椭圆及其标准方程教案

合集下载

高中数学椭圆及其标准方程教案

高中数学椭圆及其标准方程教案

2。

2.1椭圆及其标准方程(一)教学目标1。

理解椭圆的定义;2.理解椭圆的标准方程的推导,在化简椭圆方程的过程中提高学生的运算能力;3.掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。

(二)教学重点与难点重点:掌握椭圆的标准方程难点:会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。

(三)教学过程问题1:前面两节课,说一说所学习过的内容?1、曲线与方程的概念?2、求曲线的方程的步骤?引例1:1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长(说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题)引例2:手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的21,F F 两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆 分析:(1)轨迹上的点是怎么来的?(2)在这个运动过程中,什么是不变的?答:两个定点,绳长即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 点题:今天我们学习“椭圆及其标准方程” 活动二:师生交流、进入新知,(20分钟) 1、椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距即1212|PF |||||PF F F +>;焦点:12,F F ;焦距:12||F F注意:椭圆定义中容易遗漏的两处地方: (1)两个定点-—-两点间距离确定(2)绳长—-轨迹上任意点到两定点距离和确定思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆)由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)问题2:你能利用上一节学过的坐标法求出椭圆的方程吗? 取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴设),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}a PF PF P P 221=+=∴221)(y c x PF ++= 又,a y c x y c x 2)()(2222=+-+++∴,化简,得)()(22222222c a a y a x c a -=+-,由定义c a 22>,022>-∴c a令222b c a=-∴代入,得222222b a y a x b =+,两边同除22b a 得12222=+b y a x 此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程其中222b c a+=问题3:书本P39页思考? 问题4:书本P40页思考?注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+b y a x 中的y x ,调换,即可得12222=+bxa y ,也是椭圆的标准方程2、椭圆标准方程:(1)焦点在焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程12222=+by a x其中222b c a+=(2)焦点在焦点在y 轴上,焦点是),0(),,0(21c F c F -,中心在坐标原点的椭圆方程12222=+bx a y其中222b c a+=(3)方程),0,0(122n m n m ny m x ≠>>=+就不能肯定焦点在哪个轴上;由于m n与的大小关系判断焦点在那个坐标轴上。

椭圆及其方程教案(中档篇)

椭圆及其方程教案(中档篇)

椭圆及其方程教案(中档篇)第一章:椭圆的概念1.1 椭圆的定义让学生了解椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的集合。

通过图形和实例让学生理解椭圆的基本性质,如焦点、半长轴、半短轴等。

1.2 椭圆的标准方程引导学生推导椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\)是半长轴,\(b\)是半短轴。

解释椭圆标准方程的含义和应用,如通过方程可以确定椭圆的位置和大小。

第二章:椭圆的性质2.1 焦点和焦距让学生了解椭圆的焦点和焦距的概念,焦点是椭圆上到两个焦点距离之和为常数的点,焦距是两个焦点之间的距离。

通过图形和实例解释焦点和焦距与椭圆的大小和形状的关系。

2.2 半长轴和半短轴引导学生了解椭圆的半长轴和半短轴的概念,半长轴是椭圆上横坐标方向的半径,半短轴是椭圆上纵坐标方向的半径。

解释半长轴和半短轴与椭圆的大小和形状的关系。

第三章:椭圆的参数方程3.1 椭圆的参数方程定义让学生了解椭圆的参数方程:\(x = a \cos t\),\(y = b \sin t\),其中\(t\)是参数,\(a\)是半长轴,\(b\)是半短轴。

