x ≤-2- 5.因为x >0,所以5-2≤x ≤5+2, 即AD 的取值范围是[5-2,5+2]. 答案:[5-2,5+2]5.(2019·金丽衢十二校联考)如图,在三棱锥D ­ABC 中,已知AB =2,AC →·BD →=-3,设AD =a ,BC =b ,CD =c ,则c 2ab +1的最小值为________.解析:设AD →=a ,CB →=b ,DC →=c ,因为AB =2,所以|a +b +c |2=4⇒a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=4,又因为AC →·BD →=-3,所以(a +c )·(-b -c )=-3⇒a ·b +b ·c +c ·a +c 2=3,所以a 2+b 2+c 2+2(3-c 2)=4⇒c 2=a 2+b 2+2,所以a 2+b 2+2ab +1≥2ab +2ab +1=2,当且仅当a=b 时,等号成立,即c 2ab +1的最小值是2.答案:26.(2019·温州十五校联合体期末考试)在正四面体P ­ABC 中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN →=λAB →,设异面直线NM 与AC 所成角为α,当13≤λ≤23时,则cos α的取值范围是________.解析:设点P 到平面ABC 的射影为点O ,以AO 所在直线为y 轴,OP 所在直线为z 轴,过点O 作BC 的平行线为x 轴,建立空间直角坐标系,如图.设正四面体的棱长为43,则有A (0,-4,0),B (23,2,0),C (-23,2,0),P (0,0,42),M (-3,1,22).由AN →=λAB →,得N (23λ,6λ-4,0).从而有NM →=(-3-23λ,5-6λ,22),AC →=(-23,6,0). 所以cos α=|NM →·AC →||NM →||AC →|=3-2λ24λ2-4λ+3,设3-2λ=t ,则53≤t ≤73.则cos α=12t 2t 2-4t +6=126⎝ ⎛⎭⎪⎫1t 2-4·1t+1,因为13<37≤1t ≤35,所以51938≤cos α≤71938.答案:⎣⎢⎡⎦⎥⎤51938,719387.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′­PBCD 的体积最大时,求PA 的长; (2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x ,所以V A ′­PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:(2) 证明:取A ′B 的中点F ,连接EF ,FP .由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形,所以ED ∥FP . 因为△A ′PB 为等腰直角三角形,所以A ′B ⊥PF . 所以A ′B ⊥DE .8. (2019·杭州市第一次高考科目数学质量检测)如图,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥平面ABC ,平面A 1BC ⊥平面A 1ABB 1.(1)求证:AB ⊥BC ;(2)设直线AC 与平面A 1BC 所成的角为θ,二面角A 1­BC ­A 的大小为φ,试比较θ和φ的大小关系,并证明你的结论.解:(1)证明:过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D , 因为平面A 1BC ⊥平面A 1ABB 1, 平面A 1BC ∩平面A 1ABB 1=A 1B , 所以AD ⊥平面A 1BC , 又因为BC ⊂平面A 1BC , 所以AD ⊥BC .因为AA 1⊥平面ABC ,所以AA 1⊥BC . 又因为AA 1∩AD =A , 所以BC ⊥侧面A 1ABB 1, 又因为AB ⊂平面A 1ABB 1, 故AB ⊥BC .(2)连接CD ,由(1)知∠ACD 是直线AC 与平面A 1BC 所成的角. 又∠ABA 1是二面角A 1­BC ­A 的平面角. 则∠ACD =θ,∠ABA 1=φ.在Rt △ADC 中,sin θ=AD AC,在Rt △ADB 中, sin φ=AD AB.由AB <AC ,得sin θ<sin φ,又0<θ,φ<π2,所以θ<φ. [能力提升]1.(2019·温州市高考数学模拟)如图,在矩形ABCD 中,AB AD=λ(λ>1),将其沿AC 翻折,使点D 到达点E 的位置,且二面角C ­AB ­E 为直二面角.(1)求证:平面ACE ⊥平面BCE ;(2)设F 是BE 的中点,二面角E ­AC ­F 的平面角的大小为θ,当λ∈[2,3]时,求cosθ的取值范围.解:(1)证明:因为二面角C ­AB ­E 为直二面角,AB ⊥BC, 所以BC ⊥平面ABE ,所以BC ⊥AE .因为AE ⊥CE ,BC ∩CE =C ,所以AE ⊥平面BCE . 因为AE ⊂平面ACE ,所以平面ACE ⊥平面BCE .(2)如图,以E 为坐标原点,以AD 长为一个单位长度,建立如图所示的空间直角坐标系,则AB =λ,A (0,1,0),B (λ2-1,0,0),C (λ2-1,0,1),E (0,0,0),F ⎝ ⎛⎭⎪⎫λ2-12,0,0,则EA →=(0,1,0),EC →=(λ2-1,0,1), 设平面EAC 的法向量为m =(x ,y ,z ),则⎩⎨⎧y =0λ2-1·x +z =0,取x =1,则m =(1,0,-λ2-1). 同理得平面FAC 的一个法向量为n =(2,λ2-1,-λ2-1).所以cos θ=m ·n |m |·|n |=λ2+1λ·2(λ2+1)=22·1+1λ2.因为λ∈[2,3], 所以cos θ∈⎣⎢⎡⎦⎥⎤53,104.2.如图,在四棱锥P ­ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2, PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 解:以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A ­xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1), 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ), 又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5, 所以BQ =25BP =255.。

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题在高中数学的学习中,立体几何一直是一个重点和难点,而其中的最值问题更是让许多同学感到头疼。

这类问题往往需要我们综合运用空间想象力、几何知识以及数学方法来求解。

接下来,让我们一起深入探讨立体几何中的最值问题。

一、常见类型及解法1、距离最值问题(1)两点间距离最值在立体几何中,求两点间距离的最值,常常需要我们将空间中的两点转化到同一平面内。

例如,在长方体中,求异面直线上两点的最短距离,就需要通过平移将其转化为共面直线,然后利用平面几何中的知识求解。

(2)点到直线距离最值求点到直线的距离最值时,通常要找到点在直线上的投影。

如果直线是某一平面的斜线,那么可以通过作垂线找到投影,再利用勾股定理计算距离。

(3)点到平面距离最值对于点到平面的距离最值,一般可以利用空间向量法。

先求出平面的法向量,然后通过向量的数量积来计算点到平面的距离。

2、面积最值问题(1)三角形面积最值在立体几何中,涉及三角形面积的最值问题,可能需要考虑三角形的边长关系或者角度大小。

例如,已知三角形的两边及其夹角,当夹角为直角时,面积最大。

(2)四边形面积最值对于四边形,如平行四边形,其面积可以表示为底边乘以高。

当底边长度固定时,高取得最大值时面积最大;或者当四边形的对角线相互垂直时,面积等于对角线乘积的一半。

3、体积最值问题(1)柱体体积最值对于柱体,如圆柱、棱柱,其体积等于底面积乘以高。

当底面积不变时,高最大则体积最大;反之,高最小时体积最小。

(2)锥体体积最值锥体体积为三分之一底面积乘以高。

在求解锥体体积最值时,需要关注底面积和高的变化。

二、例题分析例 1:在棱长为 2 的正方体 ABCD A1B1C1D1 中,E、F 分别是棱AB、BC 的中点,求点 A1 到直线 EF 的距离。

解:连接 A1C1、C1F、EF,因为 A1C1 平行于 EF,所以点 A1 到直线 EF 的距离等于点 A1 到直线 C1F 的距离。

第三讲-立体几何解答题

第三讲-立体几何解答题

第三讲:立体几何解答题一、用几何法和向量法解下列各题例1、如图,在长方体1111ABCD A B C D -中,,E P 分别是11,BC A D 的 中点,,M N 分别是1,AE CD 的中点,1,2AD AA a AB a === (Ⅰ)求证://MN 面11ADD A ; (Ⅱ)求二面角P AE D --的大小。

(Ⅲ)求三棱锥P DEN -的体积。

变式1、如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (Ⅰ)求证:平面PAC ⊥平面ABC ;(Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积.变式2、如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,090,BAD FAB BC∠=∠=//=12AD ,BE //=12AF (Ⅰ)证明:,,,C D F E 四点共面;(Ⅱ)设AB BC BE ==,求二面角A ED B --的大小;变式3、如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ︒==∠=(I )求证:EF BCE ⊥平面;(II )设线段CD 的中点为P ,在直线AE 上是否存在一点M ,使得PM BCE 平面?若存在,请指出点M 的位置,并证明你的结论;若不存在,请说明理由;(III )求二面角F BD A --的大小。

