18年河南中考数学试卷及答案
2023年河南中考数学试卷含参考答案
2023年河南中考数学试卷含参考答案第一部分选择题1. 在下列各组数中,只有一个是偶数的是()。
A. 1,3,9B. 2,5,7C. 6,8,10D. 4,7,92. 已知正整数a和b满足:a÷b=7.r, 则下列运算正确的是()。
A. a÷7bB. 7a÷bC. a÷b×7D. b×(7÷a)3. 若a=2-√3,b=√3-1,则(a-b)(a^2+ab+b^2)的值是()。
A. 13B. 12C. 11D. 94. 在△ABC中,∠C=90°,AD是BC边上的高,AC=3,BC=4,则AD的长度为()。
A. 2B. 4/3C. 4/5D. 6/55. 设m∈[16, 18],若m²-10m的值为正数,则m的取值范围是()。
A. [16,17)B. [16,18)C. [17,18)D. [17,18]第二部分解答题6. 计算:150的整数倍最接近850的数是多少?- 解析:150的整数倍最接近850的数是第一个小于或等于850的多少的整数倍,计算得出:150 × 5 = 750。
所以答案是750。
7. 用边长为4的小正方形铺满边长为30的大正方形,则包括在大正方形内的小正方形个数是多少?- 解析:大正方形的边长是小正方形边长的7.5倍,所以包括在大正方形内的小正方形个数是7.5 × 7.5 = 56.25 个。
即答案是56个。
参考答案1. C2. B3. C4. D5. C6. 7507. 56。
2023年河南省中考数学试卷含答案
2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。
17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。
那么等腰三角形的底长为2x = 12。
18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。
第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。
然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。
最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。
20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。
设张三的年龄为x,李四的年龄为y。
那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。
所以10年后张三的年龄是30岁,李四的年龄是40岁。
第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。
证明过程略。
第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。
祝你考试顺利!。
2024年河南省中考数学试卷正式版含答案解析
绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。
河南省中考数学真题试题(含解析)
河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。
2018河南中考数学试题及答案word
2018河南中考数学试题及答案word2018年河南省中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 1D. -1答案:C2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 计算下列哪个算式的结果大于0?A. 2-3B. 3-2C. 0-5D. 5-0答案:D4. 已知一个三角形的两边长分别为3cm和4cm,那么第三边的长度范围是:A. 0到7cmB. 1到7cmC. 3到7cmD. 1到5cm答案:C5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 任意三角形答案:B6. 一个圆的半径为2cm,那么它的面积是多少平方厘米?A. 4πB. 8πC. 6πD. 12π答案:B7. 计算下列哪个算式的结果是偶数?A. 3+5B. 4+6C. 7+9D. 8+10答案:D8. 下列哪个不等式是正确的?A. 2x > 4B. 3x ≤ 9C. 5x < 15D. 6x ≥ 18答案:B9. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个等腰三角形的底角是45°,那么顶角的度数是:A. 90°B. 45°C. 60°D. 30°答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。
答案:±512. 计算2的3次方,结果是______。
答案:813. 一个等腰三角形的底边长为6cm,如果底角是45°,那么腰长是______。
答案:6cm14. 一个数除以-2的结果是3,那么这个数是______。
答案:-615. 一个圆的直径是10cm,那么它的周长是______。
答案:10π cm16. 计算(-2)的平方,结果是______。
答案:417. 一个三角形的内角和是______。
河南商丘中考数学试卷及答案
河南商丘中考数学试卷及答案注意事项:1、本试卷共8页,三大题,满分120分,考题时间100分钟。
请用钢笔或圆珠笔答在试卷指定位置上。
2、答卷前请在指定的位置填好自己的座号,并将密封线内的项目填写清楚。
题号 一 二 三 总分 16 17 18 19 20 21 22 23 得分一、 选择题(本题满分18分,共有6道小题,每小题3分)下列每小题都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的。
请将各小题所选答案的代号填写在下面的表格内相应题号下面。
