一次函数的存在性问题
一次函数综合—线段和差、存在性问题

一次函数的应用—线段和差、存在性问题一、一次函数线段和差最值问题【知识点】1. 最短路径原理【原理1】作法作图原理在直线l 上求一点P,使PA+PB 值最小。
连AB,与l 交点即为P.两点之间线段最短.PA+PB 最小值为AB.【原理2】作法作图原理在直线l 上求一点P,使PA+PB 值最小.作 B 关于l 的对称点B'连A B',与l 交点即为P.两点之间线段最短.PA+PB 最小值为A B'.【原理3】作法作图原理在直线l 上求一点P,使作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.≤AB .PBPA-(1)求线段和最小时动点坐标或直线解析式;(2)求三角形周长最小值;(3)求线段差最大时点的坐标或直线解析式。
3. 口诀:“和小异,差大同”(一)一次函数线段和最小值问题【例题讲解】★★☆例题1.在平面直角坐标系xOy中,y轴上有一点P,它到点(4,3)A,(3,1)B 的距离之和最小,则点P的坐标是()A.(0,0)B.4(0,)7C.5(0,)7D.4(0,)5的值最大 .【原理4】作法作图原理在直线l 上求一点P,使的值最大 .作B 关于l 的对称点B'作直线A B',与l交点即为P.三角形任意两边之差小于第三边.≤A B' .PB PA-PB PA-PB PA-★★☆练习1.如图,在平面直角坐标系中,已知点(2,3)B-,在x轴上存在点P到A,B两点的A,点(2,1)距离之和最小,则P点的坐标是.★★☆练习2.如图,直线34120+-=与x轴、y轴分别交于点B、A两点,以线段AB为边在第一象限x y内作正方形ABCD.若点P为x轴上的一个动点,求当PC PD+的长最小时点P的坐标.★★☆例题2.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3∆的周长最小时,求点E OB=,D为边OB的中点,若E为x轴上的一个动点,当CDEOA=,4的坐标()A .(3,0)-B .(1,0)C .(0,0)D .(3,0)★★☆练习1.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,当ABC ∆的周长最小值时,ABC ∆的面积为 .★★☆练习2.如图,在平面直角坐标系中,直线122y x =+与x 轴、y 轴分别交于A 、B 两点,以AB 为边 在第二象限内作正方形ABCD .(1)求点A 、B 的坐标,并求边AB 的长;(2)求点C 和点D 的坐标;(3)在x 轴上找一点M ,使MDB ∆的周长最小,请求出M 点的坐标,并直接写出MDB ∆的周长最小值.(二)一次函数线段差最大值问题【例题讲解】★★☆例题1.已知,如图点(1,1)A,(2,3)B-,点P为x轴上一点,当||PA PB-最大时,点P 的坐标为()A.1(,0)2B.5(,0)4C.1(,0)2-D.(1,0)★★☆练习1.平面直角坐标系中,已知(4,3)A、(2,1)B,x轴上有一点P,要使PA PB-最大,则P点坐标为★★☆练习2.如图,在平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(6,0),点P在一次函数1322y x =+的图象上运动,则PB PA -的最大值为( )A .2B .233C .4D .143【题型知识点总结】一次函数最短路径问题注意事项:1. 根据“和小异,差大同”判断是否需要作对称;2. 作对称时注意要选取动点运动的直线为对称轴作某一定点的对称点。
中考数学 一次函数综合类问题四大类

大类一、一次函数与几何综合班级:__________ 姓名:__________【知识点睛】1.一次函数表达式:y=kx+b(k,b为常数,k≠0)①k是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为竖直高度,uj7BM即为水平宽度,则=AMkBM,②b是截距,表示直线与y轴交点的纵坐标.2.设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.①若k1=k2,且b1≠b2,则直线l1∥l2;②若k1·k2=-1,则直线l1⊥l2.3.一次函数与几何综合解题思路从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交点.通过点的坐标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题.【精讲精练】1.如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为______.MA B第1题图 第2题图 第3题图2. 如图,直线l 1交x 轴、y 轴于A ,B 两点,OA =m ,OB =n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2;若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_________.3. 如图,直线483y x =-+交x 轴、y 轴于A ,B 两点,线段AB 的垂直平分线交x 轴于点C ,交AB 于点D ,则点C 的坐标为4. 如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________;猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____________;应用:已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________. 5. 如图,已知直线l :y x =+与x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线l 折叠,点O 落在点C 处,则直线CA 的表达式为__________________.第5题图 第6题图 第7题图6. 如图,四边形ABCD 是一张矩形纸片,E 是AB 上的一点,且BE :EA =5:3,EC=BCE 沿折痕EC 向上翻折,点B 恰好落在AD 边上的点F 处.若以点A 为原点,以直线AD 为x 轴,以直线BA 为y 轴建立平面直角坐标系,则直线FC 的表达式为__________________.7. 如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,过定点Q (0,2)和动点P (a ,0)的直线与矩形ABCD 的边有公共点.(1)a 的取值范围是________________;(2)若设直线PQ 为y =kx +2(k ≠0),则此时k 的取值范围是____________8. 如图,已知正方形ABCD 的顶点A (1,1),B (3,1),直线y =2x +b 交边AB 于点E ,交边CD 于点F ,则直线y =2x +b 在y 轴上的截距b 的变化范围是____________.第9题图9. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2分别交x 轴于A ,B 两点,矩形DEFG 的顶点D ,E 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,那么S 矩形DEFG :S △ABC =_________. 10. 如图,在平面直角坐标系中,点A ,B 的坐标分别为A (4,0),B (0,-4),P 为y 轴上B点下方一点,PB=m(m>0),以点P为直角顶点,AP为腰在第四象限内作等腰Rt△APM.(1)求直线AB的解析式;(2)用含m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,求点Q的坐标.大类二、一次函数之存在性问题班级:__________ 姓名:__________【知识点睛】存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次函数背景下解决存在性问题的思考方向: 1. 把函数信息(坐标或表达式)转化为几何信息; 2. 分析特殊状态的形成因素,画出符合题意的图形;3. 结合图形(基本图形和特殊状态下的图形相结合)的几何特征建立等式来解决问题. 【精讲精练】 1.如图,直线y =+x 轴、y 轴分别交于点A ,点B ,已知点P 是第一象限内的点,由点P ,O ,B 组成了一个含60°角的直角三角形,则点P 的坐标为_____________.2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求点B 的坐标和k 的值. (2)若点A 是第一象限内直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=点C的坐标为(-9,0).(1)求点B的坐标.(2)若直线BD交y轴于点D,且OD=3,求直线BD的表达式.(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.4.点C 是直线y =kx +3上与A ,B 不重合的动点.过点C 的另一直线CD 与y 轴相交于点D ,是否存在点C 使△BCD 与△AOB 全等?若存在,请求出点C 的坐标;若不存在,请说明理由.5. 如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0),P (x ,y )是直线122y x=+上的一个动点(点P不与点A重合).(1)在点P的运动过程中,试写出△OPC的面积S与x之间的函数关系式.?求出此时(2)当点P运动到什么位置时,△OPC的面积为278点P的坐标.(3)过P作AB的垂线与x轴、y轴分别交于E,F两点,是否存在这样的点P,使△EOF≌△BOA?若Array存在,求出点P的坐标;若不存在,请说明理由.大类三、一次函数之动点问题班级:__________ 姓名:__________【知识点睛】动点问题的特征是速度已知,主要考查运动的过程.1.一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为基本图形的信息;②分析运动过程,注意状态转折,确定对应的时间范围;③画出符合题意的图形,研究几何特征,设计解决方案.2.解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.【精讲精练】1. 如图,在平面直角坐标系中,O 为坐标原点,直线334y x =-+与x 轴、y 轴分别交于A ,B 两点.点P 从点A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 的运动时间为t 秒. (1)求OA ,OB 的长.(2)过点P 与直线AB 垂直的直线与y 轴交于点E ,在点P 的运动过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.3.如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,11),C(0,5),点D为线段BC的中点.动点P从点O出发,以每秒1个单位的速度,沿折线OA—AB—BD的路线运动,至点D停止,设运动时间为t秒.(1)求直线BC的解析式.(2)若动点P在线段OA上运动,当t为何值时,四边形OPDC的面积是梯形COAB面积的14?(3)在动点P的运动过程中,设△OPD的面积为S,求S与t4.如图,直线y =+与x 轴交于点A,与直线y =交于点P .(1)求点P 的坐标. (2)求△OP A 的面积.(3)动点E 从原点O 出发,以每秒1个单位的速度沿OA 方向向终点A 运动,过点E 作EF ⊥x 轴交线段OP 或线段P A 于点F ,FB ⊥y 轴于点B .设运动时间为t 秒,矩形OEFB 与△OP A 重叠部分的面积为S ,求S 与t 之间的函数关系式.5.如图,直线l的解析式为y=-x+4,它与x轴、y轴分别交于A,B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别交于M,N两点,设运动时间为t秒(0< t <4).(1)求A,B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重叠部分的面积为S2,试探究S2与t之间的函数关系式.大类四、一次函数之面积问题 班级:_________ 姓名:__________【知识点睛】1. 坐标系中处理面积问题,要寻找并利用横平竖直的线, 通常有以下三种思路: ①公式法(规则图形);②割补法(分割求和、补形作差); ③转化法(例:同底等高). 2. 坐标系中面积问题的处理方法举例 ① 割补求面积(铅垂法):12△APB S ah = 12△APB S ah= ②转化求面积:l 1l 2如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.二、 精讲精练1. 如右图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则△AOB 的面积为___________.2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P 的坐标为(-2,2),则S △PAB =___________.第2题图 第3题图3. 如图,直线AB :y =x +1与x 轴、y 轴分别交于点A ,点B ,直线CD :y =kx -2与x 轴、y 轴分别交于点C ,点D ,直线AB 与直线CD 交于点P .若S △APD =4.5,则k =__________.4. 如图,直线112y x =+经过点A (1,m ),B (4,n ),点C 的坐标为(2,5),求△ABC 的面积.5. 如图,在平面直角坐标系中,已知A (2,4),B (6,6),C (8,2),求四边形OABC 的面积.6. 如图,直线112y x =-+与x 轴、y 轴分别交于A ,B 两点,C (1,2),坐标轴上是否存在点P ,使S △ABP =S △ABC ?若存在,求出点P 的坐标;若不存在,请说明理由.7. 如图,已知直线m 的解析式为112y x =-+,与x 轴、y 轴分别交于A ,B 两点,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,且∠BAC =90°,点P 为直线x =1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC的面积;(2)求点P的坐标.8.如图,直线P A:y=x+2与x轴、y轴分别交于A,Q两点,直线PB:y=-2x+8与x轴交于点B.(1)求四边形PQOB的面积.(2)直线P A上是否存在点M,使得△PBM的面积等于四边形PQOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.【分类一参考答案】 二、精讲精练1.232.⊥,-1 3.7(0)3-, 4.(1,3);(n ,m );1313()55--, 5.y =+ 6.4163y x =-+ 7.(1)-2≤a ≤2;(2)k ≥1或k ≤-1 8.-3≤b ≤-1 9.8:9 10.(1)y =x -4;(2)M (m +4,-m -8);(3)Q (-4,0)【分类二参考答案】 二、精讲精练1.333(4444或(或,或(,) 2.(1)B (3,0),43k =(2)A (6,4) (3)123413(120)03P P P P 或(-)或,或(,)3.(1)B (-3,6) (2)y =-x +3(3)123433(30)(22P P P P +,或或或(,) 4.1261224()(46)5555--,或(,)或,5.(1)33(4)433(4)4x x S x x ⎧--<-⎪⎪=⎨⎪+>-⎪⎩(2)1217919()2424P P --,或(,) (3)12412124()5555P P ,或(-,) 【分类三参考答案】1.(1)OA =4,OB =3; (2)t =1或t =7 2.(1)y =+(2)22(04)(48)t S t <=⎨⎪+<<⎪⎩≤(3)123(08)(08)(0M M M -或或,4(0M 或3.(1)354y x =+(2)32t =(3)4(08)248(819)248(1924)t t S t t t t <⎧⎪=-+<⎨⎪-+<<⎩≤≤4.(1)(3P (2) (3)22(03)(34)t S t <=⎨⎪+-<<⎪⎩≤第21页/共21页 5.(1)(40)(04)A B ,,, (2)2112S t =.(3)2221(02)2388(24)2t tS t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤ 【分类四参考答案】二、精讲精练1.72 2.8 3.52 4.925.24 6.123451(0)(50)(0)(10)22P P P P --,或,或,或,7.(1)52;(2)12(13)(12)P P -,或,8.(1)10;(2)12162242()()3333M M -,或,。
一次函数与菱形存在性问题