变式4、已知正方体ABCD -A'B'C'D'的棱长为1,点M 是棱AA'的中点,点O 是对角线BD'的中点.(Ⅰ)求证:OM 为异面直线AA'和BD'的公垂线; (Ⅱ)求二面角M -BC'-B'的大小; (Ⅲ)求三棱锥M -OBC 的体积.二、平面图形折叠成立体图形例2、如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD,如图2. (I)求证:A 1C ⊥平面BCDE ;(II)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(III)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由∙D 'ABC D M OA 'B 'C '∙变式1、如图,在直角梯形ABCD 中,∠B =90°,DC ∥AB ,BC =CD =12AB =2,G 为线段AB 的中点,将△ADG 沿GD 折起,使平面ADG ⊥平面BCDG ,得到几何体A -BCDG.(1)若E ,F 分别为线段AC ,AD 的中点,求证:EF ∥平面ABG ; (2)求证:AG ⊥平面BCDG ; (3)求三菱锥C -ABD 的体积.变式2、如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,M 是BD 的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求出该几何体的体积;(2)若N 是BC 的中点,求证:AN ∥平面CME ; (3)求证:平面BDE ⊥平面BCD.第三讲:立体几何习题课—解答题(答案)例1、解法一:(Ⅰ)证明:取CD 的中点K ,连结,MK NK ∵,,M N K 分别为1,,AK CD CD 的中点∵1//,//MK AD NK DD∴//MK 面11ADD A ,//NK 面11ADD A∴面//MNK 面11ADD A ∴//MN 面11ADD A (Ⅱ)设F 为AD 的中点∵P 为11A D 的中点 ∴1//PF D D ∴PF ⊥面ABCD作FH AE ⊥,交AE 于H ,连结PH ,则由三垂线定理得AE PH ⊥ 从而PHF ∠为二面角P AE D --的平面角。

立体几何的最值问题

立体几何的最值问题

立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。

在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。

本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。

解决位置关系问题需要运用空间想象和逻辑推理。

在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。

2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。

在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。

3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。

计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。

4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。

解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。

5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。

解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。

6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。

解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。

7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。

解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。

初中几何最值问题类型

初中几何最值问题类型

初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。

求抛物线的最高点或最低点,即顶点的坐标。

2.极值问题:
求函数图像与坐标轴的交点。

求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。

3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。

4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。

5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。

这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。

对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。


过多做练习和思考,培养几何思维和解决问题的能力。

第三讲:立体几何 长方体、正方体、圆柱体、圆锥体、组合体

第三讲:立体几何     长方体、正方体、圆柱体、圆锥体、组合体

第三讲立体图形1、由27个棱长为1的小正方体组成一个棱长为3的大正方体,若自上而下去掉中间的3个小正方体,如图2所示,则剩下的几何体的表面积是多少?2、(第三届走进美妙的数学花园)小明在桌面上摆了一些大小一样的正方体木块,摆完后从正面看如下图,从侧面看如右下图,那么他最多用了块木块,最少用了块木块。

3、把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米。

这根木料原来的体积是立方厘米。

(北京市第15届“迎春杯”小学数学竞赛决赛试题填空题第6题)4、有n个同样大小的正方体,将它们摞成一个长方体,这个长方体的底面就是原正方体的底面。

如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n= 。

(北京市第20届“迎春杯”数学科普活动日队际交流试题第2题)5、如图,这是一个用若干块体积相同的小正方体粘成的模型。

把这个模型的表面(包括底面)都涂成红色,那么,把这个模型拆开以后,有三面涂上红色的小正方体比有二面涂上红色的小正方体多块。

(北京市第14届“迎春杯”小学数学竞赛决赛试题填空题第二第2题)6、一个棱长为12的正方体是由1728个木制的棱长是1的小正方体堆垒而成的。

那么,你从一点最多能看到棱长是1的小正方体个。

(2006年“数学解题能力展示”读者评选活动复试中年级组第5题)(A)144 (B)288 (C)276 (D)3977、(小数报03届)右图不必剪开,就能做成一个正方体,这个正方体有三组相对的面,它们分别是和____,____和____,____和____。

8、(小数报03届)一个长6分米、宽4分米、高2分米的木箱,用三根铁丝捆起来(如下图),打结处要用1分米铁丝。

这三根铁丝总长至少为____分米。

9、(小数报04届)图1是下面__的表面展开图。

①甲正方体;②乙正方体;③丙正方体;④甲正方体或丙正方体10、(小数报06届)一块空地上堆放了216块砖(如图3),这个砖堆有两面靠墙。

立体几何第三讲 空间几何体得最值问题

立体几何第三讲  空间几何体得最值问题

分清定量与变量,然后根据变量的取值情况,利用函数法或平面几何的相关结论判断相应的
最值.如该题中确定三棱锥底面的面积最值是关键.
【玩转跟踪】在棱长为 1 的正方体 ABCD A1B1C1D1 中,点 P1, P2 分别是线段 AB 、BD1(不
包括端点)上的动点,且线段 P1P2 平行于 平面 A1 ADD1 ,则四面体 P1P2 AB 的体积的最大值
锥 P-AEF 的底面积和高,高为定值时,底面积最大,则体积最大.
【解析】因为 PA 平面 ABC, BC 平面 ABC,所以 PABC 又因为 BCAC, PA AC A ,所以 BC 平面 PAC,又 AF 平面 PAC,所以 BCAF , 又 AFPC, PC BC C ,所以 AF 平面 PBC,即 AFEF 。EF 是 AE 在平面 PBC 上的 射影,因为 AEPB ,所以 EFPB ,即 PE 平面 AEF。在三棱锥 P AEF 中, AP AB 2, AEPB ,
5
.
5
又 P 在 BD 上运动,且当 P 运动到点 O 时,PQ 最小,等于 OQ 的长为 2 5 ,也就是异面直 5
线 BD 和 SC 的公垂线段的长.故选 B. 2.几何体表面上的最短距离问题
【例 2】正三棱柱 ABC—A1B1C1 中,各棱长均为 2,M 为 AA1 中点,N 为 BC 的中点,则 在棱柱的表面上从点 M 到点 N 的最短距离是多少?并求之.
又∵ 0<α+β<π,∴(α+β)max=π-arctan 2 ,(α+β)min=π-arctan2 2 .
【迁移运用】
1.【西藏日喀则一中高三 10 月检测】已知正三C 的距离为1,点 是线段 的中点,过点 作球 的截面,则截面面