选择题答题位置 题号 1 2 3 4 5 6 答案1.-7的相反数是( ) A. 7 B. -7 C.71 D.17- 2.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A.43 B. 34 C. 53 D. 543.如图,是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则A B C D E ∠+∠+∠+∠+∠等于( )A. ︒360B. ︒180C. ︒150D. ︒1204.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( ) A. 9,10,11 B.10,11,9 C.9,11,10 D.10,9,115.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-且0k ≠ 6.如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( )得分 评卷人二、填空题(本题满分27分,共有9道小题,每小题3分)7.16的平方根是8.如图,直线a,b 被直线c 所截,若a ∥b ,︒=∠501,则=∠2 9.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是10.如图所示,AB 为⊙0的直径,AC 为弦,OD ∥BC 交AC 于点D ,若AB=20cm,︒=∠30A ,则AD= cm11.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm12.如图,矩形ABCD 的两条线段交于点O ,过点O 作AC 的垂线EF,分别交AD 、BC 于点E 、F ,连接CE,已知CDE ∆的周长为24cm ,则矩形ABCD 的周长是 cm13、在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为 14、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标 是15、如图,直线2-==kx y (k >0)与双曲线ky =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交得分 评卷人三、解答题(本题满分75分,共8道小题) 16、(本小题满分8分)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来。
2019年河南省中考数学试卷及答案(Word解析版)
2019年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。
因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
2022年河南省中考数学试卷(解析版)
2022年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a35.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.486.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.10249.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:.12.(3分)不等式组的解集为.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=°,∠CBQ=°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.【分析】直接利用相反数的定义得出即可.【解答】解:的相反数是:.故选:A.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D.【点评】本题考查了正方体相对两个面上的问题,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.【点评】本题主要考查了垂直的定义和平角的性质计算,要注意领会由垂直得直角这一要点.4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.【解答】解:A、,故A不符合题意;B、(a+1)2=a2+2a+1,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、2a2•a=2a3,故D符合题意.故选:D.【点评】本题主要考查二次根式的化简,完全平方公式,幂的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出CD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.∴C菱形ABCD=4CD=4×6=24.故选:C.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出CD=6.6.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【分析】根据根的判别式进行判断即可.【解答】解:在一元二次方程x2+x﹣1=0中,a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,∴原方程有两个不相等的实数根.故选:A.【点评】本题主要考查根的判别式,解答的关键是明确当Δ<0时,原方程没有实数根;当Δ=0时,原方程有两个相等的实数根;当Δ>0时,原方程有两个不相等的实数根.7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【分析】根据众数的定义求解即可.【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.1024【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.【解答】解:1亿=104×104=108,1兆=104×104×108=104+4+8=1016,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)【分析】由正六边形的性质可得A(1,),再根据由360°÷90°=4可知,每4次为一个循环,由2022÷4=505……2,可知点A2022与点A2重合,求出点A2的坐标可得答案.【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=,∴A(1,),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,﹣),∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),故选:B.【点评】本题主要考查了正六边形的性质,旋转的性质,含30°角的直角三角形的性质等知识,根据旋转的性质确定每4次为一个循环是解题的关键.10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态【分析】观察图2可直接判断A、B,由K=10可算出M的值,从而判断C,观察图2可得R1=20时K的值,从而算出M的值,即可判断D.【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意;故选:C.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,能正确识图.