通过图形和实例解释椭圆参数方程的含义和应用,如可以通过参数方程描绘椭圆的形状和位置。

3.2 椭圆的参数方程的应用引导学生了解椭圆的参数方程的应用,如通过参数方程可以求椭圆的面积、弧长等。

给出实例,让学生学会使用参数方程解决实际问题。

第四章:椭圆的图像4.1 椭圆的标准图像让学生了解椭圆的标准图像,即椭圆的图形。

通过图形和实例解释椭圆的标准图像的特点和形状。

4.2 椭圆的图像变换引导学生了解椭圆的图像变换,如平移、缩放等。

给出实例,让学生学会使用图像变换改变椭圆的位置和大小。

第五章:椭圆的应用5.1 椭圆在几何中的应用让学生了解椭圆在几何中的应用,如椭圆的面积、弧长等。

通过实例让学生学会使用椭圆的性质和方程解决几何问题。

椭圆及其标准方程一优秀教学设计精选全文完整版

 椭圆及其标准方程一优秀教学设计精选全文完整版

可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。

2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。

教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。

《椭圆及其标准方程》教案

《椭圆及其标准方程》教案

《椭圆及其标准方程》教案一、教学目标1、知识与技能目标(1)理解椭圆的定义,掌握椭圆的标准方程。

(2)能根据椭圆的标准方程求出椭圆的焦点坐标、焦距等相关量。

2、过程与方法目标(1)通过动手操作,经历椭圆的形成过程,培养学生的动手能力和观察分析能力。

(2)通过椭圆标准方程的推导,培养学生的逻辑推理能力和数学运算能力。

3、情感态度与价值观目标(1)让学生感受数学的美,激发学生学习数学的兴趣。

(2)通过小组合作学习,培养学生的合作精神和创新意识。

二、教学重难点1、教学重点(1)椭圆的定义。

(2)椭圆的标准方程及其推导。

2、教学难点(1)椭圆标准方程的推导。

(2)椭圆标准方程中 a、b、c 的关系及应用。

三、教学方法讲授法、探究法、演示法、讨论法四、教学过程1、导入新课通过展示生活中常见的椭圆形状的物体,如椭圆形的镜子、椭圆形的赛道等,引出本节课的主题——椭圆。

2、椭圆的定义准备一根绳子,将其两端固定在黑板上的两点 F1、F2,用铅笔拉紧绳子,移动铅笔,画出一个封闭的曲线。

让学生观察这个曲线的形状,引出椭圆的定义:平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距,记为 2c。

强调定义中的关键条件:(1)平面内。

(2)两个定点。

(3)距离之和为常数且大于焦距。

3、椭圆的标准方程(1)建系以经过椭圆两焦点 F1、F2 的直线为 x 轴,线段 F1F2 的垂直平分线为 y 轴,建立平面直角坐标系。

设椭圆的焦距为 2c(c>0),椭圆上任意一点 M 的坐标为(x,y),焦点 F1、F2 的坐标分别为(c,0)、(c,0)。

(2)推导方程根据椭圆的定义,|MF1| +|MF2| = 2a(2a > 2c),则:\(\sqrt{(x + c)^2 + y^2} +\sqrt{(x c)^2 + y^2} = 2a\)移项平方可得:\((\sqrt{(x + c)^2 + y^2})^2 =(2a \sqrt{(x c)^2+ y^2})^2\)展开并整理得:\(a^2 cx = a\sqrt{(x c)^2 + y^2}\)再平方并整理得:\((a^2 c^2)x^2 + a^2y^2 = a^2(a^2 c^2)\)因为\(b^2 = a^2 c^2\)(其中 b>0),所以方程可化为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(a>b>0)这就是焦点在 x 轴上的椭圆的标准方程。

椭圆及其标准方程教学设计

椭圆及其标准方程教学设计

椭圆及其标准方程教学设计《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础知识。

这一节课是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好准备。

它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。

二、学情分析高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。

但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。

基于上述分析,我采取的是“创设问题情景-----自主探索研究-----结论应用巩固”的一种研究性教学方法,教学中采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

使学生真正成为课堂的主体。

三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的实用性;2、进行分组实验,让学生亲自动手,体验知识的发生过程,并培养团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、知识与技能目标:理解椭圆定义、掌握标准方程及其推导。

2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。

3、情感、态度和价值观目标:(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。

(2)进行数学美育的渗透,用哲学的观点指导学习。

五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。

教学难点:标准方程的推导。

四、说教学过程(一)、创设情景,导入新课。

(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。

2、提问:同学们在日常生活中都见过哪些带有椭圆形状的物体?对学生的回答进行筛选,并利用微机放映几个例子的图片。

设计意图:通过观看影音资料,一方面使学生简单了解椭圆的实际应用,另一方面产生问题意识,对研究椭圆产生心理期待。

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案一、教学目标:1. 让学生理解椭圆的定义及其性质。

2. 引导学生掌握椭圆的标准方程及其求法。

3. 培养学生运用椭圆知识解决实际问题的能力。

二、教学内容:1. 椭圆的定义与性质2. 椭圆的标准方程3. 椭圆方程的求法4. 椭圆的应用三、教学重点与难点:1. 重点:椭圆的定义、性质、标准方程及其求法。

2. 难点:椭圆方程的求法及其应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究椭圆的定义与性质。

2. 利用图形演示法,让学生直观理解椭圆的标准方程。

3. 运用案例分析法,培养学生解决实际问题的能力。

4. 采用小组讨论法,促进学生合作学习。

五、教学过程:1. 导入:通过展示生活中的椭圆实例,引导学生思考椭圆的定义。

2. 新课讲解:(1) 讲解椭圆的定义,引导学生理解椭圆的基本性质。

(2) 讲解椭圆的标准方程,让学生掌握椭圆方程的表示方法。

(3) 讲解椭圆方程的求法,引导学生学会运用数学方法解决问题。

3. 案例分析:分析实际问题,运用椭圆知识解决问题。

4. 巩固练习:布置练习题,让学生巩固所学知识。

5. 课堂小结:总结本节课的主要内容,强调重点与难点。

6. 课后作业:布置作业,让学生进一步巩固椭圆知识。

六、教学目标:1. 让学生掌握椭圆的焦点和准线的概念。

2. 引导学生了解椭圆的离心率及其求法。

3. 培养学生运用椭圆的性质解决几何问题的能力。

七、教学内容:1. 椭圆的焦点和准线2. 椭圆的离心率3. 椭圆的参数方程4. 椭圆的图像特点5. 椭圆的应用八、教学重点与难点:1. 重点:椭圆的焦点、准线、离心率的概念及其应用。