2020年高考数学三轮专项提升08立体几何中的计算(学生版)江苏

2020年高考数学三轮专项提升08立体几何中的计算(学生版)江苏

2020年⾼考数学三轮专项提升08⽴体⼏何中的计算(学⽣版)江苏专题08 ⽴体⼏何中的计算1、【2019年江苏数】.如图,长⽅体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、【2018年⾼考江苏数】.如图所⽰,正⽅体的棱长为2,以其所有⾯的中⼼为顶点的多⾯体的体积为________.3、【2019年⾼考全国Ⅰ卷⽂数】已知∠ACB=90°,P 为平⾯ABC 外⼀点,PC =2,点P 到∠ACB 两边AC ,BC那么P 到平⾯ABC 的距离为___________.4、【2019年⾼考全国Ⅱ卷⽂数】中国有悠久的⾦⽯⽂化,印信是⾦⽯⽂化的代表之⼀.印信的形状多为长⽅体、正⽅体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多⾯体”(图1).半正多⾯体是由两种或两种以上的正多边形围成的多⾯体.半正多⾯体体现了数学的对称美.图2是⼀个棱数为48的半正多⾯体,它的所有顶点都在同⼀个正⽅体的表⾯上,且此正⽅体的棱长为1.则该半正多⾯体共有________个⾯,其棱长为_________.(本题第⼀空2分,第⼆空3分.)5、【2019年⾼考全国Ⅲ卷⽂数】学⽣到⼯⼚劳动实践,利⽤3D 打印技术制作模型.如图,该模型为长⽅体1111ABCD A B C D -挖去四棱锥O ?EFGH 后所得的⼏何体,其中O 为长⽅体的中⼼,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所⽤原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.6、【2019年⾼考北京卷⽂数】已知l ,m 是平⾯α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的⼀个论断作为结论,写出⼀个正确的命题:__________.7、【2019年⾼考天津卷⽂数】的正⽅形,若圆柱的⼀个底⾯的圆周经过四棱锥四条侧棱的中点,另⼀个底⾯的圆⼼为四棱锥底⾯的中⼼,则该圆柱的体积为__________.8、【2018年⾼考全国II 卷⽂数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底⾯所成⾓为30?,若SAB △的⾯积为8,则该圆锥的体积为__________.⼀、柱、锥、台和球的侧⾯积和体积注意:(1)的处理.(2)圆柱、圆锥、圆台的侧⾯是曲⾯,计算侧⾯积时需要将这个曲⾯展为平⾯图形计算,⽽表⾯积是侧⾯积与底⾯圆的⾯积之和.⼆、在求解⼀些不规则的⼏何体的体积以及两个⼏何体的体积之⽐时,常常需要⽤到分割法.在求⼀个⼏何体被分成两部分的体积之⽐时,若有⼀部分为不规则⼏何体,则可⽤整个⼏何体的体积减去规则⼏何体的体积求出其体积.(1)解决空间⼏何体表⾯上的最值问题的根本思路是“展开”,即将空间⼏何体的“⾯”展开后铺在⼀个平⾯上,将问题转化为平⾯上的最值问题.(2)如果已知的空间⼏何体是多⾯体,则根据问题的具体情况可以将这个多⾯体沿多⾯体中某条棱或者两个⾯的交线展开,把不在⼀个平⾯上的问题转化到⼀个平⾯上.如果是圆柱、圆锥则可沿母线展开,把曲⾯上的问题转化为平⾯上的问题.三、⽅法与技巧(1)棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到⼀个三⾓形中进⾏解决.旋转体要抓住“旋转”特点,弄清底⾯、侧⾯及展开图形状.(2)要注意将空间问题转化为平⾯问题.(3)求⼏何体的体积,要注意分割与补形.将不规则的⼏何体通过分割或补形将其转化为规则的⼏何体求解.(4)⼀些⼏何体表⾯上的最短距离问题,常常利⽤⼏何体的展开图解决.四、失误与防范(1)⼏何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.(2)与球有关的组合体问题,⼀种是内切,⼀种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截⾯图,如球内切于正⽅体,切点为正⽅体各个⾯的中⼼,正⽅体的棱长等于球的直径;球外接于正⽅体,正⽅体的顶点均在球⾯上,正⽅体的体对⾓线长等于球的直径.题型⼀多⾯体的表⾯积与体积求多⾯体的表⾯积与体积常⽤⽅法:1、公式法:可以运⽤规则的⼏何体;2、割补法:把不规则的图形分割成规则的图形,或者把⼏何体补成熟悉的⼏何体。

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。

2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理

2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理

§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。

专题4.4 立体几何中最值问题(解析版)

专题4.4 立体几何中最值问题(解析版)