二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:答案不唯一,如y=x.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y=x,或y=x+2等,答案不唯一.【点评】此题比较简单,考查的是一次函数y=kx+b(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.12.(3分)不等式组的解集为2<x≤3.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>2,∴该不等式组的解集是2<x≤3,故答案为:2<x≤3.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为+.【分析】如图,设O′A′交于点T,连接OT.首先证明∠OTO′=30°,根据S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)求解即可.【解答】解:如图,设O′A′交于点T,连接OT.∵OT=OB,OO′=O′B′,∴OT=2OO′,∵∠OO′T=90°,∴∠O′TO=30°,∠TOO′=60°,∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)=﹣(﹣×1×)=+.故答案为:+.【点评】本题考查扇形的面积,解直角三角形等知识,解题的关键是学会割补法求阴影部分的面积.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为或.【分析】分两种情况:当点Q在CD上,当点Q在DC的延长线上,利用勾股定理分别进行计算即可解答.【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.【点评】本题考查了勾股定理,旋转的性质,等腰直角三角形,分两种情况进行讨论是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;(2)先通分,把除化为乘,再分解因式约分.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.【点评】本题考查实数运算和分式化简,解题的关键是掌握实数运算、分式运算的相关法则.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x <7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为44%.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;(2)根据中位数的意义求解即可;(3)答案不唯一,合理均可.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为=78.5(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).【点评】本题考查了中位数,频数分布表等知识,掌握中位数的定义及其意义是解决问题的关键.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.【分析】(1)直接把点A的坐标代入求出k即可;(2)利用尺规作出线段AC的垂直平分线m即可;(3)证明∠DCA=∠BAC,可得结论.【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),∴k=2×4=8,∴反比例函数的解析式为y=;(2)解:如图,直线m即为所求.(3)证明:∵AC平分∠OAB,∴∠OAC=∠BAC,∵直线m垂直平分线段AC,∴DA=DC,∴∠OAC=∠DCA,∴∠DCA=∠BAC,∴CD∥AB.【点评】本题考查作图﹣基本作图,反比例函数的性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【分析】延长EF交DC于点H,根据题意可得:∠DHF=90°,EF=AB=15米,CH =BF=AE=1.5米,设FH=x米,在Rt△DFH中,利用锐角三角函数的定义求出FH的长,然后在Rt△DHE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:延长EF交DC于点H,由题意得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,∴EH=EF+FH=(15+x)米,在Rt△DFH中,∠DFH=45°,∴DH=FH•tan45°=x(米),在Rt△DHE中,∠DEH=34°,∴tan34°==≈0.67,∴x≈30.1,经检验:x≈30.1是原方程的根,∴DC=DH+CH=30.1+1.5≈32(米),∴拂云阁DC的高度约为32米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【分析】(1)设菜苗基地每捆A种菜苗的价格是x元,根据用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,根据A种菜苗的捆数不超过B种菜苗的捆数,得m≤50,设本次购买花费w元,有w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,由一次函数性质可得本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∵﹣9<0,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.【点评】本题考查分式方程和一次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得她与爸爸的水平距离为2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.首先证明∠BOC+∠OBF=90°,∠ABE+∠BAD=90°;再根据B是切点得出∠OBA=90°.后面就很简单的证明出结论;方法2:如图2,延长OB交CD于点M.因为AB为⊙O的切线,所以根据切线性质得到,∠OBA=90°,∠ABM=90°.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B作BN ∥AD,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;(2)利用(1)中图1的辅助线即可解答.首先根据条件AB=75,cos∠BAD=,得到AE=45.再利用(1)证明出的,∠OBF=∠BAD,能得到四边形CDEF为矩形,所以DE=CF=5,从而得到AD=AE+ED=50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.【点评】本题重点考查切线的判定和性质,三角函数,解题关键是根据已知和所求问题,合理作出辅助线.是很好的中考题.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:∠EMB或∠CBM或∠ABP或∠CBM(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=15°,∠CBQ=15°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.。