一次函数与菱形存在性问题
本文讨论了一次函数与菱形存在性问题。
在数学中,一次函数是形如y=ax+b的函数,其中a和b是常数,
且a不等于零。
菱形是一个几何形状,它有四个边,且
所有的边长度相等。
我们将探讨一次函数与菱形之间的
关系,以及它们是否存在。
要探讨一次函数与菱形之间的关系,我们需要考虑
一次函数的图像以及菱形的特征。
一次函数的图像是一
条直线,而菱形的特征是四个边长度相等的四边形。
根据上述分析,我们可以得出结论:一次函数与菱
形存在性取决于直线的斜率和截距的取值范围。
在一定
的条件下,一次函数与菱形可能存在交点。
然而,也存在某些情况下,一次函数与菱形不相交。
通过对一次函数与菱形的分析,我们得出结论:一次函数与菱形的相交性取决于直线的斜率和截距的取值范围。
只有当直线的斜率在一定范围内且截距在菱形的纵坐标范围之内时,一次函数与菱形存在交点。
在其他情况下,一次函数与菱形不相交。
请注意,本文讨论的只是一次函数与菱形存在性问题的一种情况。
在数学中,存在许多其他形式的函数与几何形状的关系问题,需要进一步研究和探索。
第4章一次函数——存在性问题专训1 北师大版数学八年级上册

北师大版数学八年级上期第4章一次函数——存在性问题专训11.如图,已知点A(6,0),B(8,5),将线段OA平移至CB,点D(x,0)在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)求对角线AC的长;(2)△ODC与△ABD的面积分别记为S1,S2,设S=S1-S2,求S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等,如果存在,请求出x的值(或取值范围);如果不存在,请说明理由.2.如图,直线l1的解析表达式为y=-3x+3,且l1与x轴交于点D.直线l2经过点A、B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)在直线l2上存在异于点C的另一个点P,使得△ADP与△ADC的面积相等,求P点的坐标.x与直线l2:y2=x+b交于点,直线l2与y轴交于3.如图,直线l1:y1=−12点B.(1)求m,b的值,并计算△AOB的面积.(2)在直线l2上,是否存在点P,使得△POB的面积是△AOB的面积的一半?若存在,求出点P的坐标,请说明理由.4.如图1,平面直角坐标系中,直线y=kx+b与x轴交于点A(6,0),与y轴交于点B,与直线y=2x交于点C(a,4).(1)求点C的坐标及直线AB的表达式;(2)如图2,在(1)的条件下,过点E作直线l⊥x轴于点E,交直线y=2x于点F,交直线y=kx+b于点G,若点E的坐标是(4,0).①求△CGF的面积;②直线l上是否存在点P,使OP+BP的值最小?若存在,直接写出点P的坐标;若不存在,说明理由;(3)若(2)中的点E是x轴上的一个动点,点E的横坐标为m(m>0),当点E 在x轴上运动时,当m=___________何值时,直线l上存在点Q,使得以A,C,Q 为顶点的三角形与△AOC全等?.5.如图,在平面直角坐标系中,直线l1:y1=kx+b经过A(a,0),B(0,b)两点,且a、b满足(a-4)2+√b−2=0,过点B作BP∥x轴,交直线l2:y2=x于点P,连接PA.(1)求直线AB的函数表达式;(2)在直线l2上是否存在一点Q,使得S△BPQ=S△BPA?若存在,求出点Q的坐标;若不存在,请说明理由.(3)点C(n,0)是x轴上的一个动点,点D是y轴上的一个动点,过点C作x 轴的垂线交直线l1、l2于点M、N,若△MND是等腰直角三角形,请直接写出符合条件的n的值.6.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,-4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线AC交y轴于点C(0,6),交直线0A于点A(4,2),有一动点M在线段OA和线段AC上运动。
一次函数中(特殊三角形)的存在性问题优秀教学设计