一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一距离最值问题【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为()A.B.1 C.D.2【答案】B【解析】以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z∈[0,4],F(x,0,0),x∈[0,4],则|AF|=x.=(4,4,4﹣z),=(x,0,﹣z).因为C1E⊥EF,所以,即:z2+4x﹣4z=0,x=z﹣.当z=2时,x取得最大值为1.|AF|的最大值为1.故选:B.【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D.【举一反三】1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为A.B.C.D.【答案】A【解析】解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;则,,底面CDEB,结合图形中的数据,求得,在中,由勾股定理得,同理求得,.故选:A .2、【河南省顶级名校2019届高三第四次联合测评】在侧棱长为的正三棱锥中,侧棱OA ,OB ,OC 两两垂直,现有一小球P 在该几何体内,则小球P 最大的半径为 A . B . C .D .【答案】B 【解析】当小球与三个侧面,,及底面都相切时,小球的体积最大此时小球的半径最大,即该小球为正三棱锥的内切球设其半径为由题可知因此本题正确选项:3、如右图所示,在棱长为2的正方体1111ABCD A B C D 中, E 为棱1CC 的中点,点,P Q 分别为面1111A B C D和线段1B C 上的动点,则PEQ ∆周长的最小值为_______.【解析】将面1111A B C D 与面11BB C C 折成一个平面,设E 关于11B C 的对称点为M ,E 关于1B C 对称点为N,则PEQ ∆周长的最小值为MN ==类型二 面积的最值问题【例2】【河南省郑州市2019年高三第二次质量检测】在长方体中,,,分别是棱的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为( )A .B .C .D .【答案】C 【解析】补全截面EFG 为截面EFGHQR 如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小,∴三角形面积的最小值为,故选:C.【指点迷津】截面问题,往往涉及线面平行,面面平行定义的应用等,考查空间想象能力、逻辑思维能力及计算求解能力.解题的关键是注意明确截面形状,确定几何量.本题由直线与平面没有公共点可知线面平行,补全所给截面后,易得两个平行截面,从而确定点P所在线段,得解.【举一反三】1、【湖南省衡阳市2019届高三二模】如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为()A.B.C.D.【答案】B【解析】如图,,,分别为,,的中点,作面,作面,连,,易知点即为四面体的外接球心,,,.设,,则,,,.【处理一】消元化为二次函数..【处理二】柯西不等式..所以.2、如图,在正四棱柱1111D C B A ABCD -中,2,11==AA AB ,点P 是平面1111D C B A 内的一个动点,则三棱锥ABC P -的正视图与俯视图的面积之比的最大值为( )A .1B .2C .21D .41 【答案】BABC P -的正视图与俯视图的面积之比的最大值为2;故选B .3、【福建省2019届高三模拟】若某几何体的三视图如图所示,则该几何体的所有侧面和底面中,面积的最大值为( )A .2B .C .3D .【答案】C【解析】由三视图可得,该几何体的直观图如图所示,其中,为的中点,平面,,.所以,,.又因为,,所以,故,所以.故选C.类型三体积的最值问题【例3】如图,已知平面平面,,、是直线上的两点,、是平面内的两点,且,,,,,是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.【答案】A【指点迷津】本题主要考查面面垂直的性质,棱锥的体积公式以及求最值问题. 求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图像法,本题首先根据线面关系将体积最值转化为函数求最值问题,然后应用方法①解答的. 【举一反三】1、已知AD 与BC 是四面体ABCD 中相互垂直的棱,若6AD BC ==,且60ABD ACD ∠=∠=,则四面体ABCD 的体积的最大值是A. B. C. 18 D. 36 【答案】A2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A. B.16 C.48 D.144 【答案】C 【解析】,,DA DA βααβ⊂⊥∴⊥面.,,DA CB αα⊥⊥PAD ∴∆和PBC ∆均为直角三角形.,APD BPC PAD ∠=∠∴∆∽PBC ∆.4,8,2AD BC PB PA ==∴=.学科&网过P 作PM AB ⊥,垂足为M .则PM β⊥.令AM t =,()t R ∈.则2222PA AM PB BM -=-,即()222246PA t PA t -=--,2124,PA t PM ∴=-∴=底面四边形ABCD 为直角梯形面积为()1486362S =+⨯=.学科&网136483P ABCD V -∴=⨯=.故C 正确.3.【河南省八市重点高中联盟“领军考试”2019届高三第三次测评】已知一个高为l 的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,内有 一个体积为的球,则的最大值为( ) A . B .C .D .【答案】A 【解析】依题意,当球与三棱锥的四个面都相切时,球的体积最大, 该三棱锥侧面的斜高为,,,所以三棱锥的表面积为,设三棱锥的内切球半径为, 则三棱锥的体积,所以,所以,所以,故选A.类型四 角的最值问题【例4】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则θcos 的最大值为.【答案】25【解析】建立坐标系如图所示.设1AB =,则11(1,,0),(,0,0)22AF E =.设(0,,1)(01)M y y ≤≤,则1(,,1)2EM y =-,由于异面直线所成角的范围为(0,]2π,所以cos θ==.2281145y y +=-+,令81,19y t t +=≤≤,则281161814552y y t t+=≥++-,当1t =时取等号.所以2cos 5θ==≤=,当0y =时,取得最大值.C【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.当点M 在点P 处时,EM 与AF 所成角为直角,此时余弦值为0(最小),当点M 向左移动时,.EM 与AF 所成角逐渐变小,点M 到达点Q 时,角最小,余弦值最大. 【举一反三】1、矩形ABCD 中,,,将△ABC 与△ADC 沿AC 所在的直线进行随意翻折,在翻折过程中直线AD 与直线BC 成的角范围(包含初始状态)为( )A.B.C.D.【答案】C2、在正方体1111D C B A ABCD -中,O 是BD 中点,点P 在线段11D B 上,直线OP 与平面BD A 1所成的角为α,则αsin 的取值范围是( ) A .]33,32[B .]21,31[C .]33,43[D .]31,41[ 【答案】A3.【云南省昆明市云南师范大学附属中学2019届高三上学期第四次月考】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:可能与平面平行;与BC所成的最大角为;与PQ一定垂直;与所成的最大角的正切值为;.其中正确的有______写出所有正确命题的序号【答案】【解析】解:由在棱长为1的正方体中点P为AD的中点,点Q为上的动点,知:在中,当Q为的中点时,,由线面平行的判定定理可得PQ与平面平行,故正确;在中,当Q为的中点时,,,,可得,故错误;在中,由,可得平面,即有,故正确;在中,如图,点M为中点,PQ与所成的角即为PQ与所成的角,当Q与,或重合时,PQ与所成的角最大,其正切值为,故正确;在中,当Q 为的中点时,PQ 的长取得最小值,且长为,故正确.故答案为:.4、在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________.【答案】,3838⎡⎢⎣⎦ 【解析】设P 到平面ABC 的射影为点O ,取BC 中点D ,以O 为原点,在平面ABC 中,以过O 作DB 的平行线为x 轴,以OD 为y 轴,以OP 为z 轴,建立空间直角坐标系,如图,设正四面体P −ABC的棱长为则()()(((0,4,0,,,,A B C P M --,由AN AB λ=,得(),64,0N λ-,∴((),56,NM AC λ=--→-=-,∵异面直线NM 与AC 所成角为α, 1233λ≤≤,∴2NM AC cos NM AC α⋅==⋅,设32t λ-=,则5733t 剟∴222111124626()41t cos t t t tα==-+-⋅+,∵1313375t <剟cos α.∴cos α的取值范围是⎣⎦.三.强化训练一、选择题1、【甘肃省2019届高三第一次高考诊断】四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为()A.B.C.D.【答案】D【解析】设正方形的中心为,当在于球心的连线上时,四棱锥高最高,由于底面面积固定,则高最高时,四棱锥体积取得最大值.设高为,,球的半径为,故,解得.故四棱锥的体积的最大值为.故选D.2.【广东省东莞市2019届高三第二次调研】已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A.B.C.4 D.2【答案】A【解析】解:如图所示,由题意知,平面平面ABCD,设点P到AD的距离为x,当x最大时,四棱锥的高最大,因为,所以点P的轨迹为一个椭圆,由椭圆的性质得,当时,x取得最大值,即该四棱锥的高的最大值为.故选:A.3.【四川省教考联盟2019届高三第三次诊断】已知四棱锥的底面四边形的外接圆半径为3,且此外接圆圆心到点距离为2,则此四棱锥体积的最大值为()A.12 B.6 C.32 D.24【答案】A【解析】由锥体的体积公式v=,可知,当s和h都最大时,体积最大.由题得顶点P到底面ABCD的距离h≤2.当点P在底面上的射影恰好为圆心O时,即PO⊥底面ABCD时,PO最大=2,即,此时,即四边形ABCD为圆内接正方形时,四边形ABCD的面积最大,所以此时四边形ABCD的面积的最大值=,所以.故选:A4.【安徽省蚌埠市2019届高三第一次检查】某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,三棱锥表面上的点M在俯视图上的对应点为A,三棱锥表面上的点N在左视图上的对应点为B,则线段MN的长度的最大值为A .B .C .D .【答案】D 【解析】由三视图可知,该三棱锥的底面是直角三角形, 一条侧棱与底面垂直(平面),为几何体的直观图如图,在上,重合,当与重合时, 线段的长度的最大值为.故选D .5.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13 B. 4 C. 12 D. 23【答案】C 【解析】如图:在矩形中,过点作的垂线交于点,交于点设,6.【2019年4月2019届高三第二次全国大联考】已知正四面体的表面积为,点在内(不含边界). 若,且,则实数的取值范围为( ) A . B . C .D .【答案】A 【解析】 设正四面体的棱长为则,解得则正四面体的高为记点到平面、、的距离分别为则因为,所以,则故又,故即实数的取值范围为本题正确选项:二、填空题7.【山东省青岛市2019届高三3月一模】在四棱锥中,底面是边长为2的正方形,面,且,若在这个四棱锥内有一个球,则此球的最大表面积为__________.【答案】【解析】在这个四棱锥内有一个球,则此球的最大表面积时,对应的球应该是内切球,此时球的半径最大,设内切球的球心为O半径为R,连接球心和ABCD四个点,构成五个小棱锥,根据体积分割得到,五个小棱锥的体积之和即为大棱锥的体积,,根据AB垂直于AD,PD垂直于AB 可得到AB垂直于面PDA,故得到AB垂直于PA,同理得到BC垂直于PC,表面积为:,此时球的表面积为:.故答案为:.8.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知正四棱柱和半径为的半球O,底面ABCD在半球O底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.【答案】4【解析】设正四棱柱的高为h,底面棱长为a,则正四棱柱的底面外接圆直径为,所以,.由勾股定理得,即,得,其中,所以,正四棱柱的体积为,其中,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,则.因此,该正四棱柱的体积的最大值为4.9.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.10.【江西省上饶市2019届高三二模】一个棱长为的正方体形状的铁盒内放置一个正四面体,且能使该正四面体在铁盒内任意转动,则该正四面体的体积的最大值是_____.【答案】【解析】由题该正四面体在铁盒内任意转动,故其能在正方体的内切球内任意转动,内切球半径为6,设正四面体棱长为a, 将此正四面体镶嵌在棱长为x的正方体内,如图所示:则x=,外接球的球心和正方体体心O重合,∴外接球的球半径为:=6,a=4又正四面体的高为∴该正四面体的体积为故答案为11.【河北省衡水市第二中学2019届高三上期中】已知体积为的正四棱锥外接球的球心为,其中在四棱锥内部.设球的半径为,球心到底面的距离为.过的中点作球的截面,则所得截面圆面积的最小值是___________.【答案】【解析】如图取底面的中心为,连接平面,且球心在上,由条件知,,连接,,则,于是底面的边长为.又,故四棱锥的高是,所以,即,从而,,于是,过的中点的最小截面圆是以点为圆心的截面圆,该截面圆的半径是,故所求面积为.12.【江西省临川第一中学等九校2019届高三3月联考】如图所示,三棱锥的顶点,,,都在同一球面上,过球心且,是边长为2等边三角形,点、分别为线段,上的动点(不含端点),且,则三棱锥体积的最大值为__________.【答案】【解析】过球心,又是边长为的等边三角形,,,三角形是等腰直角三角形,,,又因为,在平面内,由线面垂直的判定定理可得平面,即平面,设,,则三棱锥体积,当且仅当,即时取等号,故答案为.13.【安徽省蚌埠市2019届高三下学期第二次检查】正三棱锥中,,点在棱上,且.正三棱锥的外接球为球,过点作球的截面,截球所得截面面积的最小值为__________.【答案】【解析】因为,所以,所以,同理,故可把正三棱锥补成正方体(如图所示),其外接球即为球,直径为正方体的体对角线,故,设的中点为,连接,则且,所以,当平面时,平面截球的截面面积最小,此时截面为圆面,其半径为,故截面的面积为.填.14.【江西师范大学附属中学2019高三上学期期末】若一个四棱锥的底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球的体积最小时,它的高为_________.【答案】【解析】设四棱锥底面边长为a,高为h,底面对角线交于O,由条件四棱锥P-ABCD为正四棱锥,其外接球的球心M在高PO上,设外接球半径为R,在直角三角形MAO中,,又该四棱锥的体积为9,所以所以,,,时,时,所以时R极小即R最小,此时体积最小.故答案为3.15.【江西省上饶市2019届高三二模】已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.【答案】【解析】因为平面与对角线垂直,所以平面与对角面平行,作出图象,为六边形,设则,所以,由对称性得平面过对角线中点时截面面积取最大值为,则的最大值为.16.【河南省洛阳市2019届高三第二次统考】正四面体中,是的中点,是棱上一动点,的最小值为,则该四面体内切球的体积为_____.【答案】【解析】如下图,正方体中作出一个正四面体将正三角形和正三角形沿边展开后使它们在同一平面内,如下图:要使得最小,则三点共线,即:,设正四面体的边长为,在三角形中,由余弦定理可得:,解得:,所以正方体的边长为2,正四面体的体积为:,设四正面体内切球的半径为,由等体积法可得:,整理得:,解得:,所以该四面体内切球的体积为.17.【2019届湘赣十四校高三联考第二次考试】如图,正三棱锥的高,底面边长为4,,分别在和上,且,当三棱锥体积最大时,三棱锥的内切球的半径为________.【答案】【解析】设,,当时,取得最大值,此时为中点,经过点,且,,所以可求,,因此易求,,,,又∵,∴.。