2018年河南省中考数学试卷含答案解析
2018 年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共30 分)1.( 3 分)﹣的相反数是()A.﹣B.C.﹣D.2.( 3 分)今年一季度,河南省对“一带一路”沿线国家出入口总数达亿元,数据“亿”用科学记数法表示为()A.× 102 B.× 103 C.× 1010D.× 10113.(3 分)某正方体的每个面上都有一个汉字,如图是它的一种睁开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.( 3 分)以下运算正确的选项是)(A.(﹣ x2)3=﹣ x5B. x2+x3=x5C.x3x4=x7D. 2x3﹣ x3=15 .( 3 分)河南省旅行资源丰富,2013 ~ 2017 年旅行收入不停增加,同比增速分别为: %, %, %, %, %.对于这组数据,以下说法正确的选项是()A.中位数是%B.众数是%C.均匀数是 %D.方差是06.( 3 分)《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其粗心是:今有人合伙买羊,若每人出 5 钱,还差45 钱;若每人出7 钱,还差 3 钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 线,依据题意,可列方程组为()A.B.C.D.7.( 3 分)以下一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0 B. x2 =x C. x2+3=2x D.( x﹣ 1)2 +1=08.( 3 分)现有 4 张卡片,此中 3 张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此以外完好同样.把这4张卡片反面向上洗匀,从中随机抽取两张,则这两张卡片正面图案同样的概率是()A.B.C.D.9.( 3 分)如图,已知AOBC 的极点 O( 0, 0),A(﹣ 1, 2),点 B 在 x 轴正半轴上按以下步骤作图:①以点O 为圆心,适合长度为半径作弧,分别交边OA, OB 于点 D, E;②分别以点D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边 AC于点G,则点G 的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.( 2018.河南 .10)如图 1,点 F 从菱形 ABCD的极点 A 出发,沿 A→ D→B以 1cm/s 的速度y(cm2)随时间x( s)变化的关系图象,匀速运动到点B,图2 是点 F 运动时,△ FBC的面积则 a 的值为()A.B. 2C.D.2二、仔细填一填(本大题共 5 小题,每题 3 分,满分15 分,请把答案填在答题卷相应题号的横线上)11.(3 分)计算: | ﹣5| ﹣=.12.(3 分)如图,直线AB, CD订交于点O,EO⊥ AB 于点O,∠ EOD=50°,则∠ BOC的度数为.13.( 3 分)不等式组的最小整数解是.14.( 3 分)如图,在△ ABC中,∠ ACB=90°,AC=BC=2,将△ ABC绕 AC的中点 D 逆时针旋转90°获得△ A'B ′,C'此中点 B 的运动路径为,则图中暗影部分的面积为.15.(3 分)如图,∠△A′BC与△ ABC对于MAN=90°,点 C 在边BC所在直线对称,点AM 上, AC=4,点 B 为边 AN 上一动点,连结BC,D,E 分别为 AC, BC的中点,连结 DE 并延长交A′B所在直线于点F,连结A′E.当△A′EF为直角三角形时,AB 的长为.三、计算题(本大题共8 题,共75 分,请仔细读题)16.( 8 分)先化简,再求值:(﹣ 1)÷,此中x=+1.17.( 9 分)每到春夏交替节气,雌性杨树会以满天飞絮的方式来流传下一代,漫天飞舞的杨絮易引起皮肤病、呼吸道疾病等,给人们造成困扰,为认识市民对治理杨絮方法的赞成情况,某课题小组随机检查了部分市民(问卷检查表如表所示),并依据检查结果绘制了以下尚不完好的统计图.治理杨絮一一您选哪一项(单项选择)A.减少杨树新增面积,控制杨树每年的种植量B.调整树种结构,渐渐改换现有杨树C.选育无絮杨品种,并推行种植D.对雌性杨树注射生物扰乱素,防止产生飞絮E.其余依据以上统计图,解答以下问题:(1)本次接受检查的市民共有人;(2)扇形统计图中,扇形 E 的圆心角度数是;(3)请补全条形统计图;(4)若该市约有 90 万人,请估计赞成“选育无絮杨品种,并推行种植”的人数.18.( 9 分)如图,反比率函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比率函数的分析式;(2)在图顶用直尺和 2B 铅笔划出两个矩形(不写画法),要求每个矩形均需知足以下两个条件:①四个极点均在格点上,且此中两个极点分别是点O,点 P;②矩形的面积等于k 的值.19.( 9 分)如图, AB 是⊙ O 的直径, DO⊥AB 于点 O,连结 DA 交⊙ O 于点 C,过点 C 作⊙O 的切线交 DO 于点 E,连结 BC交 DO 于点 F.(1)求证: CE=EF;(2)连结 AF 并延长,交⊙ O 于点 G.填空:①当∠ D 的度数为②当∠ D 的度数为时,四边形ECFG为菱形;时,四边形ECOG为正方形.20.(9 分)“高低杠”是女子体操独有的一个竞技项目,其竞赛器械由高、低两根平行杠及若干支架构成,运动员可依据自己的身高和习惯在规定范围内调理高、低两杠间的距离.某兴趣小组依据高低杠器械的一种截面图编制了以下数学识题,请你解答.以下图,底座上 A,B 两点间的距离为 90cm.低杠上点 C到直线 AB 的距离 CE的长为 155cm,高杠上点 D 到直线 AB 的距离 DF 的长为 234cm ,已知低杠的支架 AC 与直线 AB 的夹角∠ CAE为°,高杠的支架 BD 与直线 AB 的夹角∠ DBF 为°.求高、低杠间的水平距离 CH的长.(结果精准到 1cm,参照数据°≈,°≈,°≈,°≈,°≈,°≈)21.