辅助策略:借助几何画板,使学生直观形象地观察、操作。
2、教法
演示法:通过几何画板演示两圆一中垂线和外K全等,使学生直观、形象的感知因动点的移动,在何时会出现等腰三角形和等腰直角三角形,思考在没有几何画板的时候,我们自己该如何作图,快速确定动点的位置。
《一次函数中特殊三角形的存在性问题》教学设计
【教学目标】
1、知识与技能
(1)使学生体会定点与动点之间的关系,做到以静制动。
(2)通过数形结合,利用几何法和代数法求一次函数中特殊三角形的存在性问题。
2、过程与方法
(1)借助几何画板探究一次函数中特殊三角形的存在性问题,使学生初步形成正确、科学的分析解决问题的方法。
①设点:设点P(0,m)A(3,0),B(0,4)
②表示三条边:
③列方程:
三、小组讨论
已知A(2,0),B(0,4),在第一象限内是否存在一点P,使得△PAB是等腰直角三角形,若存在请求出点P的坐标;若不存在,请说明理由。
讨论目标:①这样的动点P可能有多少个?如何分类?
②你能不能画出等腰直角三角形?
等腰三角形可以是两条边相等或者两个角相等,在我们所学的知识中,是边好表示,还是角好表示呢?
探究一:用几何法确定动点的位置——两圆一中垂线
例1、已知,A(3,0),B(0,4),在y轴上是否存在一点P,使得△PAB是等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由
探究二:用代数法确定动点的位置——设点法
实验法:让学生自己动手、在探究过程中,自己发现动点的规律
初中一次函数学习困难原因与对策探究

初中一次函数学习困难原因与对策探究摘要:在升入初中后,学生首先会接触到一次函数的相关内容。
对于学生来说,函数算得上初中数学的一大难点。
很多学生在面对函数时常常不知所措,存在诸多问题。
教师需要针对学生的学习情况进行总结归纳,才能够帮助学生解决在一次函数上的问题。
因此,本文围绕浅析初中一次函数学习困难的原因分析及对策展开论述,希望对初中数学教师有所帮助。
关键词:初中数学;一次函数;学习困难;原因;对策前言:初中数学一次函数教学属于学生对函数的初次探索。
在这个探索过程中如果教师没有明晰学生存在的问题或是没有创新自己的教学模式,学生会在学习过程中感到吃力和乏味。
因此,为了能够帮助初中学生快速入门,教师需要在一次函数的教学方法上下功夫。
教师需要在日常教学活动中去了解学生存在的问题,从而针对学生的问题开展教学工作,给予学生针对性强且个性化十足的教学。
笔者根据自己的数学教学经验,从一次函数学习困难的原因入手到一次函数学习应对措施展开探讨,希望能够给予各位初中数学教师一些灵感。
一、一次函数学习困难原因(一)阅读能力不足一些学生学习函数知识和解题时,存在困难原因在于阅读能力不足,如学生很难去捕捉题目所给的重要信息。
由于学生自身对函数某些概念模糊导致学生很难针对具体的知识点答题。
这种问题在学生群体中十分明显,很多学生都会存在读题方面的问题。
并且学生还会出现很多因为概念混淆出现的问题,学生很多会将一次函数和正比例函数搞混淆。
学生即使确定了字母的取值范围,也会忽略正比例函数时一次函数的特例。
这些都说明学生的阅读能力有待提升,学生需要去仔细阅读相关的概念,在弄清概念后阅读题目会更加自信。
(二)数形结合思想薄弱一次函数作为函数知识学习的入门,同样需要学生培养数形结合的思想[1]。
一次函数常常会将方程式和图形相结合,极其考察学生的图形运用能力。
并且在一次函数中还存在很多需要分类讨论的题型。
如果学生对函数图形不熟悉,会在分类讨论时出现错误。
一次函数背景下的存在性问题

2021年第02期总第495期数理化解题研究一次函数背景下的存在性问题王帅兵(河南省郑州市孜文教育信息咨询有限公司450000)摘 要:一次函数是八年级数学的学习内容,在平面直角坐标系中,研究点和直线的动态特征,以及在动 态情境下产生的几何图形存在性问题,是考察学生思维能力的有效载体,已成为考试的重难点.本文将结合具 体题目,从不同方面探讨存在性问题的解法.关键词:一次函数;存在性;对称;两圆一线;弦图中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)02 -0017 -02一、两定一动型,注意好“一上一下”两定一动型,是指在给定两个点的情况下,另一点在一条线上运动所产生的面积问题,解决这类问题,要做好 题目分析,有一边与坐标轴平行时直接求解;没有边与坐 标轴平行时,用好“铅锤法”(或“割补法”),同时注意好 “ 一一上 —下”.例1如图1所示,一次 函数y 二2% +4的图像与坐标 轴分别交于点A 、B ,在一次函数的图象上是否存在一点P , 使得A AOP 的面积为3?思路分析由题设条件,易求出点A 和点0坐标分别为(-2,0)和(0,0),点P 为直 图1线上一动点,不妨设其坐标为(%,y ),当点P 位于%轴上方时,S △A0P 二2 ; y 二3 ,解得y 二3,代入表达式y 二2% + 4 可得点P 坐标为(-1 /2,3).由于坐标系中的对称性,点 P 也可以位于%轴下方,此时可求出点P 的坐标为 (-7/2,-3).综上,点 P 坐标为(-1/2,3)或者(-7/2, -3).一例2如图2所示,直线y 二1 /2%与直线y 二-% + 3 相交于点A ,点B 是直线y 二1 /2%上的一个点,且横坐标 为4.如果点P 是直线y 二-% +3上的一个动点,且满足 △ABP 的面积为9,那么点P 的坐标为 .思路分析 如图2,易求出点A 和点B 坐标分别为(2,1) 和(4,2).如图3,过点P 向%轴做垂线交直线AB 于点F ,设点P ( a , - a +3),那么点F 坐标为(a , ; a ),则A ABP 的面积为:"F x ( %B 一 %a)(3 -a - 2 a )(4 -2)-----------「 - 9.解得 a 二-4,点P 的坐标为(-4,7).同理,如图4时,可得点P 的坐标 为(8,-5).综上,点P 的坐标为(-4,7)或(8,-5).二、等腰三角形,用好“两圆一线”在一次函数的背景下,等腰三角形的存在性问题可 以借助图形的基本性质来解,利用同端点、等长度作圆和 线段垂直平分线.例 3 如图 5 所示, 直线 y - % + 4 与坐标轴交于点 A 和点B ,在%轴上是否存在点P ,使得A ABP 为等腰三角 形?若存在,求出所有满足条件的点P 的坐标.图5 图6思路分析如图6所示,分别以点A 和点B 为圆心 作圆,同时作出线段AB 的垂直平分线,可得与%轴的4个 交点:P ]、戶2、P 3和P 4.分别求解,可得其坐标分别为P 1( -4-4 2 ,0)、P 2(0,0)、P s (4 2 -4,0)心4,0).三、直角三角形,利用顶点来分类对于直角三角形的存在性,可以利用顶点来分类,然 后结合具体条件求解.例4如图7所示,在平面直角坐标系%oy 中,三角收稿日期:2020 -10 -15作者简介:王帅兵(1988. 7 -),男,河南省鲁山人,本科,从事数学教学研究.17数理化解题研究2021年第02期总第495期板的直角顶点P的坐标为(2,2),一条直角边与兀轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当MA为直角三角形时,请求出所有满足条件的点B的坐标.思路分析分析题设条件可得,乙POA二45°,不可能为直角,'FOA的另两个角可以是直角.如图8,当OA丄AP时,可求出点B的坐标为(0,2);如图9,当OP丄PA时,点B和点O重合,点B坐标为(0,0).综上所述,点B的坐标为(0,2)或(0,0).图7图8图9四、等腰直角三角形,借助弦图轻松解等腰直角三角形的分类问题,可以在构造基本直角的情况下,借助弦图求解.例5如图10所示,直线y二-2兀+4与坐标轴交于点A和点B,在第一象限内是否存在点P,使得A ABP为等腰直角三角形?思路分析由题设条件易得,A(2,0)、B(0,4),OA二2,OB二4.利用心A AOB作弦图,如图11所示,其中P】、P2、戶3是满足条件的点.利用弦图中的全等三角形的性质,以及线段长与坐标的相互转化,可得三点的坐标分别为:P1(4,6)、P2(6,2)、P3(3,3).五、全等三角形,对应后综合求解全等三角形的存在性问题,要注意好顶点的对应,然后借助多种基本方法解题.例6如图12所示,在平面直角坐标系中作矩形OABC,点B坐标为(4,8),将A ABC对折,使点A与点C 重合,折痕交AB于点D,坐标系内是否存在点P(除点B 外),使A APC与A ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.思路分析由题设条件易得点A与点C的坐标分别为(4,0)、(0,8),直线AC表达式为:y二-2%+8.由矩形性质可得A AOC=△CBA,此时点P与点O重合,坐标为(0,0).由翻折性质可得△ADB'^A CDB',此时,如图13, 18可以延长CP,过点A作CP丄AP于点P,利用等面积法可得点P坐标为(;,?)•如图14,作A ABC关于直线AC 的对称图形,此时,过点P作PQ丄y轴于点Q,利用等面积法可得点P坐标为(-12,24).六、等距离轨迹问题,借助坐标轴三角形构造相似在一次函数背景下的等距离轨迹问题,可以借助一次函数图像与坐标轴的交点,构造相似图形,求出点的坐标,进而找到点所在直线的表达式.例7如图15所示,直线y二2%+6与坐标轴分别交于点A和点B,在平面直角坐标系中是否存在一点,使得点P到直线AB的距离等于25,若存在,请求出点P所在轨迹的表达式;若不存在,请说明理由.思路分析到直线AB距离等于25的点的集合是与直线AB平行的两条直线.由题设条件易得,点A和点B 的坐标分别为(-3,0)和(0,6).如图16,过点B作直线AB的垂线-,在直线-上分别截取BP】二BP?二25,再分别过点P1和点P2作垂直于直线z1的直线z2和z3,直线12和人即为点P的轨迹.因为直线J和厶与直线AB平行,要求其表达式,只要求出点P1和点P2的坐标即可,此时,过点P1作P1Q1丄y轴于点Q1,则△P1Q1B^△BOA,可得P1Q1二4,BQ1二2,可得点P1坐标为(4,4),可求出心:y二2%-4.同理可求出厶:y二2%+16.综上,解决一次函数的存在性问题,一定要研究好背景图形,调用基本技巧和方法,构图确定位置,画图解答.参考文献:[1]王玉新.学好一次函数,善于梳理总结是关键[J].数学学习与研究,2019(19):135.[2]王淑艳.一次函数解初中几何动点问题[J].理科爱好者,2019(4):147.[责任编辑:李璟]。
一次函数背景下的图象存在性问题