高中数学新课程立体几何教学中的问题及对策研究

高中数学新课程立体几何教学中的问题及对策研究

高中数学新课程立体几何教学中的问题及对策研究祝礼琴(贵州省遵义市第十三中学㊀563100)摘㊀要:本文先阐述了我国高中数学新课程立体几何教学的现状和存在的问题ꎬ接着从在教学过程中融入一些室外实践活动㊁结合学生生活经验来进行教学㊁积极使用多媒体等信息化教学技术㊁充分利用自制空间模型来发散学生思维四个方面ꎬ综合全面地探讨了高中数学新课程立体几何教学的改善对策.关键词:高中数学ꎻ新课程教学ꎻ立体几何ꎻ空间模型中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)12-0023-02㊀㊀立体几何的学习能够让学生直观认识各类数学问题ꎬ通过图形的视觉冲击来激发学生的好奇心和创造力.但就当前我国各个高中的实际情况来看ꎬ立体几何教学的最终效果还非常有限.特别是在新课程标准下ꎬ立体几何教学不仅要重视知识的教学ꎬ同时还要培养学生具有多个方面的素质.在这种情况下ꎬ就有必要对高中数学新课程例题集合教学进行全方位的探讨.㊀㊀一㊁高中数学新课程立体几何教学的基本现状高中数学新课程背景下ꎬ立体几何教学的主要内容就是培养学生的空间想象能力ꎬ并且引导他们认清点线面的关系ꎬ并对空间几何体有较为深入的认知ꎬ可以解决各类几何方面的问题.总体上来看ꎬ立体几何教学主要是现实生活环境中各类物体位置㊁形状㊁大小关系的研究.而学生在学习立体几何相关学科内容的时候ꎬ对于各类空间图形也会有相对深刻的认识ꎬ并能够使用数学语言来进行几何意义的表达.在新课程标准下ꎬ立体几何不仅关注学生对于各类知识点的掌握ꎬ同时还重视学生各类素质与能力的养成.㊀㊀二㊁高中数学新课程立体几何教学存在的问题目前高中数学新课程背景下ꎬ立体几何教学之所以存在较多的问题ꎬ其成因主要分为四个方面.第一ꎬ立体几何教学过于倾向理论内容ꎬ缺乏实践活动作为补充.这种情况就使得立体几何教学变得非常枯燥ꎬ最终也就很难产生较高的教学成效.第二ꎬ立体几何教学很少跟学生的生活经验结合在一起ꎬ使得整体教学变得比较抽象ꎬ很难培养学生的空间想象能力.第三ꎬ立体几何教学对于多媒体等信息化教学技术的应用不全面ꎬ无法通过多媒体来直观展示教学信息ꎬ也就很难提高最终的教学效果.第四ꎬ立体几何对于自制空间几何模型的使用不深入ꎬ很难培养学生的空间想象能力.㊀㊀三㊁高中数学新课程立体几何教学的改善对策1.在教学过程中融入一些室外实践活动立体几何本身就是现实生活中的一门学科ꎬ需要学生具有一定的实践能力才能够更好进行空间想象.具体来讲ꎬ学生必须要先了解立体几何中点线面之间的关系ꎬ以及几何形状形成的原理ꎬ才能够真正认识立体几何ꎬ同时对于他们的后续学习也有较为显著的帮助.在这种情况下ꎬ教师就可以考虑在立体几何教学过程中积极引入一些室外实践活动ꎬ通过这些活动让学生更好认识立体几何.比如教师在立体几何学科刚进入教学阶段的时候ꎬ就可以带领学生在校园环境中散步ꎬ并结合附近建筑和各类校园设备来提出一些立体几何的问题.这些问题应该为一些比较浅显的问题ꎬ同时能够调动学生的思维.教师在这个过程中可以尝试问一些圆桌为什么在远处看是椭圆形等问题ꎬ并引导学生进行创新思维ꎬ能够将立体几何的一些问题直观展示在学生面前ꎬ给他们后续学习立体几何打下一个坚实的基础.2.结合学生生活经验来进行教学纵观高中数学立体几何的整体学科内容ꎬ多数内容相对来说都比较枯燥.但如果教师能够在立体几何教学过程中灵活采取教学方法ꎬ就能够取得显著的效果.为了加强学生对于立体几何学科的认识ꎬ教师应该结合学生生活经验来进行教学ꎬ减少教学过程中的枯燥性.比如在人教版高一数学必修2第二章第一节«空间点㊁直线㊁平面之间的位置关系»教学过程中ꎬ教师在讲解三者之间关系的时候ꎬ还应该额外进行一些定理的教学ꎬ即过不同在一条直线的三点有且只有一个平面等各类定理.如果教师直接让学生硬记这个定理ꎬ那么学生就很难理解定理的含义ꎬ并且还容易记错.这个时候ꎬ教师就可以走到班级门口ꎬ并提问学生班级的门是怎么固定的.这个时候学生就会回答是由两个点固定起来的.而当门被锁住的时候ꎬ门所处的平面就被固定起来ꎬ这个时候固定门的点就多了一个门锁而变成了三点.通过学生身边接触的物体ꎬ学生对于这个定理就有了更好的认识.3.积极使用多媒体等信息化教学技术在当前信息化高速发展的时代背景下ꎬ教师如果能够灵活使用多媒体信息教学技术ꎬ可以显著降低教学过程的难度ꎬ同时也能够让学生直观理解和掌握各个教学内容ꎬ激发学生对于立体几何的兴趣.这也需要教师能够充分掌握多媒体技术ꎬ并且可以通过互联网等各类途径来制作多媒体素材ꎬ并结合学生的心理特征来调整素材ꎬ提高多媒体教学的有效性.比如在人教版高二数学选修几何证明选择第三讲«圆锥曲线性质的探讨»教学过程中ꎬ教师就可以考虑使用多媒体技术来展示平面与圆柱面和圆锥面的截线.通过多媒体的视频演示ꎬ学生就能够直观看出不同空间位置平面跟圆柱面和圆锥面的截线变化ꎬ不仅能够提高他们对于这部分知识的了解ꎬ同时也能够提高他们的空间想象能力.4.充分利用自制空间模型来发散学生思维学生在学习立体几何部分内容的时候ꎬ必须要有较好的空间想象能力和发散思维.而大部分学生在刚接触立体几何的时候ꎬ在这方面的能力都有所欠缺.因此教师可以考虑使用自制空间模型来强化学生的这些能力.比如在人教版高一数学必修2第一章«空间几何体»相关教学中ꎬ教师就可以展示课本中的几种空间几何体模型ꎬ帮助学生认识这些几何体.特别是在第二节的三视图和直观图教学中ꎬ教师也可以通过这些几何体让学生充分认识不同几何体的三视图ꎬ并初步掌握几何体三视图的画法.这样以后ꎬ学生就能够快速认识不同几何体ꎬ给他们的后续学习打下良好的基础.我国各个高中数学教师都应该明确新课程背景下立体几何教学产生的变化ꎬ并在教学过程中着重激发学生的兴趣ꎬ改变学生被动获取知识的情况.在具体教学过程中ꎬ教师也应该灵活转变教学开展方式ꎬ多引入一些实践活动ꎬ并借助于现实模型来进行各类教学.㊀㊀参考文献:[1]薛兴春.提高高中立体几何课堂教学效率策略浅析[J].中国校外教育ꎬ2018(20):141.[2]程天乐.关于学好高中数学立体几何知识的方法探讨[J].教育现代化ꎬ2018ꎬ5(02):172-173.[责任编辑:杨惠民]核心素养下高中数学教学沐椿昌(江苏省高邮市第二中学㊀225600)摘㊀要:生活中处处可以看到数学的使用ꎬ而且数学是所有科学技术研究过程中必不可少的一个重要的工具材料ꎬ它可以解决科学研究中遇到的所有问题ꎬ推动了当代科技文明的发展和创造.在时代快速发展和课程教育改革创新的背景下ꎬ数学核心素养逐渐成为了数学课程的标靶ꎬ高中时期的学生学习知识和思考问题能力快速提升的重要时间段ꎬ特别是抽象逻辑思维能力的提升对每一个高中生都极为重要ꎬ对学习生活上都有极大的帮助.为提高学生们综合素质能力的发展和有一个学习优秀稳固的根基ꎬ要加强学生数学核心素养的培养ꎬ这对他们一生的学习成长来说ꎬ都有着深远的影响.关键词:数学学科ꎻ核心素养ꎻ培养方法中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)12-0024-02㊀㊀数学的实用性是很强的ꎬ它对科技的发展和社会的进步都有着极大的帮助ꎬ可以说没有了数学ꎬ科学技术和社会就会缺少一个关键的核心力.数学不只是人们用来计算的一个工具ꎬ还可以用来表达内容和交流.㊀㊀一㊁数学的作用数学对各方面的发展都起着重要的作用ꎬ数学核心素养是人们日常生活中和工作里必不可少的最基本的素养.它引领着社会各方面的进步.促进学生综合能力的提升.数学学科核心素养生动地展现了教育里数学教学的整体目标ꎬ引领着学生向前发展.数学教学和教育的整体目标是为所有的学生制定的ꎬ努力跟随时代发展的脚步让每一个学生都可以发展提升自己.数学知识信息的传授有力地培养了学生们的数学学科核心素养ꎬ更好地达到了学生们的学习要求ꎬ注重培养和提高学生们的特性.教育能更好地培养提升人。