(10 分)某企业推出一款产品,经市场检查发现,该产品的日销售量y(个)与销售单价x (元)之间知足一次函数关系对于销售单价,日销售量,日销售收益的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售收益w(元)87518751875875(注:日销售收益=日销售量×(销售单价﹣成本单价))(1)求y 对于x 的函数分析式(不要求写出x 的取值范围)及m 的值;(2)依据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售收益w 最大,最大值是元;(3)企业计划睁开科技创新,以降低该产品的成本,估计在此后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售收益不低于3750 元的销售目标,该产品的成本单价应不超出多少元22.( 10 分)( 1)问题发现如图 1,在△ OAB 和△ OCD中, OA=OB, OC=OD,∠ AOB=∠ COD=40°,连结 AC, BD 交于点M.填空:①的值为;②∠ AMB 的度数为.(2)类比研究如图 2,在△ OAB 和△ OCD 中,∠ AOB=∠ COD=90°,∠ OAB=∠ OCD=30°,连结 AC交 BD 的延长线于点M.请判断的值及∠AMB的度数,并说明原因;(3)拓展延长在( 2)的条件下,将△OCD 绕点O 在平面内旋转,AC, BD 所在直线交于点M,若OD=1,OB=,请直接写出当点 C 与点M 重合时AC的长.23.( 11 分)如图,抛物线 y=ax2 +6x+c 交 x 轴于 A, B 两点,交 y 轴于点 C.直线 y=x﹣ 5 经过点 B,C.(1)求抛物线的分析式;(2)过点 A 的直线交直线BC于M.点①当AM⊥ BC 时,过抛物线上一动点P(不与点B, C 重合),作直线AM的平行线交直线BC 于点Q,若以点A, M, P, Q 为极点的四边形是平行四边形,求点P 的横坐标;②连结 AC,当直线AM 与直线 BC的夹角等于∠ACB的 2 倍时,请直接写出点M 的坐标.2018 年河南省中考数学试卷参照答案与试题分析一、选择题(每题只有一个正确选项,本题共10 小题,每题 3 分,共 30 分)1.( 2018.河南 .1)﹣的相反数是()A.﹣B.C.﹣D.【剖析】直接利用相反数的定义剖析得出答案.【解答】解:﹣的相反数是:.应选: B.【评论】本题主要考察了相反数,正确掌握相反数的定义是解题重点.2.( 3 分)今年一季度,河南省对“一带一路”沿线国家出入口总数达亿元,数据“亿”用科学记数法表示为()A.× 102 B.× 103 C.× 1010D.× 1011【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤|a| <10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:亿,用科学记数法表示为×1010,应选: C.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a× 10n的形式,此中 1≤|a| <10, n 为整数,表示时重点要正确确立 a 的值以及 n 的值.3.(3 分)某正方体的每个面上都有一个汉字,如图是它的一种睁开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【剖析】正方体的表面睁开图,相对的面之间必定相隔一个正方形,依据这一特色作答.【解答】解:正方体的表面睁开图,相对的面之间必定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.应选: D.【评论】本题主要考察了正方体相对两个面上的文字,注意正方体的空间图形,从相对面下手,剖析及解答问题.4.( 3 分)以下运算正确的选项是)(A.(﹣ x2)3=﹣ x5B. x2+x3=x5C.x3x4=x7D. 2x3﹣ x3=1【剖析】分别依据幂的乘方、同类项观点、同底数幂相乘及归并同类项法例逐个计算即可判断.【解答】解: A、(﹣ x2)3=﹣ x6,此选项错误;B、 x2、 x3不是同类项,不可以归并,此选项错误;C、 x3x4=x7,此选项正确;D、 2x3﹣ x3=x3,此选项错误;应选: C.【评论】本题主要考察整式的运算,解题的重点是掌握幂的乘方、同类项观点、同底数幂相乘及归并同类项法例.5 .( 3 分)河南省旅行资源丰富,2013 ~ 2017 年旅行收入不停增加,同比增速分别为: %, %, %, %, %.对于这组数据,以下说法正确的选项是()A.中位数是 %B.众数是 %C.均匀数是 %D.方差是0【剖析】直接利用方差的意义以及均匀数的求法和中位数、众数的定义分别剖析得出答案.【解答】解: A、按大小次序排序为:%, %, %, %, %,故中位数是: %,故此选项错误;B、众数是 %,正确;C、(%+%+%+%+%)=%,应选项C错误;D、∵ 5 个数据不完好同样,∴方差不行能为零,故此选项错误.应选: B.【评论】本题主要考察了方差的意义以及均匀数的求法和中位数、众数的定义,正确掌握有关定义是解题重点.6.( 3 分)《九章算术》中记录:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其粗心是:今有人合伙买羊,若每人出 5 钱,还差45 钱;若每人出7 钱,还差 3 钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 线,依据题意,可列方程组为()A.B.C.D.【剖析】设设合伙人数为【解答】解:设合伙人数为x 人,羊价为 yx 人,羊价为线,依据羊的价钱不变列出方程组.y 线,依据题意,可列方程组为:.应选: A.【评论】本题考察了由实质问题抽象出二元一次方程组,找准等量关系是解题的重点.7.( 3 分)以下一元二次方程中,有两个不相等实数根的是()A. x2+6x+9=0 B. x2 =x C. x2+3=2x D.( x﹣ 1)2 +1=0【剖析】依据一元二次方程根的鉴别式判断即可.【解答】解: A、 x2+6x+9=0△=62﹣ 4× 9=36﹣ 36=0,方程有两个相等实数根;B、 x2=xx2﹣x=0△=(﹣ 1)2﹣ 4×1× 0=1> 0两个不相等实数根;C、 x2+3=2xx2﹣2x+3=0△=(﹣ 2)2﹣ 4×1× 3=﹣8<0,方程无实根;D、( x﹣ 1)2+1=0(x﹣ 1)2=﹣ 1,则方程无实根;应选: B.【评论】本题考察的是一元二次方程根的鉴别式,一元二次方程ax2+bx+c=0( a≠ 0)的根与△=b 2﹣4ac 有以下关系:①当△> 0时,方程有两个不相等的两个实数根;②当△=0 时,方程有两个相等的两个实数根;③当△<0 时,方程无实数根.8.