2. 难点:椭圆的参数方程及其图像特点。

九、教学方法:1. 采用问题驱动法,引导学生探究椭圆的焦点和准线。

2. 利用几何画图软件,演示椭圆的焦点和准线。

3. 运用案例分析法,让学生运用椭圆性质解决几何问题。

4. 采用小组讨论法,促进学生合作学习。

十、教学过程:1. 导入:通过复习上一节课的内容,引导学生思考椭圆的焦点和准线。

《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)

《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。

《椭圆及其标准方程》说课教案

《椭圆及其标准方程》说课教案

《椭圆及其标准方程》说课教案一、教材分析1. 版本:人教A版2. 章节:高中数学必修二第五章第一节3. 内容概述:本节主要介绍椭圆的定义、性质及标准方程的求法。

二、教学目标1. 知识与技能:(1)理解椭圆的定义及其几何性质;(2)掌握椭圆标准方程的求法及应用。

2. 过程与方法:(1)通过观察、分析、归纳,引导学生发现椭圆的性质;(2)培养学生运用椭圆性质解决实际问题的能力。

3. 情感、态度与价值观:(1)激发学生对数学学科的兴趣;(2)培养学生团结协作、勇于探索的精神。

三、教学重难点1. 重点:椭圆的定义、性质及标准方程的求法。

2. 难点:椭圆标准方程的求法及应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究;2. 利用多媒体辅助教学,直观展示椭圆的性质;3. 实例分析,让学生学会运用椭圆知识解决实际问题。

五、教学过程1. 导入新课(1)复习圆的定义及性质;(2)提问:在平面内,是否存在一种曲线,它的所有点到两个固定点的距离之和为定值?2. 自主探究(1)学生分组讨论,尝试给出椭圆的定义;3. 椭圆标准方程的求法(1)引导学生发现椭圆的标准方程;(2)讲解椭圆标准方程的求法及应用。

4. 实例分析(1)给出实际问题,让学生运用椭圆知识解决;5. 巩固练习(1)学生独立完成练习题;(2)教师点评并讲解答案。

6. 课堂小结(1)回顾本节课所学内容;(2)强调椭圆的性质及标准方程的应用。

7. 作业布置(1)课后习题;(2)探究性问题:如何求椭圆的面积?8. 板书设计椭圆及其标准方程椭圆的定义:平面内到两个定点F1、F2的距离之和为定值的点的轨迹。

椭圆的性质:1. 椭圆是闭合曲线;2. 椭圆的两个焦点到椭圆上任意一点的距离之和为定值(2a);3. 椭圆的半长轴a、半短轴b、焦距2c之间的关系:a²=b²+c²。

椭圆的标准方程:当焦点在x轴上时,椭圆的标准方程为:(x²/a²) + (y²/b²) = 1;当焦点在y轴上时,椭圆的标准方程为:(x²/b²) + (y²/a²) = 1。

椭圆的定义及其标准方程说课稿及教案

椭圆的定义及其标准方程说课稿及教案

椭圆的定义及其标准方程说课稿及教案一、说课稿1. 椭圆的定义椭圆是一种平面内到两个固定点(焦点)距离之和为常数的点的轨迹。

这两个固定点称为椭圆的焦点,常数称为椭圆的长轴。

椭圆的焦点可以在平面上任意位置,但椭圆的对称轴必须通过焦点。

2. 椭圆的标准方程椭圆的标准方程为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,a是椭圆的长轴的一半,b是椭圆的短轴的一半。