专题六 一次函数背景下的图象存在性问题考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y =﹣43x +6的图象与x 轴、y 轴分别交于A 、B 两点,M 点在x 轴上,并且使得以 点A 、B 、M 为顶点的三角形是等腰三角形,则M 点的坐标为 .【变1-1】.如图,在平面直角坐标系中,直线MN 的函数解析式为y =﹣x +3,点A 在线段MN 上且满足AN =2AM ,B 点是x 轴上一点,当△AOB 是以OA 为腰的等腰三角形时,则B 点的坐标为 .【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是.【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.【变3-1】.如图1,在平面直角坐标系中,直线y =﹣21x +3与x 轴、y 轴相交于A 、B 两点,点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转90°得到CD ,此时点D 恰好落在直线AB 上,过点D 作DE ⊥x 轴于点E .(1)求证:△BOC ≌△CED ;(2)如图2,将△BCD 沿x 轴正方向平移得△B 'C 'D ',当B 'C '经过点D 时,求△BCD 平移的距离及点D 的坐标;(3)若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、D 、P 、Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P 点的坐标;若不存在,请说明理由.考点四:一次函数中矩形存在性问题【例4】.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.考点五:一次函数中菱形存在性问题【例5】.如图1,直线y =43x +6与x ,y 轴分别交于A ,B 两点,∠ABO 的角平分线与x 轴相交于点C . (1)求点C 的坐标;(2)在直线BC 上有两点M ,N ,△AMN 是等腰直角三角形,∠MAN =90°,求点M 的坐标;(3)点P 在y 轴上,在平面上是否存在点Q ,使以点A 、B 、P 、Q 为顶点的四边形为菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.巩固练习1.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标.2.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.3.直线l1交x轴于点A(63,0),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.4.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P为顶点的四边形是菱形,请直接写出点P的坐标.5.如图,直线y =﹣x +4与x 轴、y 轴分别交于A 、B 两点,直线BC 与x 轴、y 轴分别交于C 、B 两点,连接BC ,且OC =43OB . (1)求点A 的坐标及直线BC 的函数关系式;(2)点M 在x 轴上,连接MB ,当∠MBA +∠CBO =45°时,求点M 的坐标;(3)若点P 在x 轴上,平面内是否存在点Q ,使点B 、C 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.6.已知,一次函数643+=x y -的图象与x 轴、y 轴分别交于点A 、点B ,与直线y =x 45相交于点C .过点B 作x 轴的平行线l .点P 是直线l 上的一个动点.(1)求点A ,点B 的坐标.(2)求点C 到直线l 的距离.(3)若S △AOC =S △BCP ,求点P 的坐标.(4)若点E 是直线y =x 45上的一个动点,当△APE 是以AP 为直角边的等腰直角三角形时,请直接写出点E 的坐标.7.如图,在平面直角坐标系xOy 中,直线y =﹣2321+x 与y =x 相交于点A ,与x 轴交于点B . (1)求点A ,B 的坐标; (2)在平面直角坐标系xOy 中,是否存在一点C ,使得以O ,A ,B ,C 为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C 的坐标;如果不存在,请说明理由;(3)在直线OA 上,是否存在一点D ,使得△DOB 是等腰三角形?如果存在,试求出所有符合条件的点D 的坐标,如果不存在,请说明理由.8.如图1,已知直线l 1:y =kx +4交x 轴于A (4,0),交y 轴于B .(1)直接写出k 的值为 ;(2)如图2,C 为x 轴负半轴上一点,过C 点的直线l 2:n x y +=21经过AB 的中点P ,点Q (t ,0)为x 轴上一动点,过Q 作QM ⊥x 轴分别交直线l 1、l 2于M 、N ,且MN =2MQ ,求t 的值;(3)如图3,已知点M (﹣1,0),点N (5m ,3m +2)为直线AB 右侧一点,且满足∠OBM =∠ABN ,求点N 坐标.9.如图,在平面直角坐标系中,直线AB:y=﹣x+4与x轴、y轴分别交于点A、B,点C在y轴的负半轴上,若将△CAB沿直线AC折叠,点B恰好落在x轴正半轴上的点D处.(1)点A的坐标是,点B的坐标是,AB的长为;(2)求点C的坐标;(3)点M是y轴上一动点,若S△MAB=S△OCD,直接写出点M的坐标;(4)在第一象限内是否存在点P,使△P AB为等腰直角三角形,若存在,直接写出点P的坐标;若不存在,请说明理由.10.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,﹣4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x 轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.11.如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.12.在学习一元一次不等式与一次函数的过程中,小新在同一个坐标系中发现直线l1:y1=﹣x+3与坐标轴相交于A,B两点,直线l2:y2=kx+b(k≠0)与坐标轴相交于C,D两点,两直线相交于点E,且点E 的横坐标为2.已知OC=,点P是直线l2上的动点.(1)求直线l2的函数表达式;(2)过点P作x轴的垂线与直线l1和x轴分别相交于M,N两点,当点N是线段PM的三等分点时,求P点的坐标;(3)若点Q是x轴上的动点,是否存在以A,E,P,Q为顶点的四边形是平行四边形?若存在,请求出所有满足条件的P点坐标;若不存在,请说明理由.13.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ 是正方形,请直接写出所有符合条件的点D的坐标.14.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,点B的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC、BC于点E、D,且点D的坐标是(,6).(1)求BF的长度;(2)如图2,点P在第二象限,且△PDE≌△CED,求直线PE的解析式;(3)若点M为直线DE上一动点,在x轴上是否存在点N,使以M、N、D、F为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.— 21 —。
一次函数与梯形存在性问题