( 3 分)现有 4 张卡片,此中 3 张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此以外完好同样.把这4张卡片反面向上洗匀,从中随机抽取两张,则这两张卡片正面图案同样的概率是()A.B.C.D.【剖析】直接利用树状图法列举出全部可能从而求出概率.【解答】解:令 3 张用 A123,A ,A,表示,用 B表示,可得:,一共有 12 种可能,两张卡片正面图案同样的有 6 种,故从中随机抽取两张,则这两张卡片正面图案同样的概率是:.应选: D.【评论】本题主要考察了树状图法求概率,正确列举出全部的可能是解题重点.9.( 3 分)如图,已知AOBC 的极点 O( 0, 0),A(﹣ 1, 2),点 B 在 x 轴正半轴上按以下步骤作图:①以点O 为圆心,适合长度为半径作弧,分别交边OA, OB 于点 D, E;②分别以点 D,E 为圆心,大于DE 的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边 AC 于点 G,则点 G 的坐标为()A.(﹣ 1, 2) B.(, 2) C.( 3﹣,2) D.(﹣2, 2)【剖析】依照勾股定理即可获得Rt△ AOH 中, AO=,依照∠ AGO=∠ AOG,即可获得AG=AO=,从而得出 HG=﹣ 1,可得 G(﹣ 1, 2).【解答】解:∵ AOBC的极点 O( 0,0), A(﹣ 1, 2),∴AH=1, HO=2,∴Rt△ AOH 中, AO=,由题可得, OF 均分∠ AOB,∴∠ AOG=∠ EOG,又∵ AG∥ OE,∴∠ AGO=∠ EOG,∴∠ AGO=∠ AOG,∴AG=AO= ,∴HG= ﹣1,∴G(﹣1,2),应选: A.【评论】本题主要考察了角均分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,而后求出有关的线段长,是解决这种问题的基本方法和规律.10.( 3 分)如图 1,点 F 从菱形 ABCD的极点 A 出发,沿 A→ D→B以 1cm/s 的速度匀速运动到点B,图2 是点 F 运动时,△FBC的面积y( cm2)随时间x( s)变化的关系图象,则 a 的值为()A.B. 2C.D. 2【剖析】经过剖析图象,点 F 从点 A 到 D 用 as,此时,△高 DE,再由图象可知,BD=,应用两次勾股定理分别求【解答】解:过点 D 作 DE⊥ BC于点 E FBC的面积为BE 和 a.a,依此可求菱形的由图象可知,点∴AD=a∴∴DE=2当点 F从 D到∴BD=Rt△ DBE 中,F 由点B 时,用A 到点sD 用时为as,△ FBC的面积为acm2.BE=∵ABCD是菱形∴E C=a﹣1, DC=a Rt△ DEC中,a2=22 +( a﹣ 1)2解得 a=应选: C.【评论】本题综合考察了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点地点之间的关系.二、仔细填一填(本大题共号的横线上)11.( 3 分)计算: | ﹣ 5| ﹣5 小题,每题= 2.3 分,满分15 分,请把答案填在答题卷相应题【剖析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式 =5﹣ 3=2.故答案为: 2.【评论】本题主要考察了实数运算,正确化简各数是解题重点.12.(3 分)如图,直线AB, CD订交于点O,EO⊥ AB 于点 O,∠ EOD=50°,则∠ BOC的度数为 140° .【剖析】直接利用垂直的定义联合互余以及互补的定义剖析得出答案.【解答】解:∵直线AB, CD 订交于点O, EO⊥ AB 于点 O,∴∠ EOB=90°,∵∠ EOD=50°,∴∠ BOD=40°,则∠ BOC的度数为: 180°﹣ 40°=140°.故答案为: 140°.【评论】本题主要考察了垂直的定义、互余以及互补的定义,正确掌握有关定义是解题重点.13.( 3 分)不等式组的最小整数解是﹣2.【剖析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣ 3,解不等式②得:x≤1,∴不等式组的解集为﹣3< x≤ 1,∴不等式组的最小整数解是﹣ 2 ,故答案为:﹣ 2.【评论】本题考察认识一元一次不等式组和不等式组的整数解,能依据不等式的解集得出不等式组的解集是解本题的重点.14.( 3 分)如图,在△ ABC中,∠ ACB=90°,AC=BC=2,将△ ABC绕 AC的中点 D 逆时针旋转90°获得△ A'B ′,C'此中点 B 的运动路径为,则图中暗影部分的面积为π .【剖析】利用弧长公式L=,计算即可;【解答】解:△ ABC 绕AC 的中点 D 逆时针旋转90°获得△A'B′,C'此时点A′在斜边AB 上,CA′⊥ AB,∴∠ ACA′=∠ BCA′=45,°∴∠ BCB′=135,°∴S 阴==π.【评论】本题考察旋转变换、弧长公式等知识,解题的重点是灵巧运用所学知识解决问题,属于中考常考题型.15.(3 分)如图,∠MAN=90°,点 C 在边AM上, AC=4,点B 为边AN上一动点,连结BC,△A′BC与△ ABC对于 BC所在直线对称,点 D, E 分别为 AC, BC的中点,连结A′B所在直线于点 F,连结 A′E.当△ A′ EF为直角三角形时, AB 的长为 4 或DE 并延长交4.【剖析】当△ A′EF为直角三角形时,存在两种状况:①当∠ A'EF=90°时,如图1,依据对称的性质和平行线可得:A'C=A'E=4,依据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB 的长;②当∠ A'FE=90°时,如图2,证明△ ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△ A′EF为直角三角形时,存在两种状况:①当∠ A'EF=90°时,如图1,∵△ A′BC与△ ABC 对于 BC 所在直线对称,∴A'C=AC=4,∠ ACB=∠ A'CB,∵点 D, E 分别为 AC, BC的中点,∴D、 E 是△ ABC 的中位线,∴D E∥AB,∴∠ CDE=∠ MAN=90°,∴∠ CDE=∠ A'EF,∴AC∥A'E,∴∠ ACB=∠ A'EC,∴∠ A'CB=∠ A'EC,∴A'C=A'E=4,Rt△ A'CB 中,∵ E 是斜边 BC的中点,∴B C=2A'B=8,由勾股定理得:AB2=BC2﹣ AC2,∴AB==4 ;②当∠ A'FE=90°时,如图2,∵∠ ADF=∠ A=∠ DFB=90°,∴∠ ABF=90°,∵△ A′BC与△ ABC 对于 BC 所在直线对称,∴∠ ABC=∠ CBA'=45°,∴△ ABC是等腰直角三角形,∴A B=AC=4;综上所述, AB 的长为 4或 4;故答案为: 4或4;等腰直角三角形的判【评论】本题考察了三角形的中位线定理、勾股定理、轴对称的性质、定、直角三角形斜边中线的性质,并利用分类议论的思想解决问题.