椭圆的长轴和短轴分别与x轴和y轴平行。

3. 焦点与椭圆的关系椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的长轴的长度。

即\[ 2a = |PF_1| + |PF_2| \]其中,\( PF_1 \)和\( PF_2 \)分别是椭圆的两个焦点。

4. 椭圆的性质(1)椭圆的长轴和短轴互相垂直,且通过椭圆的中心点。

(2)椭圆的焦点在长轴上,且距离中心点的距离分别为\( c \)和\( -c \),其中\( c \)满足\( c^2 = a^2 b^2 \)。

(3)椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴的长度。

(4)椭圆的面积为\( S = \pi ab \)。

二、教学目标1. 了解椭圆的定义及其性质。

2. 掌握椭圆的标准方程及其求法。

3. 能够应用椭圆的知识解决实际问题。

三、教学内容1. 椭圆的定义及其性质。

2. 椭圆的标准方程及其求法。

3. 椭圆在实际问题中的应用。

四、教学方法1. 采用讲解、演示、练习相结合的方法进行教学。

2. 使用多媒体课件辅助教学,增强学生的直观感受。

3. 设置实例分析,引导学生运用椭圆知识解决实际问题。

五、教学步骤1. 导入:通过展示生活中常见的椭圆形状物体,引导学生关注椭圆的形状特征。

2. 讲解椭圆的定义及其性质,引导学生理解椭圆的基本概念。

3. 推导椭圆的标准方程,让学生掌握椭圆方程的求法。

4. 结合实际问题,让学生运用椭圆知识进行分析。

5. 课堂练习:设置相关练习题,让学生巩固所学知识。

椭圆及其方程教案中档篇

椭圆及其方程教案中档篇

椭圆及其方程教案中档篇一、教学目标1. 知识与技能:(1)理解椭圆的定义及其几何性质;(2)掌握椭圆的标准方程及其求法;(3)能够运用椭圆方程解决实际问题。

2. 过程与方法:(1)通过观察、实验、探究等方法,引导学生发现椭圆的性质;(2)培养学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探究、积极思考的科学精神。

二、教学内容1. 椭圆的定义及其性质(1)椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为常数的点的轨迹。

(2)椭圆的性质:椭圆的两个焦点在x轴上,距离为2c,中心在原点O(h, k),长轴为2a,短轴为2b。

2. 椭圆的标准方程(1)椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(a>b>0)(2)椭圆的标准方程的求法:根据椭圆的性质,确定a、b、c的值,代入标准方程即可。

3. 椭圆方程的应用(1)求椭圆上一点的坐标:将点的坐标代入椭圆方程,解方程得到椭圆上一点的坐标。

(2)求椭圆的面积:利用椭圆的方程,求出椭圆的半长轴a和半短轴b,计算椭圆的面积\(S = \pi ab\)。

三、教学重点与难点1. 教学重点:(1)椭圆的定义及其性质;(2)椭圆的标准方程及其求法;(3)椭圆方程的应用。

2. 教学难点:(1)椭圆标准方程的求法;(2)椭圆方程在实际问题中的应用。

四、教学方法1. 观察与实验:引导学生通过观察、实验发现椭圆的性质;2. 探究与讨论:分组讨论,引导学生发现椭圆方程的求法;3. 案例分析:分析实际问题,引导学生运用椭圆方程解决实际问题。

五、教学准备1. 教学素材:教材、多媒体课件;2. 教学工具:黑板、粉笔、多媒体设备。

六、教学过程1. 导入新课:回顾上一节课的内容,引出本节课的学习主题——椭圆及其方程。

2. 讲解椭圆的定义及其性质:通过示例和几何画板软件,展示椭圆的定义和性质,让学生直观地理解椭圆。

椭圆及其标准方程教案

椭圆及其标准方程教案

椭圆及其标准方程教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及其性质;(2)掌握椭圆的标准方程及其求法;(3)能够运用椭圆的标准方程解决相关问题。

2. 过程与方法:(1)通过观察、分析、归纳,培养学生的逻辑思维能力;(2)利用数形结合,提高学生运用数学知识解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。

二、教学内容1. 椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。

2. 椭圆的性质:(1)椭圆的两个焦点在x轴上,且距离为2c;(2)椭圆的长轴为2a,短轴为2b,其中a>b>0;(3)椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1。

3. 椭圆的标准方程求法:(1)已知椭圆的两个焦点坐标和长轴、短轴长度,求椭圆的标准方程;(2)已知椭圆的离心率e和长轴、短轴长度,求椭圆的标准方程;(3)已知椭圆上的三点坐标,求椭圆的标准方程。

三、教学重点与难点1. 教学重点:(1)椭圆的定义及其性质;(2)椭圆的标准方程及其求法。

2. 教学难点:(1)椭圆标准方程的求法;(2)椭圆性质的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究椭圆的定义、性质和标准方程;2. 利用数形结合,让学生直观地理解椭圆的性质和标准方程;3. 设计具有针对性的练习题,巩固所学知识。

五、教学过程1. 引入:通过展示椭圆的实际应用场景,激发学生的兴趣,引出椭圆的定义;2. 讲解:讲解椭圆的性质和标准方程,引导学生理解并掌握;3. 例题:讲解椭圆标准方程的求法,分析解题思路,让学生跟随解题过程;4. 练习:布置练习题,让学生独立完成,巩固所学知识;六、教学策略1. 采用互动式教学,鼓励学生提问和发表见解,提高学生的参与度;2. 利用多媒体课件,直观展示椭圆的性质和标准方程,增强学生的理解;3. 注重个体差异,针对不同学生的学习水平,给予适当的指导和帮助;4. 创设情境,引导学生运用椭圆的知识解决实际问题,提高学生的应用能力。