一次函数与梯形存在性问题引言在数学中,一次函数和梯形是基础概念,它们在解决实际问题中具有重要意义。
然而,有时会出现一次函数和梯形存在性问题,即是否存在满足特定条件的一次函数或梯形。
本文将探讨一次函数和梯形的存在性问题,并给出相应的解答。
一次函数的存在性问题一次函数是指具有形式为 $y = ax + b$ 的函数,其中 $a$ 和$b$ 是给定的实数。
在一般情况下,一次函数总是存在的,因为我们可以随意选择 $a$ 和 $b$ 的值来构造一条直线。
但是,在某些特殊情况下,一次函数可能不存在。
1. 平行于 $x$ 轴的直线:如果 $a = 0$,则一次函数变为 $y =b$,即一条水平直线。
在这种情况下,只有当$b$ 是给定的实数时,该直线才存在。
2. 平行于 $y$ 轴的直线:如果 $a$ 是无穷大或无穷小的实数,则一次函数将垂直于 $x$ 轴,即平行于 $y$ 轴。
由于这条直线的斜率不存在,因此在数学意义上并不是一次函数。
3. 平行于 $y = x$ 的线的直线:如果 $a = 1$,则一次函数变为$y = x + b$。
在这种情况下,只有当 $b$ 是给定的实数时,该直线才存在。
因此,一次函数的存在性取决于 $a$ 和 $b$ 的取值范围,以及直线是否与坐标轴平行或垂直。
梯形的存在性问题梯形是由一对平行边和两对相等的对角线组成的四边形。
在某些情况下,给定一些条件,我们需要确定是否存在满足这些条件的梯形。
1. 边长和角度:对于给定的边长和角度条件,存在满足这些条件的梯形。
例如,如果已知梯形的底边长度和两条斜边的长度,以及中间角的大小,我们可以通过几何方法确定是否存在这样的梯形。
2. 平行边长度:如果要求梯形的两条平行边的长度相等,那么我们只需要构造两条相等的线段作为平行边,即可构造出满足条件的梯形。
3. 对角线长度:如果要求梯形的两条对角线的长度相等,那么我们只需要构造两条相等的线段作为对角线,并且这两条线段必须交于一个点,从而构造出满足条件的梯形。
一次函数与平行四边形存在性问题

一次函数与平行四边形存在性问题1.坐标系中的平行四边形:(1)对边平行且相等2. 线段中点坐标公式平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),则线段AB的中点坐标为(221xx+,221yy+).2.1平行四边形顶点坐标公式□ABCD的顶点坐标分别为A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D),则:x A+x C=x B+x D;y A+y C=y B+y D.证明:如图2,连接AC、BD,相交于点E.∵点E为AC的中点,∴E点坐标为(2CA xx+,2CA yy+).又∵点E为BD的中点,∴E点坐标为(2DB xx+,2DB yy+).∴x A+x C=x B+x D;y A+y C=y B+y D.即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.以上两条可统一为:总结:平面直角坐标系中,平行四边形两组相对顶点的横坐标之和相等,纵坐标之和相等方法归纳:1、列出四个点坐标2、分三组对角线讨论列方程组,解方程组3、验证点是否符合题意如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足(m﹣6)2+=0,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处(1)求线段OD的长;(2)求点E的坐标;(3)DE所在直线与AB相交于点M,点N在x轴的正半轴上,以M、A、N、C为顶点的四边形是平行四边形时,求N点坐标.如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B 的坐标分别A(32-,0)、B(32-,2),∠CAO=30°.(1)求对角线AC所在的直线的函数表达式;(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.如图1,在平面直角坐标系中,直线l1:y=x+1与y轴交于点A,过B(6,1)的直线l2与直线l1交于点C(m,﹣5).(1)求直线l2的解析式;(2)若点D是第一象限位于直线l2上的一动点,过点D作DH∥y轴交l1于点H.当DH=8时,试在x轴上找一点E,在直线l1上找一点F,使得△DEF的周长最小,求出周长的最小值;(3)如图2,将直线l2绕点A逆时针旋转90°得到直线l3,点P是直线l3上一点,到y轴的距离为2且位于第一象限.直线l2与x轴交于点M,与y轴交于点N,将△OMN沿射线NM方向平移2个单位,平移后的△OMN记为△O'M'N'.在平面内是否存在一点Q,使得以点M′,C,P,Q顶点的四边形是平行四边形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.如图1,在平面直角坐标系xOy中,直线l2:y=﹣x+与x轴交于点B,与直线l1:y=x+b交于点C,C 点到x轴的距离CD为2,直线l1交x轴于点A.(1)求直线l1的函数表达式;(2)如图2,y轴上的两个动点E、F(E点在F点上方)满足线段EF的长为,连接CE、AF,当线段CE+EF+AF 有最小值时,求出此时点F的坐标以及CE+EF+AF的最小值;(3)如图3,将△ACB绕点B逆时针方向旋转60°,得到△BGH,使点A与点H对应,点C与点G对应,将△BGH沿着直线BC平移,平移后的三角形为△B′G′H′,点M为直线AC上的动点,是否存在分别以C、O、M、G′为顶点的平行四边形,若存在,请求出M的坐标;若不存在,说明理.。
一次函数与三角形存在性问题

一次函数与三角形的存在性问题1.如图,直线y=2x+m(m>0)与x轴交于点A(﹣2,0),直线y=﹣x+n(n>0)与x轴、y轴分别交于B、C两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,求点E的坐标.2.已知:如图,在平面直角坐标系xOy中,直线y=x+4与x轴交于A、与y轴交于B,点C(a,b),其中a<b,且a、b是方程x2﹣7x+12=0的两根.(1)求直线AC的解析式;(2)点D为直线AC与y轴的交点,请求出△ABD和△BCD的周长差;(3)点E是线段AC上一动点,是否存在点E,使△COE为直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.3、如图:直线y=kx+3与x轴、y轴分别交于A、B两点,34OBOA,点C(x,y)是直线y=kx+3上与A、B不重合的动点。
(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时,△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由。
4、如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A (0,m)、C(n,0),B(﹣5,0),且(n﹣3)2+=0,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.(1)求A、C两点的坐标;(2)连接PA,用含t的代数式表示△POA的面积;(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.5、如图,在平面直角坐标系中,A(18,0),B(12,8),C(0,8),动点P、Q分别从原点O、点B 同时出发,动点P沿x轴正方向以每秒2个单位长度的速度运动,动点Q在线段BC上以每秒1的单位长度的速度向C运动,当点Q到达C点时,点P随之停止运动,设运动时间为t(秒),直线PQ与直线AB交于点D.(1)直接写出线段AB的长为;(2)求直线AB的函数表达式;(3)当t=2时,求直线PQ的表达式以及点D的坐标;(4)直接写出所有t的值,使得此时△ADP是等腰三角形.6.在平面直角坐标系xOy中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒,当t为多少时,△PQB为直角三角形.。
专题二:一次函数中等腰直角三角形存在性问题方法总结