高中数学复习提升-高中数学专题——立体几何专题(学生版)

高中数学复习提升-高中数学专题——立体几何专题(学生版)

立体几何专题【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究.【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】题型1 空间几何体的三视图以及面积和体积计算一、看图选择正确的三视图1、(2010广东理数)6.如图1,△ABC为三角形,AA'//BB'//CC' ,CC'⊥平面ABC且3AA'=32BB'=CC'=AB,则多面体△ABC -A B C'''的正视图(也称主视图)是2、(2010北京理数)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为二、根据三视图求几何体的面积、体积1、(2010安徽理数)8、一个几何体的三视图如图,该几何体的表面积为A、280B、292C、360D、372A B C D2、(江苏省苏州市2009届高三教学调研测试第12题)已知一个正三棱锥P ABC -的主视图如图所示,若32AC BC ==, 6PC =_________.3、(2010全国卷1文数)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 2343 (C) 2383题型2 空间点、线、面位置关系的判断例1 (江苏苏州市2009届高三教学调研测试7)已知n m ,是两条不同的直线,βα,为两个不同的平面,有下列四个命题:①若βα⊥⊥n m ,,m n ⊥,则βα⊥;②若n m n m ⊥,//,//βα,则βα//; ③若n m n m ⊥⊥,//,βα,则βα//;④若βαβα//,//,n m ⊥,则n m ⊥.其中正确的命题是(填上所有正确命题的序号)_______________. 分析:根据空间线面位置关系的判定定理和性质定理逐个作出判断.例2 (浙江省2009年高考省教研室第一次抽样测试理科第5题)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题正确的是A .若,,//m n m n αβ⊥⊥,则//αβB .若//,//,//,m n αβαβ则//m nC .若,//,//m n αβαβ⊥,则m n ⊥D .若//,//,//,m n m n αβ则//αβ题型3 空间平行与垂直关系的证明、空间几何体的有关计算例1.(2009江苏泰州期末16)如图所示,在棱长为2的正方体 1111ABCD A B C D -中,E 、F 分别为1DD 、DB 的中点. (1)求证:EF //平面11ABC D ;(2)求证:1EF B C ⊥; (3)求三棱锥EFC B V -1的体积.例2.(江苏省苏州市2009届高三教学调研测试第17题) 在四棱锥P ABCD -中,90ABC ACD ∠=∠=,60BAC CAD ∠=∠=,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==.(1)求四棱锥P ABCD -的体积V ;(2)若F 为PC 的中点,求证PC ⊥平面AEF ; (3)求证CE ∥平面PAB .题型4 求空间的角的大小一、异面直线所成的角例1(2007年广东理数)如图6所示,等腰三角形△ABC 的底边AB=66CD=3,点E 是线段BD 上异于B 、D 的动点,点F 在BC 边上,且E F ⊥AB ,现沿EF 将△BEF 折起到△PEF 的位置,使P E ⊥AE ,记BE=x ,V (x )表示四棱锥P-ACEF 的体积。

备战2020高考数学之冲破压轴题-专题17 立体几何中的最值问题【学生版

备战2020高考数学之冲破压轴题-专题17 立体几何中的最值问题【学生版

第四章立体几何专题17 立体几何中的最值问题【压轴综述】在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.在涉及最值的问题中主要有三类,一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.从解答思路看,有几何法(利用几何特征)和代数法(应用函数思想、应用基本不等式等)两种,都需要我们正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换.要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,有关计算公式熟练掌握.一、涉及几何体切接问题最值计算求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;二.涉及角的计算最值问题1. 二面角的平面角及其求法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2.求异面直线所成角的步骤:一平移,将两条异面直线平移成相交直线.二定角,根据异面直线所成角的定义找出所成角.三求角,在三角形中用余弦定理或正弦定理或三角函数求角.四结论.3.线面角的计算:(1)利用几何法:原则上先利用图形“找线面角”或者遵循“一做----二证----三计算”. (2)利用向量法求线面角的方法(i分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(ii)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.下面通过例题说明应对这类问题的方法与技巧.【压轴典例】例1.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A B C .4 D 例2.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .例3.(2017·全国高考真题(理))a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)例4.(2017·全国高考真题(理))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.例5.(2016·浙江高考真题(理))如图,在ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .例6.(2019·安徽芜湖一中高三开学考试)在Rt AOB ∆中,6OAB π∠=,斜边4AB =.Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(1)求证:平面COD 平面AOB;(2)求直线CD与平面AOB所成角的正弦的最大值.例7.(2019·深圳市高级中学高三月考(文))如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO 垂直于圆O所在的平面,且PO=OB=1.(1)若D为线段AC的中点,求证:AC⊥平面PDO;(2)求三棱锥P-ABC体积的最大值;(3)若,点E在线段PB上,求CE+OE的最小值.例8.(2016·江苏高考真题)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少?(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?【压轴训练】1.(2019·四川石室中学高三开学考试(文))在ABC △中,已知AB =BC =045ABC ∠=,D 是边AC 上一点,将ABD △沿BD 折起,得到三棱锥A BCD -.若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上,设BM x =,则x 的取值范围为( )A.(B.C.D.(2.(2019·四川高三月考(文))已知球O 表面上的四点A ,B ,C ,P 满足AC BC ==2AB =.若四面体PABC 体积的最大值为23,则球O 的表面积为( ) A .254π B .254π C .2516π D .8π3.(2019·湖南雅礼中学高三月考(理))圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( )A .),2πB .π⎡⎤⎣⎦C .}D .π⎫⎪⎪⎣⎭4.(2019·安徽高考模拟(理))如图,已知四面体ABCD 为正四面体,1AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .14BCD .15.(2019·湖北高三月考(理))若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( )A .3B .C .D .6.(2019·四川雅安中学高三开学考试(文))已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且AB BC ==2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( ) A.50081π B.1009π C.259π D.4π7.(2017·山西高三(理))两球1O 和2O 在棱长为1的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为( )A .(32pB .(42pC .(32p +D .(42p8.(2019·广东高考模拟(理))平面四边形ABCD 中,AD AB ==CD CB ==且AD A B ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C D9.(2019·云南省玉溪第一中学高二月考(理))已知底面边长为,侧棱长为S ABCD -内接于球1O .若球2O 在球1O 内且与平面ABCD 相切,则球2O 的直径的最大值为__________.10.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__.11.(2019·云南师大附中高三月考)在直三棱柱111ABC A B C -中,90BAC ∠=︒且14BB =,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为2,则球O 的表面积的最小值是_____________.12.(2019·湖南高三月考(文))已知三棱锥A BCD -满足3AB BD DC CA ====,则该三棱锥体积的最大值为________.13.(2019·河南高三月考(文))已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足BA BC ==2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.14.(2019·四川双流中学高三月考(文))已知球的直径4DC =,A ,B 是该球面上的两点,6ADC BDC π∠=∠=,则三棱锥A BCD -的体积最大值是______.15.(2019·河北高三月考)在四棱锥P ABCD -中,PD AC ⊥,AB ⊥平面PAD ,底面ABCD 为正方形,且3CD PD +=,若四棱锥P ABCD -的每个顶点都在球O 的球面上,则球O 的表面积的最小值为_____.16.(2016·浙江高考真题(文))如图,已知平面四边形ABCD ,AB=BC=3,CD=1,直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.17.(2019·重庆一中高三开学考试(理))已知正方形ABCD 的边长为ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B-ACD .若O 为AC 的中点,点M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,则当三棱锥N-AMC 的体积取得最大值时,点N 到平面ACD 的距离为______.18.(2019·浙江高三开学考试)如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________.19.(2019·安徽合肥一中高考模拟(文))如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.20.(2019·湖南高三期末(文))点P 在正方体1111ABCD A B C D -的侧面11BCC B 及其边界上运动,并保持1AP BD ⊥,若正方体边长为2,则PB 的取值范围是__________.。