椭圆标准方程的教案6篇

椭圆标准方程的教案6篇

椭圆标准方程的教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如心得体会、演讲致辞、合同协议、规章制度、条据文书、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as insights, speeches, contract agreements, rules and regulations, policy documents, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!椭圆标准方程的教案6篇教案的编写需要充分考虑学生的学习特点和需求,教案能够帮助教师更好地设计评价方式,准确评估学生的学习成果和进步,本店铺今天就为您带来了椭圆标准方程的教案6篇,相信一定会对你有所帮助。

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案第一章:引言1.1 椭圆的定义讲解椭圆的概念:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的集合。

通过实际例子演示椭圆的形成过程,让学生直观理解椭圆的定义。

1.2 椭圆的性质介绍椭圆的基本性质:椭圆有两个焦点,两个半轴,对称性等。

通过图形和数学公式展示椭圆的性质,让学生理解椭圆的特性。

第二章:椭圆的标准方程2.1 椭圆的标准方程定义讲解椭圆标准方程的概念:椭圆的标准方程是\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\) 是半长轴,\(b\) 是半短轴。

通过实际例子解释椭圆标准方程的含义和作用。

2.2 椭圆标准方程的推导讲解椭圆标准方程的推导过程:利用椭圆的定义和性质,通过几何方法和代数方法推导椭圆的标准方程。

分步解释推导过程,让学生理解并掌握椭圆标准方程的来源。

第三章:椭圆的长轴和短轴3.1 椭圆的长轴讲解椭圆的长轴的概念:长轴是椭圆上距离两个焦点最远的点的线段。

通过图形和数学公式展示椭圆长轴的性质和计算方法。

3.2 椭圆的短轴讲解椭圆的短轴的概念:短轴是椭圆上距离两个焦点最近的点的线段。

通过图形和数学公式展示椭圆短轴的性质和计算方法。

第四章:椭圆的焦点和焦距4.1 椭圆的焦点讲解椭圆的焦点的概念:焦点是椭圆上到两个固定点(焦点)距离之和为常数的点的集合。

通过图形和数学公式展示椭圆焦点的性质和计算方法。

4.2 椭圆的焦距讲解椭圆的焦距的概念:焦距是椭圆上两个焦点之间的距离。

通过图形和数学公式展示椭圆焦距的性质和计算方法。

第五章:椭圆的离心率5.1 椭圆的离心率定义讲解椭圆的离心率的概念:离心率是椭圆的焦距与长轴长度的比值,用\(e\) 表示。

通过图形和数学公式展示椭圆离心率的性质和计算方法。

5.2 椭圆的离心率的应用讲解椭圆的离心率的应用:离心率可以用来判断椭圆的形状和大小,以及与焦点和焦距的关系。

通过实际例子演示椭圆的离心率的应用,让学生理解并掌握椭圆离心率的重要性。

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案一、教学目标1. 让学生理解椭圆的定义及其性质。

2. 引导学生掌握椭圆的标准方程及其求法。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。

2. 椭圆的性质:(1) 椭圆的两个焦点在x 轴上,且距离为2c。

(2) 椭圆的长轴为2a,短轴为2b。

(3) 椭圆的离心率e = c/a,其中0 < e < 1。

3. 椭圆的标准方程:(1) 当椭圆的焦点在x 轴上时,标准方程为x^2/a^2 + y^2/b^2 = 1。

(2) 当椭圆的焦点在y 轴上时,标准方程为y^2/a^2 + x^2/b^2 = 1。

三、教学重点与难点1. 教学重点:椭圆的定义、性质及标准方程。

2. 教学难点:椭圆标准方程的求法及应用。

四、教学方法1. 采用问题驱动法,引导学生探究椭圆的定义和性质。

2. 利用数形结合法,让学生直观地理解椭圆的标准方程。

3. 运用实例分析法,训练学生解决实际问题的能力。

五、教学过程1. 导入:通过展示椭圆模型,引导学生思考椭圆的定义。

2. 新课讲解:讲解椭圆的性质,引导学生发现椭圆的标准方程。

3. 例题解析:分析求解椭圆标准方程的实例,让学生掌握求解方法。

4. 课堂练习:布置练习题,让学生巩固所学知识。

6. 课后作业:布置作业,让学生进一步巩固椭圆及其标准方程的知识。

六、教学评价1. 评价方式:课堂表现、练习题、课后作业。

2. 评价内容:(1) 学生对椭圆定义的理解程度。

(2) 学生对椭圆性质的掌握情况。

(3) 学生对椭圆标准方程的求解能力。

(4) 学生运用椭圆知识解决实际问题的能力。

七、教学反思1. 反思教学内容:根据学生的反馈,调整教学内容,使之更符合学生的认知规律。

2. 反思教学方法:根据学生的接受程度,调整教学方法,提高教学效果。

3. 反思练习题和课后作业:根据学生的完成情况,调整练习题和课后作业的难度,使之更具针对性。

椭圆及其标准方程教学设计共3篇 椭圆的标准方程教学设计

椭圆及其标准方程教学设计共3篇 椭圆的标准方程教学设计

椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计下面是分享的椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计,供大家品鉴。