三、计算题(本大题共8 题,共75 分,请仔细读题)16.( 8 分)先化简,再求值:(﹣ 1)÷,此中x=+1.【剖析】依据分式的运算法例即可求出答案,【解答】解:当 x=+1 时,原式 ==1﹣ x=﹣【评论】本题考察分式的运算,解题的重点是娴熟运用分式的运算法例,本题属于基础题型.17.( 9 分)每到春夏交替节气,雌性杨树会以满天飞絮的方式来流传下一代,漫天飞舞的杨絮易引起皮肤病、呼吸道疾病等,给人们造成困扰,为认识市民对治理杨絮方法的赞成情况,某课题小组随机检查了部分市民(问卷检查表如表所示),并依据检查结果绘制了以下尚不完好的统计图.治理杨絮一一您选哪一项(单项选择)A.减少杨树新增面积,控制杨树每年的种植量B.调整树种结构,渐渐改换现有杨树C.选育无絮杨品种,并推行种植D.对雌性杨树注射生物扰乱素,防止产生飞絮E.其余依据以上统计图,解答以下问题:(1)本次接受检查的市民共有2000人;(2)扇形统计图中,扇形 E 的圆心角度数是° ;(3)请补全条形统计图;(4)若该市约有 90 万人,请估计赞成“选育无絮杨品种,并推行种植”的人数.【剖析】(1 )将 A 选项人数除以总人数即可得;(2)用 360°乘以 E 选项人数所占比率可得;(3)用总人数乘以 D 选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中 C 选项人数所占百分比可得.【解答】解:( 1)本次接受检查的市民人数为 300÷15%=2000 人,故答案为: 2000;(2)扇形统计图中,扇形 E 的圆心角度数是360°×=°,故答案为:°;(3) D 选项的人数为 2000 × 25%=500,补全条形图以下:(4)估计赞成“选育无絮杨品种,并推行种植”的人数为70×40%=28(万人).【评论】本题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.18.( 9 分)如图,反比率函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比率函数的分析式;(2)在图顶用直尺和 2B 铅笔划出两个矩形(不写画法),要求每个矩形均需知足以下两个条件:①四个极点均在格点上,且此中两个极点分别是点O,点 P;②矩形的面积等于k 的值.【剖析】(1 )将 P 点坐标代入y=,利用待定系数法即可求出反比率函数的分析式;(2)依据矩形知足的两个条件画出切合要求的两个矩形即可.【解答】解:( 1)∵反比率函数y=(x>0)的图象过格点P( 2, 2),∴k=2× 2=4,∴反比率函数的分析式为 y= ;(2)以下图:矩形 OAPB、矩形 OCDP即为所求作的图形.【评论】本题考察了作图﹣应用与设计作图,反比率函数图象上点的坐标特色,待定系数法求反比率函数分析式,矩形的判断与性质,正确求出反比率函数的分析式是解题的重点.19.( 9 分)如图, AB 是⊙ O 的直径, DO⊥AB 于点 O,连结 DA 交⊙ O 于点 C,过点 C 作⊙O 的切线交 DO 于点 E,连结 BC交 DO 于点 F.(1)求证: CE=EF;(2)连结 AF 并延长,交⊙ O 于点 G.填空:①当∠ D的度数为 30°时,四边形 ECFG为菱形;②当∠ D 的度数为° 时,四边形ECOG为正方形.【剖析】( 1)连结 OC,如图,利用切线的性质得∠1+∠ 4=90°,再利用等腰三角形和互余证明∠ 1=∠ 2,而后依据等腰三角形的判断定理获得结论;( 2)①当∠D=30°时,∠ DAO=60°,证明△CEF 和△ FEG 都为等边三角形,从而获得EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠ D=°时,∠ DAO=°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△ OEC≌△ OEG 获得∠ OEG=∠ OCE=90°,从而证明四边形 ECOG为矩形,而后进一步证明四边形ECOG为正方形.【解答】(1 )证明:连结OC,如图,∵CE 为切线,∴OC⊥ CE,∴∠ OCE=90°,即∠ 1+∠4=90°,∵DO⊥AB,∴∠ 3+∠ B=90°,而∠ 2=∠ 3,∴∠ 2+∠ B=90°,而 OB=OC,∴∠ 4=∠ B,∴∠ 1=∠ 2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而 AB 为直径,∴∠ ACB=90°,∴∠ B=30°,∴∠ 3=∠ 2=60°,而 CE=FE,∴△ CEF为等边三角形,∴C E=CF=EF,同理可得∠ GFE=60°,利用对称得 FG=FC,∵F G=EF,∴△ FEG为等边三角形,∴EG=FG,∴E F=FG=GE=CE,∴四边形 ECFG为菱形;②当∠D=°时,∠DAO=°,而 OA=OC,∴∠ OCA=∠ OAC=°,∴∠ AOC=180°﹣°﹣°=45°,∴∠ AOC=45°,∴∠ COE=45°,利用对称得∠ EOG=45°,∴∠ COG=90°,易得△ OEC≌△ OEG,∴∠ OEG=∠ OCE=90°,∴四边形ECOG为矩形,而 OC=OG,∴四边形ECOG为正方形.故答案为 30°,°.【评论】本题考察了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,结构定理图,得出垂直关系.也考察了菱形和正方形的判断.20.(9 分)“高低杠”是女子体操独有的一个竞技项目,其竞赛器械由高、低两根平行杠及若干支架构成,运动员可依据自己的身高和习惯在规定范围内调理高、低两杠间的距离.某兴趣小组依据高低杠器械的一种截面图编制了以下数学识题,请你解答.以下图,底座上 A,B 两点间的距离为 90cm.低杠上点 C到直线 AB 的距离 CE的长为 155cm,高杠上点 D 到直线 AB 的距离 DF 的长为 234cm ,已知低杠的支架 AC 与直线 AB 的夹角∠ CAE为°,高杠的支架 BD 与直线 AB 的夹角∠ DBF 为°.求高、低杠间的水平距离 CH的长.(结果精准到 1cm,参照数据°≈,°≈,°≈,°≈,°≈,°≈)【剖析】利用锐角三角函数,在 Rt△ ACE和 Rt△ DBF中,分别求出AE、BF 的长.计算出 EF.通过矩形 CEFH获得 CH 的长.【解答】解:在 Rt△ ACE中,∵tan ∠ CAE=,∴AE==≈≈ 21(cm)在 Rt△ DBF 中,∵tan ∠ DBF= ,∴BF==≈=40( cm)∵E F=EA+AB+BF≈ 21+90+40=151( cm)∵C E⊥ EF, CH⊥ DF, DF⊥EF∴四边形CEFH是矩形,∴C H=EF=151cm答:高、低杠间的水平距离CH 的长为 151cm.