【高考数学专题】立体几何中的翻折问题与最值问题 专题 高三一轮复习备考

【高考数学专题】立体几何中的翻折问题与最值问题  专题  高三一轮复习备考

立体几何中的翻折问题与最值问题一知识点导学1.解决折叠问题注意什么?折叠问题是立体几何的一个重要内容,是空间几何问题与平面几何问题相互转化的集中体现,处理这类问题的关键就是抓住折叠前后图形的特征关系。

解答折叠问题在于画好折叠前后的平面图形和立体图形,并弄清折叠前后哪些量和位置关系发生了变化,哪些量和位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。

2立体几何常见的最值问题有哪些?如何解决?空间图形最值问题有线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.3如何解决涉及几何体切接问题最值计算?求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;4解决折叠问题的步骤有哪些?二.考点典例考点一:面积、体积最值问题空间几何体的侧面积、表面积、截面面积、体积等最值问题,往往是几何体中有关几何元素如顶点、侧棱、侧面、截面等在运动变化过程中,达到某个特殊位置时所具有的度量性质。

因此,在解决此类问题时,要注意分析这些几何元素运动变化与所求量的联系,建立两者之间的数量关系。

实例演练1(2021•湖南模拟)如图所示,圆形纸片的圆心为O,半径为6cm,该纸片上的等边三角形ABC的中心为O,D,E,F为圆O上的点,DBC∆分别是∆,FAB∆,ECA以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D ,E ,F 重合,得到三棱锥.则当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是( )A .(0,36)πB .(0,C .(0,45-D .(0,解:设三棱锥的底面边长为a ,则0a <<连接OD ,交BC 于点G ,则6OD =,OG ,6DG =,∴2,侧面积为213(6)92S a a =⨯⨯=,∴三棱锥的表面积9S a =,0a <<9(0S a ∴=∈,,∴当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是(0,.故选:D .实例演练2(2021•宜宾模拟)已知三棱锥A BCD -的各个顶点都在球O 的表面上,AD ⊥平面BCD ,BD CD ⊥,3BD =,CD =E 是线段CD 上一点,且3CD CE =.若球O 的表面积为40π,则过点E 作球O 的截面,所得截面圆面积的最小值为( )A .4πB .6πC .8πD .10π解:依题意,AD ,BD ,CD 两两互相垂直,取BC 中点M ,连接MD ,由对称性可知,球心O 在M 点正上方,且OM ⊥平面BCD ,OA OB OC OD R ====,3BD =,CD =6BC ∴=,则3BM CM DM ===,设球O 的半径为R ,则2440R ππ=,解得R由22222222()OM BM R OB AD OM DM R OA⎧+==⎨-+==⎩,解得12OM AD =⎧⎨=⎩,OM ⊥平面BCD ,OM ME ∴⊥,又13CE CD =cos CD BCD BC ∠==,∴在CEM ∆中,由余弦定理有2222cos 3ME CE MC CE MC BCD =+-⋅⋅∠=,故ME =,在OME ∆中,2OE =,要使过E 作圆O 的截面面积最小,则此时截面与OE垂直,设此时截面圆半径为r ,则r ==∴26min S r ππ==.故选:B .实例演练3.(2021•河南模拟)现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD ∆为等边三角形,线段BC 的中点为E ,若1PE =,则所需球体原材料的最小体积为( )A B .283π C .9π D 解:所需原材料体积最小的球体即为四棱锥P ABCD -的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,PAD ∆为边长为2的等边三角形,PF ∴,又1PE =,2EF =,60PEF ∴∠=︒1PE EB EC ===,E ∴是PBC ∆的外心,过E 作面PBC 的垂线与过G 与面ABCD 的垂线交于O ,则O 为四棱锥P ABCD -外接球的球心.906030OEG OEP FEP ∠=∠-∠=︒-︒=︒,又1GE =,∴在直角三角形OGE 中求出OG =,又直角OAG ∆中,AG ,OA ∴=,即球半径R =,得343V R π==球.由于此时四棱锥P ABCD -在球心同侧,不是最小球,可让四棱锥下移到面ABCD 过球心时,即球半径12R AC =时,原材料最省,此时343V π=⨯=球.故选:A .实例演练4(20211,O 为底面圆心,OA ,OB 为底面半径,且23AOB π∠=,M 是母线PA 的中点.则在此圆锥侧面上,从M 到B 的路径中,最短路径的长度为( )A B 1 C D 1解:由题意,在底面半径为1O 是底面圆心,P 为圆锥顶点,圆锥的侧面展开图是半圆,如图,A ,B 是底面圆周上的两点,23AOB π∠=,所以在展开图中,3APB π∠=2=,M 为母线PA 的中点,所以1PM =,所以从B 到M 的最短路径的长是BM A .考点2:角的最值问题立体几何中的角有异面直线所成角、线面角和二面角的平面角三种。