椭圆及其标准方程教学设计共1《椭圆及其标准方程》教学设计山西省太原师范学院附属中学薛翠萍一、教学内容解析椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义明确焦点、焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,③学生已经初步掌握研究直线和圆的基本方法.3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用” 的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.意图:(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性(2)多媒体演示向学生说明椭圆的具体画法,更直观形象.(二)讲解新课由学生画图及教师演示椭圆的形成过程,引导学生归纳定义.1 椭圆定义:平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于8,则P点的轨迹是练习2:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于6,则P点的轨迹是通过两个练习思考:椭圆定义需要注意什么(2a大于意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点.(1)、当2a|F1F2|时,是椭圆;(2)、当2a=|F1F2|时,是线段;(3)、当2a)2.根据定义推导椭圆标准方程:要求(1)学生在画板上建立适当的坐标系,(2)根据定义推导椭圆的标准方程.同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.正确推导过程如下:解:取过焦点设则,又设M与距离之和等于()(常数)为椭圆上的任意一点,椭圆的焦距是().的直线为轴,线段的垂直平分线为轴,,化简,得由定义义)令代入,得,,(学生通过自己画图建系的过程找到的几何意,两边同除得此即为椭圆的一个标准方程它所表示的椭圆的焦点在轴上,焦点是程学生思考:若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,中心在坐标原点的椭圆方,只要将方程中的调换,即可得,也是椭圆的标准方程请学生观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;过程中要渗透数学对称美教学.理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在个轴上即看与这两个标准方程中,都有分母的大小的要求,因而焦点在哪3.精心设计课堂练习使学生在实际应用中进一步巩固知识,运用知识突破重难点:(1)判断下列方程是否表上椭圆,若是,求出的值① ;②;③;④意图:学生感悟椭圆标准方程的结构特点.(2)椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为)A.5B.6 C.4D.10意图:学生理解椭圆定义与标准方程关系.(3)椭圆的焦点坐标是()A.(±5,0)B.(0,±5) C.(0,±12)意图:学生感悟椭圆标准方程中焦点位置以及a,b,c的关系.(4)化简方程:意图:培养学生运用知识解决问题的能力..(±12,0) (D椭圆及其标准方程教学设计共2椭圆及其标准方程教学反思椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。

教学比赛教案椭圆的定义与标准方程

教学比赛教案椭圆的定义与标准方程

教学比赛教案-椭圆的定义与标准方程教学目标:1. 了解椭圆的定义及其性质。

2. 掌握椭圆的标准方程及其求法。

3. 培养学生的数学思维能力和解决问题的能力。

教学内容:1. 椭圆的定义2. 椭圆的性质3. 椭圆的标准方程4. 椭圆方程的求法5. 椭圆的应用教学准备:1. 教学PPT2. 教学素材(图形、例题等)3. 练习题教学过程:一、导入(5分钟)1. 引入椭圆的概念,展示椭圆的图形。

2. 引导学生思考:椭圆有哪些特点?与圆有何区别?二、椭圆的定义与性质(15分钟)1. 给出椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为常数的点的轨迹。

2. 介绍椭圆的性质:椭圆的两个焦点距离、长轴、短轴等。

3. 通过PPT展示椭圆的性质示意图,引导学生理解并记忆。

三、椭圆的标准方程(15分钟)1. 引入椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。

2. 解释椭圆标准方程的含义:a为椭圆的长半轴,b为椭圆的短半轴。

3. 引导学生通过性质推导椭圆标准方程的求法。

四、椭圆方程的求法(15分钟)1. 给出椭圆方程的求法:根据椭圆的性质,列出方程组,求解得到椭圆的标准方程。

2. 通过例题讲解椭圆方程的求法,引导学生掌握解题思路。

五、椭圆的应用(10分钟)1. 介绍椭圆在实际生活中的应用,如地球绕太阳的运动、卫星绕地球的运动等。

2. 给出一些与椭圆相关的实际问题,引导学生运用椭圆的知识解决问题。

教学评价:1. 课堂问答:检查学生对椭圆定义、性质、标准方程的理解。

2. 练习题:评估学生对椭圆方程求法的掌握。

3. 课后作业:布置与椭圆应用相关的问题,检验学生对知识的综合运用能力。

六、椭圆的参数方程与图形变换(15分钟)1. 引入椭圆的参数方程:\(\begin{cases}x=a\cos t\\y=b\sin t\end{cases}\),其中\(t\)为参数。