专题二:一次函数中等腰直角三角形存在性问题方法总结类型二、等腰直角三角形以(,)A A A x y 、(,)c c C x y 为三角形的边,在平面内找一点B 使得△ABC为等腰直角三角形(二定一动)一.找法:画圆和作垂直平分线①以A 直角顶点,即有23B B 、点;②以C 直角顶点,即有14B B 、点;③以AC 为斜边,即有56B B 、点;二、算法:利用三垂直模型进行计算(,)A A A x y 、(,)B B B x y 、(,)C C C x y 、(,)M M M x y 、(,)M M C x y由MBC ≌NCA可得:MB CN MC AN ==可推出B M C N M C A Nx x y y y y x x -=-⎧⎨-=-⎩例题1、如图,已知直线AB 与x 轴,y 轴分别交于点A (-3,0)、点B (0,2),以点A 为直角顶点,AB 为直角边作等腰直角△ADB ,线段AD 所在直线交y 轴于点P.(1)求直线AB 的解析式;(2)求△BDP 得面积;(3)点C 在x 轴上,D 在x 轴下方时,且△BOC 也是等腰直角三角形,动点M 在y 轴上,若使MC MD -取最大值,求出这个最大值及此时点M 的坐标.【答案】(1)AB 解析式:2+23y x = (2)①1(1,3)D -- 算法:利用1AOB AID ≅ 设1(,)D m n 20(3)0(3)0m n -=--⎧⎨--=-⎩解得13m n =-⎧⎨=-⎩ 则1(1,3)D -- 同理2(5,3)D -(3)根据题意,如图:12(2,0)(2,0)C C -、(两种情况答案一样,自行分类分析)当11,,C D M 三点共线时,MC MD -取最大值,最大值为11C D 11C D 解析式:36y x =--则M (0,-6)11max 10MC MD C D -==练习:1.已知直线1:l y x b =-+与x 轴交于点A ,直线2416:33l y x =-与x 轴交于点B ,直线12l l 、交于点C ,且C 点的横坐标为1.(1)求直线1l 的解析式和点A 的坐标.(2)直线1l 与y 轴交于点D ,将1l 向上平移9个单位得3l ,3l 与x 轴、y 轴分别交于点E 、F ,点P 为3l 上一动点,连接AP 、BP ,当△ABP 的周长最小时,求△ABP 的周长和点P 的坐标.(3)将1l 绕点C 逆时针旋转,使旋转后的直线4l 过点G (-2,0),过点C 作5l 平行于x 轴,点M 、N 分别为直线4l 、5l 上两个动点,是否存在点M 、点N ,使△BMN 是以点M 为直角顶点的等腰直角三角形,若存在,求出点M 的坐标,若不存在,请说明理由.【答案】解:(1)将1x =代入直线41633y x =-,得4161433y =⨯-=-, 故点C 的坐标为(1,4)-,将C 的坐标(1,4)-代入直线y x b =-+得,41b -=-+, 解得3b =-,∴直线1:3l y x =--,令0y =,则30x --=,解得3x =-,故点A 的坐标为(3,0)-,(2)直线3l 为1l 向上平移9个单位所得,故直线3l 的解析式为:6y x =-+,令0x =,得6y =,令0y =,得6x =,故点E ,点F 的坐标分别为(6,0),(0,6), 直线2416:33l y x =-与x 轴交于点B , 令0y =,得4x =,故B 点的坐标为(4,0),取点B 关于3l 的对称点Q ,设点Q 的坐标为(,)a b ,则线段BQ 的中点坐标为(2a b +,)2b 在直线3l , ∴622b a b +=-+,(1) 且(1)14b a ⋅-=--即14b a =-,(2) 联立(1)(2)得622b a b b +⎧=-+⎪⎪⎨⎪,解得:62a b =⎧⎨=⎩, (6,2)Q ∴,直线AQ 的解析式:2293y x =+, 当ABP ∆的周长最小时,即AP BP +最小, 连接AQ ,交直线3l 于点P ,此时AP BP +最小,最小值为22(63)(20)85AQ =++-=,7AB =,此时ABP ∆的周长为785+,由22936y x y x ⎧=+⎪⎨⎪=-+⎩解得48111811x y ⎧=⎪⎪⎨⎪=⎪⎩, P ∴点坐标为48(11,18)11, (3)设4l 的解析式:y mx n =+,将(1,4)C -,(2,0)G -,代入y mx n =+得,024m n m n =-+⎧⎨-=+⎩,解得4383m n ⎧=-⎪⎪⎨⎪=-⎪⎩, 4l ∴的解析式为:4833y x =--, 1︒当点M 在直线4l 的上方时,设点(,4)N n -,点48(,)33M s s --, 过点N ,B 分别作y 轴的平行线,过点M 作x 轴的平行线,三条直线分别交于R ,S 两点,如图则R ,S 的坐标分别为48(,)33n s --,48(4,)33s --, RM s n ∴=-,48433RN s =--,4MS s =-,4833SB s =--, 90NMB ∠=︒,90NMR SMB ∴∠+∠=︒,90BMS MBS ∠+∠=︒,90S R ∠=∠=︒,MB MN =,()MNR MBS AAS ∴∆≅∆,RM SB ∴=,RN SM =, 即4833s n s -=--,484433s s --=-, 解得8s =-,16n =-,∴点M 的坐标为(8,8)-,2︒当点M 在直线4l 的下方时,设点(,4)N n -,点48(,)33M s s --, 过点N ,B 分别作y 轴的平行线,过点M 作x 轴的平行线,三条直线分别交于R ,S 两点,如图则R ,S 的坐标分别为48(,)33n s --,48(4,)33s --, RM n s ∴=-,48433RN s =+-,4MS s =-,4833SB s =+, 90NMB ∠=︒,90NMR SMB ∴∠+∠=︒,90BMS MBS ∠+∠=︒,NMR MBS ∴∠=∠,90S R ∠=∠=︒,MB MN =,()MNR MBS AAS ∴∆≅∆,RM SB ∴=,RN SM =,即4833n s s -=+,484433s s +-=-, 解得407s =,16n =, ∴点M 的坐标为40(7,72)7-, 综上点M 的坐标为(8,8)-或40(7,72)7-,练习2:7.(2020春•官渡区期末)如图,在平面直角坐标系中,直线13:4l y x =与直线2:(0)l y kx b k =+≠相交于点(,3)A a ,直线2l 与y 轴交于点(0,5)B -. (1)求直线2l 的函数解析式;(2)将OAB ∆沿直线2l 翻折得到CAB ∆,使点O 与点C 重合,AC 与x 轴交于点D .求证:四边形AOBC 是菱形;(3)在直线BC 下方是否存在点P ,使BCP ∆为等腰直角三角形?若存在,直接写出点P 坐标;若不存在,请说明理由.【答案】解:(1)直线3?:4l y x =与直线?:l y kx b =+相交于点(,3)A a , (4,3)A ∴, 直线交?l 交y 轴于点(0,5)B -,5y kx ∴=-,把(4,3)A 代入得,345k =-,2k ∴=,∴直线2l 的解析式为25y x =-;(2)22345OA =+=,OA OB ∴=,将OAB ∆沿直线?l 翻折得到CAB ∆,OB OC ∴=,OA AC =,OA OB BC AC ∴===,∴四边形AOBC 是菱形;(3)如图,过C 作CM OB ⊥于M ,则4CM OD ==,5BC OB ==,3BM ∴=,(4,2)C ∴-, 过1P 作1PN y ⊥轴于N , BCP ∆是等腰直角三角形, 190CBP ∴∠=︒,1MCB NBP ∴∠=∠, 1BC BP =,BCM ∴∆≅△1()PBN AAS , 4BN CM ∴==, 1(3,9)P ∴-;同理可得,2(7,6)P -,37(2P ,11)2-. 综上所述,点P 的坐标是(3,9)-或(7,6)-或7(2P ,11)2-.。
一次函数之存在性问题(一)(讲义及答案).

3一次函数之存在性问题(一)(讲义)➢课前预习1.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为( ,1),P 为y 轴上一点,且△POA 为等腰三角形,则满足条件的点P 的坐标为.2.如图是乐乐的五子棋棋盘的一部分(5×5 的正方形网格),以点D,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出个.1➢知识点睛1.存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查.2.存在性问题的处理思路:①分析不变特征分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定,定义等)考虑分类.②分类画图求解分析各种状态的可能性,画出符合题意的图形.通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形.③结果验证回归点的运动范围,画图或推理,验证结果.注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点、线、图形;函数背景往往研究点坐标、表达式等.3.等腰三角形存在性的不变特征及特征下操作要点举例:两定一动连接两个定点得定线段,定线段在等腰三角形中作腰或底进行分类(两圆一线),通常借助腰相等或者“三线合一”进行求解.4.全等三角形存在性的特征分析及特征下操作要点:分析两三角形的不变特征及对应关系,根据不确定的对应关系进行分类,通常借助边、角的对应相等进行求解.➢精讲精练1.如图,直线y=kx-4 与x 轴、y 轴分别交于点A,B,且OB4.OA 3点 C 在第一象限,且在直线y=kx-4 上,△AOC 的面积是6.(1)求点C 的坐标.(2)x 轴上是否存在点P,使△POC 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图,直线y=2x+3 与y 轴交于点A,与直线x=1 交于点B.(1)求点A,B 的坐标.(2)在直线x=1 上是否存在点P,使△ABP 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.2 3.如图,在平面直角坐标系中,四边形 OABC 的边 OC ,OA 分 别与 x 轴、y 轴重合,AB ∥OC ,∠BCO =45°,BC = 4 ,点 C 的坐标为(-6,0),直线 BD 交 y 轴正半轴于点 D ,且 OD =2.(1) 求直线 BD 的表达式.(2) 若 P 是直线 BD 上的一个动点,是否存在点 P ,使以O ,D ,P 为顶点的三角形是等腰三角形?若存在,求出点 P 的坐标;若不存在,请说明理由.4.如图,直线y =1x + 2 与x 轴、y 轴分别交于点A,B,点P 是2直线y =1x + 2 上的一个动点,过点P 作直线AB 的垂线,分2别交x 轴、y 轴于点E,F,是否存在点P,使△EOF≌△BOA?若存在,求出点P 的坐标;若不存在,请说明理由.5.如图,直线y=-x+2 与x 轴、y 轴分别交于点A,B,点C 是直线y=-x+2 上的一个动点(不与点A 重合).过点C 的另一直线CD 与y 轴相交于点D,是否存在点C,使△BCD 与△AOB 全等?若存在,求出点C 的坐标;若不存在,请说明理由.5 5 2 2 2 2 2 【参考答案】➢ 课前预习 1. (0,2)或(0,-2) 2. 4➢ 知识点睛1. 运动的结果 ➢ 精讲精练1. (1)点 C 的坐标为(6,4);(2)存在,点 P 的坐标为( -2 0)或( 13,0).3,0),( 2,0),(12,2. (1)点 A 的坐标为(0,3),点 B 的坐标为(1,5); (2)存在,点 P 的坐标为(1,5 + ),(1,5 - ),(1,1)或(1, 15).43. (1)直线 BD 的表达式为 y = -x + 4 ;(2)存在,点 P 的坐标为(2,0),( ,2 - ),( - , 2 + 2 )或(1,1).4. 存在,点 P 的坐标为( - 12 , 4 )或( 4 , 12)5 5 5 55. 存在,点 C 的坐标为( - ,2 + ),( 2 ,2 - )或(-2,4).13 13 2。
初中数学课件一次函数中三角形的存在性问题