例谈立体几何最值问题的几种解法

例谈立体几何最值问题的几种解法

思路探寻立体几何最值问题侧重于考查同学们的空间想象、逻辑推理和数学运算等能力.常见的立体几何最值问题是求立体几何图形中某条线段、某个角、体积、表面积的最值,那么如何求解呢?一、利用函数思想在大多数情况下,我们可以把与动点有关的立体几何问题看作函数问题来求解.以其中某一个量,如动点的坐标、线段的长、角的大小为变量,建立关于该变量的关系式,并将其视为函数式,即可利用一次函数、二次函数、三角函数的性质和图象求得最值.例1.如图1,正方体ABCD-A1B1C1D1的棱长为1,P为AA1的中点,M在侧面AA1B1B上,若D1M⊥CP,则ΔBCM).C.5D.2图1图2解:过M作MG⊥平面ABCD,垂足为G,作GH⊥BC于点H,连接MH,以D为坐标原点,建立如图2所示的空间直角坐标系,可得D()0,0,0,C()0,1,0,A()1,0,0,P()1,0,12,D1(0,0,1),B()1,1,0.设M()1,a,b,则D1M=()1,a,b-1,CP=()1,-1,12,∵D1M⊥CP,∴ D1M⋅ CP=12b-a+12=0,∴b=2a-1,∴CH=1-a,MG=2a-1,∴MH=()1-a2+()2a-12=5a2-6a+2,∴SΔBCM=12BC⋅MH=1=可知当a=35时,ΔBCM面积取最小值,为SΔBCM=12×=故选B.在建立空间直角坐标系后,设出点M的坐标,以a、b为变量,构建关于a的函数式SΔBCM=然后将5a2-6a+2看作二次函数式,对其配方,根据二次函数的性质即可知函数在a=35时取最小值.二、运用基本不等式在解答立体几何最值问题时,我们往往可以先根据立体几何中的性质、定义、定理求得目标式;然后将其进行合理的变形,采用拆项、凑系数、补一次项,去掉常数项等方式,配凑出两式的和或积,就可以直接运用基本不等式来求得最值.在运用基本不等式求最值时,要把握三个条件:一正、二定、三相等.例2.已知三棱锥P-ABC的4个顶点均在球心为O、直径为23的球面上,PA=2,且PA,PB,PC两两垂直.当PC+AB取最大值时,三棱锥O-PAB的体积为().A. C.6解:∵PA,PB,PC两两互相垂直,∴三棱锥P-ABC可补全为如图3所示的长方体.则长方体的外接球即为三棱锥P-ABC的外接球,∴PA2+PB2+PC2=()232=12,又PA=2,∴PB2+PC2=10,∵AB2=PA2+PB2=2+PB2,∴PC2+AB2=2+PB2+PC2=12,∴()PC+AB2-2PC⋅AB=12,又PC⋅AB≤()PC+AB22,∴12=()PC+AB2-2PC⋅AB≥()PC+AB2-2()PC+AB22=12()PC+AB2,当且仅当PC=AB时取等号,∴()PC+AB max=26,此时PC=AB=6,PB=图347思路探寻AB 2-PA 2=2,∴V O -PAB =12V C -PAB =16S △PAB ⋅PC =112PA ⋅PB⋅PC =112×2×2×6故选B.根据长方体的性质得到()PC +AB 2-2PC ⋅AB =10后,可发现该式中含有PC 、AB 的和与积,根据基本不等式a +b ≥2ab 求解,即可得到三棱锥O -PAB 的体积.三、转化法运用转化法求解立体几何最值问题有两种思路.一是将问题转化为平面几何问题.先将几何体的表面展开,或将几何体内部满足条件的某些面展开成平面;再在平面内利用平面几何知识,如正余弦定理、两点间的距离最短、三角形的两边之和大于第三边等求解,这样问题就变得十分直观,容易求解了.另一种思路是根据题意和几何图形中的点、线、面的位置关系,明确其中改变的量和不变的量及其关系,根据简单几何体的性质、表面积公式、体积公式,将问题转化为求某些线段或角的最值.再结合简单几何体的性质,几何图形中点、线、面的位置关系求得最值例3.如图4,在正三棱柱ABC -A 1B 1C 1中,AA 1=AB =2,D 在A 1C 上,E 是A 1B 的中点,则()AD +DE 2的最小值是().A.6-7 B.27 C.3+7 D.5+7图4图5解:将平面A 1BC 与平面A 1AC 翻折到同一平面上,连接AE ,如图5所示,设AE ⋂A 1C =F .由题意可知A 1A =AC =BC =2,A 1C =A 1B =22,所以AA 21+AC 2=A 1C 2,所以AA 1⊥AC ,则∠AA 1C =45°,由余弦定理可得cos∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ⋅A 1C=8+8-42×22×22=34,则sin∠BA 1C =1-cos 2∠BA 1C =故cos∠AA 1B =cos ()∠AA 1C +∠BA 1C =cos ∠AA 1C cos ∠BA 1C -sin ∠AA 1C sin ∠BA 1C =32-148.因为E 是A 1B 的中点,所以A 1E =2,由余弦定理可得AE 2=AA 21+A 1E 2-2AA 1⋅A 1E cos∠BA 1A=4+2-2×2×2×32-148=3+7.因为D 在A 1C 上,所以AD +DE ≥AE ,当A 、E 、D 三点共线时,等号成立,则()AD +DE 2≥3+7.故选C .将平面A 1BC 与平面A 1AC 翻折到同一平面上,就可以把立体几何问题转化为平面几何问题,即可根据勾股定理和余弦定理求得A 1E 以及AE 的值.分析图形可知当A 、E 、D 三点共线时,AD +DE 取得最大值,再结合余弦定理求解即可.例4.已知球O 的表面积为60π,四面体P -ABC 内接于球O ,ΔABC 是边长为6的正三角形,平面PBC ⊥平面ABC ,则四面体P -ABC 体积的最大值为().A.18B.27C.32D.81解:因为球O 的表面积为60π,所以球的半径R ==15,由题意知四面体P -ABC 底面三角形的面积为定值,要使四面体的体积最大,只须使顶点P 到底面的距离最大,又因为平面PBC ⊥平面ABC ,所以当PB =PC 时,点P 到底面的距离最大,而ΔABC 外接圆的半径r =62sin60°=23,则O 到面ABC 的距离为d =R 2-r 2=3,且O 到面PBC 的距离为h =12r =3,设点P 到平面ABC 的距离为H ,则R 2=()H -d 2+h 2,解得H =33,此时体积最大值为V max =13×12×6×6×sin60°×33=27.故选B.解答本题,首先根据球的表面积求得球的半径;再根据题意和几何体的特征明确当PB =PC 时,点P 到底面的距离最大;最后根据外接圆的性质、勾股定理求出点P 到底面的距离,即可求出最大值.除了上述三种方法外,有时还可采用定义法、构造法来求立体几何最值问题的答案.总之,同学们在解题时,要先根据题意和几何体的结构特征寻找取得最值的情形,求得目标式;然后根据目标式的特征,选用合适的方法求最值.(作者单位:贵州省江口中学)48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 空间几何体的最值问题
立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从两个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是直接法,即根据几何体的结构特征或平面几何中的相关结论,直接判断最值. 一、距离最值问题
1.空间中两点间距离的最值问题
【例1】正方体1111ABCD A B C D 的棱长为1,
M 、N 分别在线段11A C 与BD 上,求MN 的最小值.
【玩转跟踪】在正四棱锥S -ABCD 中,SO⊥平面ABCD 于O ,SO=2,
底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( )
A.
5
5
B.
5
5
2 C. 2 D. 1
2.几何体表面上的最短距离问题
【例2】正三棱柱ABC—A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之.
【玩转跟踪】在直三棱柱111ABC A B C -中,底面为直角三角形,906ACB AC ∠==,

1BC CC ==.P 是1BC 上一动点,则1CP PA +的最小值为 .
二、面积的最值 1.多面体中的面积最值
【例3】如图中1所示,边长AC =3,BC =4,AB =5的三角形简易遮阳棚,其A 、B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角,试问:遮阳棚ABC 与地面成多大角度时,才能保证所遮影面ABD 面积最大?
【玩转跟踪】在三棱锥A—BCD中,ΔABC和ΔBCD都是边长为a的正三角形,求三棱锥的全面积的最大值.
三、体积的最值问题
【例4】如图3,已知在∆A B C中,∠=︒
C9
0,P A⊥平面ABC,A E P B
⊥于E,A F P C

于F,A
P A
B
==
2
,∠=
A E Fθ,当θ变化时,求三棱锥PA E F
-体积的最大值.
图3
【玩转跟踪】在棱长为1的正方体
1111
ABCD A B C D
-中,点
12
,P P分别是线段AB、
1
BD(不
包括端点)上的动点,且线段
12
P P平行于平面
11
A ADD,则四面体
12
PP AB的体积的最大值是.
四、角的最值
【例5】如图,在四棱锥S - ABCD 中,底面ABCD 是直角梯形,侧棱SA⊥底面ABCD ,AB
垂直于AD 和BC ,SA =AB=BC =2,AD =1.M 是棱SB 的中点.
(⊥)求证:AM⊥面SCD ;
(⊥)求面SCD 与面SAB 所成二面角的余弦值;
(⊥)设点N 是直线CD 上的动点,MN 与面SAB 所成的角为,求sin 的最大值,
【玩转跟踪】在棱长为1的正方体ABCD—A 1B 1C 1D 1中,P 是A 1B 1上的一动点,平面PAD 1和平面PBC 1与对角面ABC 1D 1所成的二面角的平面角分别为α、β,试求α+β的最大值和最小值.
θθ
【迁移运用】
1.【西藏日喀则一中高三10月检测】已知正三角形C AB 三个顶点都在半径为2的球面上,球心O 到平面C AB 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )
A .
74π B .2π C .94
π
D .3π 2.【浙江省杭州二中】已知各棱长均为1的四面体ABCD 中,
E 是AD 的中点,P ∈直线CE ,则|BP|+|DP|的最小值为( )
A .1

3
.12+ D
3.【辽宁师大附中】在长方体1111D C B A ABCD -中,2=
AB ,11==AA BC ,点M 为
1AB 的中点,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P 、Q 可以
重合),则PQ MP +的最小值为( )
A .
22 B .23 C .4
3 D .1 4.两球O 1和O 2在棱长为1的正方体ABCD -A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( ) A .(6-33)π B .(8-43)π C .(6+33)π
D .(8+43)π
5.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a ,c 为常数,则四面体ABCD 的体积的最大值是________.
6.【辽宁省沈阳市二中高三上学期期中】如图,在棱柱111ABC A B C -的侧棱11A A B B 和上各有一个动点,P Q ,且满足1A P BQ =,M 是棱CA 上的动点,则111M ABQP
ABC A B C M ABQP
V V V ----的
最大值是 .
7.【广东省广州市荔湾区高三上学期调研】已知直三棱柱111ABC A B C -中,
090BAC ∠=,侧面11BCC B 的面积为2,则直三棱柱111ABC A B C -外接球表面积的最小值为 . 8.【辽宁省鞍山市一中】正六棱柱111111ABCDEF A B C D E F -
1,则动点从A 沿表面移到点1D 时的最短的路程是 .
9.【贵州省贵阳市六中高三元月月考】表面积为π60的球面上有四点C B A S 、、、且ABC ∆是等边三角形,球心O 到平面ABC 的距离为3,若ABC SAB 面⊥,则棱锥ABC S -体积的最大值为 .
10.棱长为2cm 的正方体容器盛满水,把半径为1cm 的铜球放入水中刚好被淹没,然后再放入一个铁球,使它淹没水中,要使流出来的水量最多,这个铁球的半径应该为多大?
图4
11.如图,过半径为R的球面上一点P作三条两两垂直的弦PA、PB、PC,(1)求证:PA2+PB2+PC2为定值;(2)求三棱锥P—ABC的体积的最大值.。

相关文档
最新文档