2. 解释椭圆参数方程的含义:通过参数\(t\)的变化,可以得到椭圆上的点坐标。

椭圆及其方程教案中档篇

椭圆及其方程教案中档篇

椭圆及其方程教案中档篇一、教学目标:1. 让学生了解椭圆的定义及其性质。

2. 引导学生掌握椭圆的标准方程及其求法。

3. 培养学生运用椭圆方程解决实际问题的能力。

二、教学内容:1. 椭圆的定义与性质2. 椭圆的标准方程3. 椭圆方程的求法4. 椭圆方程的应用三、教学重点与难点:1. 重点:椭圆的定义、性质、标准方程及其应用。

2. 难点:椭圆方程的求法及其应用。

四、教学方法:1. 采用问题驱动法,引导学生探索椭圆的定义与性质。

2. 运用案例分析法,让学生掌握椭圆的标准方程及其求法。

3. 利用数形结合法,培养学生解决椭圆方程实际问题的能力。

五、教学过程:1. 导入:通过展示生活中的椭圆现象,引发学生对椭圆的兴趣,激发探究欲望。

2. 新课导入:介绍椭圆的定义与性质,引导学生理解椭圆的基本概念。

3. 案例分析:分析具体椭圆实例,引导学生掌握椭圆的标准方程及其求法。

4. 练习巩固:布置适量练习题,让学生巩固所学知识,提高解题能力。

5. 拓展应用:结合实际问题,引导学生运用椭圆方程解决问题,提高学生的应用能力。

6. 课堂小结:总结本节课所学内容,强调椭圆的定义、性质、标准方程及其应用。

7. 课后作业:布置针对性的课后作业,巩固所学知识,提高学生的自主学习能力。

六、教学策略与手段:1. 利用多媒体课件,展示椭圆的图形及其变化,增强学生的直观感受。

2. 采用分组讨论法,鼓励学生积极参与,提高课堂互动性。

3. 创设问题情境,引导学生思考,培养学生的创新意识。

4. 注重个体差异,针对不同学生提供个性化的指导和支持。

七、教学评价:1. 课堂问答:通过提问,检查学生对椭圆定义和性质的理解程度。

2. 练习作业:评估学生的练习完成情况,检验对椭圆方程的掌握水平。

3. 小组讨论:评价学生在团队合作中的表现,包括分析问题、解决问题的能力。

4. 课后调研:收集学生对教学内容的反馈,以便改进教学方法和内容。

八、教学资源:1. 教材:《高中数学教材》相关章节。

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案

椭圆及其标准方程讲课教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及其性质;(2)掌握椭圆的标准方程及其求法;(3)能够运用椭圆的标准方程解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳,培养学生的逻辑思维能力;(2)利用图形计算器或软件,直观展示椭圆的性质和标准方程的求解过程,提高学生的实践操作能力。

3. 情感态度与价值观:(1)激发学生对椭圆及其标准方程的学习兴趣;(2)培养学生勇于探索、积极进取的精神风貌。

二、教学重点与难点1. 教学重点:(1)椭圆的定义及其性质;(2)椭圆的标准方程及其求法。

2. 教学难点:(1)椭圆标准方程的推导过程;(2)运用椭圆标准方程解决实际问题。

三、教学过程1. 导入新课:(1)利用多媒体展示椭圆的图片,引导学生关注椭圆在日常生活中的应用;(2)提问:什么是椭圆?椭圆有哪些性质?2. 知识讲解:(1)讲解椭圆的定义及其性质;(2)引导学生观察、分析椭圆的性质,引导学生发现椭圆标准方程的求法;(3)推导椭圆的标准方程,并进行解释。

3. 课堂练习:(1)布置练习题,让学生巩固椭圆的定义及其性质;(2)让学生运用椭圆的标准方程解决实际问题。

四、课后作业1. 复习椭圆的定义及其性质;2. 熟练掌握椭圆的标准方程及其求法;3. 运用椭圆的标准方程解决实际问题。

五、教学反思1. 反思教学目标的达成情况:学生是否掌握了椭圆的定义及其性质,能否熟练运用椭圆的标准方程解决实际问题;2. 反思教学方法的有效性:观察、分析、归纳等方法是否有助于学生理解椭圆及其标准方程;3. 针对教学中的不足,提出改进措施,为下一节课的教学做好充分准备。