求出的值,并求此时点的坐标;若不能,请说明理由.
课堂小结
等腰三角形的存在性:两圆加一中垂线,记得去掉共线点.
知识讲解
直角三角形的存在性
关联知识点
1
尺规作图:作弧
2
直角三角形斜边上的中线等于斜边上的
一半
知识讲解
直角三角形的存在性:一圆加上两垂线,构造思想得坐标.
△ 为直角三角形 ,写出所有符合条件的点的坐标.
课堂小结
直角三角形的存在性:一圆加上两垂线,构造思想得坐标.
原题证明
一次函数 =
4
3
+ 4分别交轴、y轴于、两点,在轴上取一点C,使
△ 为等腰三角形 ,写出所有符合条件的点的坐标.
原题证明
如图,点坐标为(4,0),点在第一象限,且在直线 = − + 5上,
此时,2 = = 4 − (−3) = 7,点2 在第一象限,离轴的距离为7,离
轴的距离为4,∴ 2 (4, 7);
③当∠3 是直角时,∵∠ = 45∘
∴此情况不存在,应舍去
综上所述,当取0.5或4时,△ 是直角三角形.
应用练习
一次函数 =
4
3
+ 4分别交轴、y轴于、两点,在轴上取一点C,使
当 = 时,3 点的坐标为(2, 0),
当 = 时,4 点的坐标为(0, 0),
综上所述,点的坐标为(2 2 − 2, 0),(−2 2 − 2, 0),(2, 0),(0, 0).
应用练习
如图,在平面直角坐标系中,一次函数 = 1 + 的图象与轴交于点
(−3, 0),与 轴交于点 ,且与正比例函数 = 的图象交点为(3, 4).求:
一次函数等腰直角三角形存在性问题教案

专题:一次函数中等腰直角三角形存在性问题【教学目标】理解、掌握一次函数中等腰直角三角形存在性问题两定一动模型点的找法和算法,以及两动一定模型的解题思路。
经历作图,旋转三角板这些操作,促进学生对数学知识的理解,形成有效的学习模式。
【回顾】 一次函数中等腰三角形存在性问题找点方法: ,算法: 一次函数中直角三角形存在性问题找点方法: ,算法:【新知】以(,)A A A x y 、(,)c c C x y 为三角形的边,在平面内找一点B 使得△ABC 为等腰直角三角形(二定一动)一.找法:二.算法:例题例1:如图,在平面直角坐标系中,已知A(a,0),B(0,b)其中a、b满足关系式|a﹣2|=-(b﹣6)2(1)求a,b的值,并写出直线AB的函数表达式;(2)过点A作AD⊥AB,交BC延长线于点D,且AB=AD,N是平面直角坐标系中的一点,是否存在以BD为直角边的等腰直角三角形△BDN,若存在,请直接写出点N的坐标.变式:如图,在平面直角坐标系中,已知A(a,0),B(0,b),其中a、b满足关系式|a﹣2|=-(b﹣6)2(1)求a,b的值,并写出直线AB的函数表达式;(2)过点A作AD⊥AB,交BC延长线于点D,且AB=AD,点M在直线AB 上,点Q是x轴上异于点A的一个动点,是否存在以MQ为斜边的等腰直角三角形△DQM,若存在,请直接写出点Q的坐标.练习1:如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,点A坐标(﹣9,0),直线BC的解析式为y=−34x+12,点D是线段BC上一动点(不与点B、点C重合),过点D作直线DE⊥OB,垂足为E.(1)求点B、点C的坐标;(2)求直线AC的解析式;(3)若点N在射线DE上,是否存在点N使△BCN是等腰直角三角形?若存在,请直接写出点D的坐标;若不存在,请说明理由.2. 如图1,直线y=−34x+m交x轴于点A(4,0),交y轴正半轴于点B.(1)求△AOB的面积;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为射线AB(不含A点)上一点,过点P作y轴的平行线交射线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,在y轴上是否存在点N,使△PQN是等腰直角三角形?若存在,请求出点N的坐标;若不存在,请说明理由.。
最新一次函数--直角三角形存在性问题

一次函数--直角三角形存在性问题处理方法一次函数y=kx+b(k≠0)中k、b的几何意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的。
斜率公式已知点、,且与轴不垂直,过两点、的直线的斜率公式同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:当时,两直线平行。
当时,两直线垂直。
两直线垂直设两条直线的斜率分别为.若,则.练习1、如图,已知A(1,0),B(0,3),P是直线x=2上一点,若△ABP是以AB为斜边的直角三角形,则点P的坐标为。
2、如图,已知点A(0,1),B(4,3),P是x轴上一点,若△ABP是直角三角形,则点P的坐标为。
3、如图,一次函数(0)y kx b k=+≠的图像交坐标轴于A,B两点,其中A(-4,0)B(0,3),(1)求直线AB的解析式;(2)点C的坐标为(5,2m),连接AC,BC,若∠ACB=90o,则m的值为___________。
练习21. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求B 点的坐标和k 的值.(2)若点A (x ,y )是第一象限内的直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.2.如图,在直角坐标系中,一次函数y=23x +的图象与x 轴交于点A ,与y 轴交于点B .(1)已知OC ⊥AB 于C ,求C 点坐标;(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图,平面直角坐标系中,四边形OABC为直角梯形,CB∥OA,∠OCB=90°,CB=1,AB112y x=-+过A点,且与y轴交于D点.4.如图,在平面直角坐标系中,直线l1:y=162x-+分别与x轴、y轴交于点B,C,且与直线l2:y=12x交于点A.(1)求出点A,B,C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;。
一次函数的存在性问题(共13题)