六、教学活动设计1. 小组讨论:让学生分组讨论椭圆在实际生活中的应用,如行星运动、卫星轨道等,激发学生的学习兴趣。

2. 案例分析:选取实际问题,让学生运用椭圆的标准方程进行解决,提高学生的实践能力。

3. 课堂互动:设置椭圆相关问题,引导学生主动参与课堂讨论,培养学生的逻辑思维和表达能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节椭圆及其标准方程
高二数学主备人:张宪东审核:审批:2008年11月
教学目标:
知识目标:
①掌握椭圆的定义。

②体会椭圆的标准方程的推导过程并掌握其标准方程。

③运用椭圆的标准方程形式解决有关问题。

能力目标:
①培养学生的合作探究能力。

②通过小组讨论、学生展示培养学生的积极参与及协调合作能力。

情感目标:
①通过椭圆的形成过程培养学生的数学美感。

②培养学生团结协作精神。

教学重点:①椭圆的定义。

②椭圆的标准方程。

教学难点:椭圆的标准方程的推导过程。

学法指导:
为了充分调动学生的积极性,教会学生学习,本节课的主要学习方法有:
①学生展示法
②小组讨论法
③发现总结法
教学过程:
<一>、根据分工小组板演
具体分工如下:(附导学案)
动手探究
取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是一个圆。

如果把细绳的两端拉开一段距离,分别固定在图板的两点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?体会这一过程,你能说出移动笔尖(动点)满足的几何条件吗?
1、我们把平面内与两个定点F1、F2的距离的和等于常数(大于|F1、F2|)的点的轨迹叫做_______,这两个定点叫做________,它们之间的距离叫做_________。

2、思考:在定义椭圆时,对常数加上一条件,即常数要大于|F1、F2|,大家想一下,如果常数小于或等于|F1、F2|会出现什么情况?
阅读课本P41------P42页内容,思考并回答以下问题
思考:为了研究椭圆的性质,要建立椭圆方程,那么观察椭圆的形状怎样选择坐标系才能使
椭圆的方程更简单?
1、体会椭圆方程的推导过程,作出椭圆标准方程,理解椭圆就是集合P={M|
|MF 1|+|MF 2|=2a}这一句话,并思考如何作出椭圆的标准方程。

1、观察图,你能从中找出表示a, c,
阅读课本p42 页 思考并回答以下问题。

1、椭圆的标准方程形式是什么?方程中各字母间的含义及关系是什么?
2
a > b>0)的异同。

3、阅读例1,总结例1的方法(定义法)并思考还能用其它方法求它的方程吗?请写出, 哪 种方法更简单?
阅读课本p44页,思考并回答以下问题。

1、分析例2,结合利用中间变量求点的轨迹方程的方法并思考从例2中能发现椭圆与圆之间的关系吗?
2、分析例3,了解生成椭圆的另一种方法:一个动点到两个定点连线的斜率之积是一个负常数。

典型例题:
例1 求经过两点1p (,2p (0
(A 级)
例2 已知B 、C 是两个定点│BC │=6,且ΔABC 的周长等于16,求顶点A 的轨迹方程。

(B 级)
例3 已知经过椭圆 2F 作垂直于直线AB ,交椭圆于A 、B 两点,1F 是椭圆的左焦点。

(1)求ΔAF 1B 的周长。

(2)如果AB 不垂直于x 轴,ΔAF 1B 的周长有变化么?为什么? (C 级)
学习小结:
①知识小结:
②思想方法小结:
<二>、小组组织讨论
①根据分工确定本组的重点、难点,并确定发言人。

②本节课在预习过程中存在的疑惑点并互相讲解。

<三>、小组展示,根据分工各组分别展示。

在展示过程中,其它同学可以发问,可以补充纠正,充分展示每个同学的才能,最后教师根据情况点评、及时表扬,充分发挥激励作用,调动学生学习的积极性和趣味性。

<四>、当堂检测:(第七小组)
P 到焦点F 1的距离等于6,那么点P 到另一个焦点F 2的距离是
2、下列说法中正确的是( )
A 平面内与两个定点的距离和等于常数的点的轨迹叫做椭圆。

B 平面内与两个定点的距离和等于常数的点的轨迹是一条线段
C 平面内与两个定点的距离和等于常数的点的轨迹是一个椭圆或一条直线
D
3、 若椭圆的标准方程中,a=6,b= )
A
C D 以上都不对
4、 2,则m 的值为( ) A 5
C 3或5 D 8
5、椭圆22491x y +=的焦点坐标是( )
A C( )
6 ,则此椭圆的标准方程是(

D 以上都不对
<五>、学习交流
<六>、布置作业:
为了强化椭圆的定义及标准方程的理解和应用,特布置以下作业: 必做题:49P 第2题
选做题:49P 第7题
<七>、预习:阅读教材43页至46页,根据导学案预习椭圆的简单几何性质。

相关文档
最新文档