一次函数之存在性问题【1】知识点睛函数背景下研究存在性问题,先把函数信息转化为几何信息,然后按照存在性问题来处理.几何图形一次函数坐标1.如图,直线2y x =+与坐标轴分别交于A ,B 两点,点C 在y 轴上,且12OA AC =,直线CD ⊥AB 于点P ,交x 轴于点D .(1)求点P 的坐标;(2)坐标系内是否存在点M ,使以点B ,P ,D ,M 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由. 2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且43OC OB =. (1)求B 点的坐标和k 的值. (2)若点A (x ,y )是第一象限内的直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x 轴上是否存在点P ,使△POA 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.3. 如图,在平面直角坐标系中,点A ,B 分别在x 轴、y 轴上,OA =6,OB =12,点C 是直线y =2x 与直线AB 的交点,点D 在线段OC 上,OD=(1)求直线AB 的解析式及点C 的坐标;(2)求直线AD 的解析式;(3)P 是直线AD 上的一个动点,在平面内是否存在点Q ,使以O ,A ,P ,Q 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.4. 如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0),P (x ,y )是直线122y x =+上的一个动点(点P 不与点A 重合).(1)在P 点运动过程中,试写出△OPC 的面积S 与x 的函数关系式; (2)当P 运动到什么位置时,△OPC 的面积为278,求出此时点P 的坐标;(3)过P 作AB 的垂线分别交x 轴、y 轴于E ,F 两点,是否存在这样的点P ,使△EOF ≌△BOA ?若存在,求出点P 的坐标;若不存在,请说明理由.6.如图,在直角坐标系中,一次函数y=23x +的图象与x 轴交于点A ,与y 轴交于点B . (1)已知OC ⊥AB 于C ,求C 点坐标;(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.x7.如图,一次函数y=+的函数图象与x轴、y轴分别交于点A,B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,2),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)在坐标轴上是否存在一点Q,使△QAB是等腰三角形?若存在,请直接写出点Q所有可能的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,直线y=x+1与y=-3 4x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求出点A,B,C 的坐标;(2)在直线AB上是否存在点E,使得以点E,D,O,A为顶点的四边形是平行四边形?如果存在,求出点E的坐标;如果不存在,请说明理由.9.如图,在平面直角坐标系中,直线l1:y=16 2x-+分别与x轴、y轴交于点B,C,且与直线l2:y=12x交于点A.(1)求出点A,B,C的坐标;(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O,C,P,Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.10.如图,直线y=kx-1与x轴、y轴分别交于B,C两点,且12 OCOB=.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点,则当点A运动到什么位置时,△AOB的面积是2?(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.11.如图,将Rt△AOB放入平面直角坐标系中,点O与坐标原点重合,点A在x轴上,点B在y(3)x轴上是否存在点P,使△PAD是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(1)求点G的坐标;(2)求直线EF的解析式;13.如图,在平面直角坐标系中,直线y=-(2)当点P运动到什么位置时,△PCO的面积为15?(3)过点P作AB的垂线分别交x轴、y轴于点E,F,是否存在这样的点P,使△EOF≌△BOA?若存在,求出点P的坐标;若不存在,请说明理由.。
恒成立与存在性问题

01
总结词
一次函数性质简单,常用于基础问 题。
总结词
一次函数在定义域内单调,不存在 极值点。
03
02
总结词
一次函数图像为直线,单调性明显。
总结词
一次函数在定义域内单调,恒成立 与存在性问题较易解决。
04
二次函数的恒成立与存在性问题实例
总结词
二次函数开口方向由二次项系数决定。
总结词
二次函数在区间$[-infty, frac{b}{2a}]$上单调递增,在区间$[-
利用三角函数的周期性、对称性、数形结合 等方法,判断三角函数在某个区间内是否存 在极值点或零点。
三角函数存在性问题的应 用
在解决实际问题中,如物理、工程等领域, 常常需要判断某个三角函数是否满足某些条
件,如是否存在最优解或可行解。
03
恒成立与存在性问题的解 法
分离参数法
总结词
分离参数法是一种通过将参数分离到不等式的两边,从而简化问题的方法。
判别式法
总结词
判别式法是一种通过引入判别式来解决 问题的方法。
VS
详细描述
判别式法的基本思想是通过引入判别式来 简化方程的解的求解过程。这种方法在处 理一元二次方程和二元二次方程组时非常 有效。通过判别式,我们可以更容易地找 到方程的解,并且可以更好地理解解的性 质和分布。
04
实例分析
一次函数的恒成立与存在性问题实例
详细描述
分离参数法的基本思想是将参数从不等式中分离出来,单独放在不等式的另一 边,这样可以更容易地找到参数的取值范围,从而解决问题。这种方法在处理 包含参数的不等式问题时非常有效。
数形结合法
总结词
数形结合法是一种通过将问题转化为 图形问题,从而直观地理解问题的方 法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数之存在性问题
知识点睛
函数背景下研究存在性问题,先把函数信息转化为几何信息,然后按照存在性问题来处理.
几何图形
一次函数坐标
1.
如图,直线2y x =
+与坐标轴分别交于A ,B 两点,点C 在y 轴上,且12
OA AC =,直线CD ⊥AB 于点P ,交x 轴于点D . (1)求点P 的坐标;
(2)坐标系内是否存在点M ,使以点B ,P ,D ,M 为顶点的四边形为平行四边形若存在,求出点M 的坐标;若不存在,请说明理由.
2. 如图,直线y =kx -4与x 轴、y 轴分别交于B ,C 两点,且4
3
OC OB =. (1)求B 点的坐标和k 的值.
(2)若点A (x ,y )是第一象限内的直线y =kx -4上的一个动点,则当点A 运动到什么位置时,△AOB 的面积是6
(3)在(2)成立的情况下,x 轴上是否存在点P
,使
△POA是等腰三角形若存在,求出点P的坐标;若不存在,请说明理由.
3.如图,在平面直角坐标系中,点A,B分别在x轴、y轴上,OA=6,OB=12,点C是直线y=2x
与直线AB的交点,点D在线段OC上,OD
=
(1)求直线AB的解析式及点C的坐标;
(2)求直线AD的解析式;
(3)P是直线AD上的一个动点,在平面内是否存在点Q,使以O,A,P,Q为顶点的四边形是菱形若存在,求出点Q的坐标;若不存在,请说明理由.
4. 如图,直线1
22
y x =
+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0)
,P (x ,y )是直线1
22
y x =
+上的一个动点(点P 不与点A 重合)
. (1)在P 点运动过程中,试写出△OPC 的面积S 与x 的函数关系式;
(2)当P 运动到什么位置时,△OPC 的面积为27
8
,求出此时点P 的坐标;
(3)过P 作AB 的垂线分别交x 轴、y 轴于E ,F 两点,是否存在这样的点P ,使△EOF ≌△BOA 若存在,求出点P 的坐标;若不存在,请说明理由.
6.如图,在直角坐标系中,一次函数y
=23
x +的图象与x 轴交于点A ,与y 轴交于点B . (1)已知OC ⊥AB 于C ,求C 点坐标;
(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形若存在,请直接写出点P 的坐标;若不存在,请说明理由.
x
x
7.如图,一次函数y
=+x轴、y轴分别交于点A,B,以线段AB为直
角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;
(2)如果在第二象限内有一点P(m
,
2
),试用含m的代数式表示△APB的面积,并求当
△APB与△ABC面积相等时m的值;
(3)在坐标轴上是否存在一点Q,使△QAB是等腰三角形若存在,请直接写出点Q所有可能的坐标;若不存在,请说明理由.
8.如图,在平面直角坐标系中,直线y=x+1与y=-3
4
x+3交于点A,分别交x轴于点B和点C,
点D是直线AC上的一个动点.
(1)求出点A,B,C的坐标;
(2)在直线AB上是否存在点E,使得以点E,D,O,A为顶点的四边形是平行四边形如果存在,求出点E的坐标;如果不存在,请说明理由.
9.如图,在平面直角坐标系中,直线l1:y=
1
6
2
x
-+分别与x轴、y轴交于点B,C,且与直线
l
2:y=
1
2
x交于点A.
(1)求出点A,B,C的坐标;
(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的函数表达式;
(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O,C,P,Q 为顶点的四边形是菱形若存在,直接写出点Q的坐标;若不存在,请说明理由.
10.如图,直线y=kx-1与x轴、y轴分别交于B,C两点,且
1
2 OC
OB
=.
(1)求B点的坐标和k的值.
(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点,则当点A运动到什么位置时,△AOB的面积是2
(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形若存在,求出点P
的坐标;若不存在,请说明理由.
11.如图,将Rt△AOB放入平面直角坐标系中,点O与坐标原点重合,点A在x轴上,点B
∠BAO=30°,将△AOB沿直线BE折叠,使得边OB落在AB上,点O与点D重合.
(1)求直线BE的解析式;
(2)求点D的坐标;
(3)x轴上是否存在点P,使△PAD是等腰三角形若存在,求出点P的坐标;若不存在,请说明理由.
12.如图,四边形ABCD为矩形,点D与坐标原点重合,点C在x轴上,点A在y轴上,点B 的坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,点E,F分别在AD,AB上,且F点的坐标是(2,4).
(1)求点G的坐标;
(2)求直线EF的解析式;
(3)坐标系内是否存在点M,使以点A,E,F,M为顶点的四边形为平行四边形若存在,求出点M的坐标;若不存在,请说明理由.
13.如图,在平面直角坐标系中,直线y=-x+8与x轴、y轴分别交于点A,B,点P(x,y)是直线AB上一动点(点P不与点A重合),点C(6,0),O是坐标原点,设△PCO的面积为S.
(1)求S与x的函数关系式.
(2)当点P运动到什么位置时,△PCO的面积为15
(3)过点P作AB的垂线分别交x轴、y轴于点E,F,是否存在这样的点P,使△EOF≌△BOA若存在,求出点P的坐标;若不存在,请说明理由.。