【评论】本题考察了锐角三角函数解直角三角形.题目难度不大,注意精准度.21.(10 分)某企业推出一款产品,经市场检查发现,该产品的日销售量y(个)与销售单价x (元)之间知足一次函数关系对于销售单价,日销售量,日销售收益的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售收益w(元)87518751875875(注:日销售收益=日销售量×(销售单价﹣成本单价))(1)求 y 对于 x 的函数分析式(不要求写出x 的取值范围)及m 的值;(2)依据以上信息,填空:该产品的成本单价是80元,当销售单价x= 100元时,日销售收益w 最大,最大值是2000元;(3)企业计划睁开科技创新,以降低该产品的成本,估计在此后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90 元时,日销售收益不低于3750 元的销售目标,该产品的成本单价应不超出多少元【剖析】(1 )依据题意和表格中的数据能够求得y 对于 x 的函数分析式;(2)依据题意能够列出相应的方程,从而能够求得生产成本和w 的最大值;(3)依据题意能够列出相应的不等式,从而能够获得科技创新后的成本.【解答】解;( 1)设 y 对于 x 的函数分析式为y=kx+b,,得,即 y 对于 x 的函数分析式是 y=﹣ 5x+600,当 x=115 时, y=﹣ 5× 115+600=25 ,即 m 的值是 25;(2)设成本为 a 元/ 个,当 x=85 时, 875=175×( 85﹣ a),得 a=80,w=(﹣ 5x+600)(x﹣ 80) =﹣5x2+1000x﹣ 48000=﹣5( x﹣ 100)2+2000,∴当 x=100时, w 获得最大值,此时w=2000 ,故答案为:80, 100, 2000 ;(3)设科技创新后成本为 b 元,当x=90 时,(﹣ 5× 90+600 )( 90﹣ b)≥ 3750,解得, b≤ 65,答:该产品的成本单价应不超出65 元.【评论】本题考察二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的重点是明确题意,找出所求问题需要的条件,利用函数和数形联合的思想解答.22.( 10 分)( 1)问题发现如图 1,在△ OAB 和△ OCD中, OA=OB, OC=OD,∠ AOB=∠ COD=40°,连结 AC, BD 交于点M.填空:①的值为1;②∠ AMB 的度数为40° .(2)类比研究如图 2,在△ OAB 和△ OCD 中,∠ AOB=∠ COD=90°,∠ OAB=∠ OCD=30°,连结 AC交 BD 的延长线于点M.请判断的值及∠ AMB的度数,并说明原因;(3)拓展延长在( 2)的条件下,将△OCD 绕点 O 在平面内旋转,AC, BD 所在直线交于点M,若 OD=1,OB=,请直接写出当点 C 与点 M 重合时 AC的长.【剖析】(1 )①证明△ COA≌△ DOB( SAS),得 AC=BD,比值为1;②由△ COA≌△ DOB,得∠ CAO=∠ DBO,依据三角形的内角和定理得:∠AMB=180° ﹣(∠DBO+∠ OAB+∠ABD) =180 °﹣ 140 °=40 °;(2)依据两边的比相等且夹角相等可得△AOC∽△ BOD,则性质得∠ AMB 的度数;(3)正确绘图形,当点 C 与点 M 重合时,有两种状况:如图△BOD,则∠ AMB=90°,,可得AC的长.3 和=,由全等三角形的4,同理可得:△AOC∽【解答】解:( 1)问题发现①如图 1,∵∠ AOB=∠ COD=40°,∴∠ COA=∠DOB,∵OC=OD, OA=OB,∴△ COA≌△ DOB( SAS),∴AC=BD,∴=1,②∵△ COA≌△ DOB,∴∠ CAO=∠ DBO,∵∠ AOB=40°,∴∠ OAB+∠ ABO=140°,在△ AMB 中,∠AMB=180° ﹣(∠ CAO+∠ OAB+∠ ABD)=180°﹣(∠ DBO+∠ OAB+∠ ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比研究如图2,=,∠ AMB=90°,原因是:Rt△ COD 中,∠ DCO=30°,∠ DOC=90°,∴,同理得:,∴,∵∠ AOB=∠ COD=90°,∴∠ AOC=∠ BOD,∴△ AOC∽△ BOD,∴=,∠ CAO=∠ DBO,OAB+∠ ABM+∠ DBO) =90°;在△ AMB 中,∠ AMB=180° ﹣(∠ MAB+∠ ABM) =180°﹣(∠(3)拓展延长①点 C 与点 M 重合时,如图3,同理得:△ AOC∽△ BOD,∴∠ AMB=90°,,设 BD=x,则 AC= x,Rt△ COD 中,∠ OCD=30°, OD=1,∴C D=2, BC=x﹣2,Rt△ AOB 中,∠ OAB=30°, OB=,∴A B=2OB=2 ,在 Rt△ AMB 中,由勾股定理得: AC2+BC2=AB2,,x2﹣x﹣ 6=0,(x﹣ 3)( x+2) =0,x1=3,x2=﹣ 2,∴A C=3 ;②点 C 与点 M 重合时,如图4,同理得:∠ AMB=90°,,设 BD=x,则 AC= x,在 Rt△ AMB 中,由勾股定理得:AC2+BC2=AB2,+( x+2) 2=x2+x﹣ 6=0,(x+3)( x﹣ 2) =0,x1=﹣3, x2=2,∴A C=2 ;综上所述, AC 的长为 3或 2 .【评论】本题是三角形的综合题,主要考察了三角形全等和相像的性质和判断,几何变换问题,解题的重点是能得出:△ AOC∽△ BOD,依据相像三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.( 11 分)如图,抛物线y=ax2 +6x+c 交 x 轴于 A, B 两点,交y 轴于点 C.直线 y=x﹣ 5 经过点 B,C.(1)求抛物线的分析式;(2)过点 A 的直线交直线 BC于点 M.①当AM⊥ BC 时,过抛物线上一动点P(不与点B, C 重合),作直线AM的平行线交直线BC 于点Q,若以点A, M, P, Q 为极点的四边形是平行四边形,求点P 的横坐标;②连结 AC,当直线AM 与直线 BC的夹角等于∠ACB的 2 倍时,请直接写出点M 的坐标.【剖析】(1 )利用一次函数分析式确立C( 0,﹣ 5), B( 5, 0),而后利用待定系数法求抛物线分析式;(2)①先解方程﹣x2+6x﹣ 5=0 得 A( 1, 0),再判断△ OCB 为等腰直角三角形获得∠OBC=∠OCB=45°,则△ AMB 为等腰直角三角形,因此AM=2,接着依据平行四边形的性质获得PQ=AM=2 ,PQ⊥ BC,作 PD⊥ x 轴交直线 BC于 D,如图 1,利用∠ PDQ=45°获得 PD= PQ=4,设P( m,﹣ m2 +6m﹣ 5),则 D( m,m﹣ 5),议论:当 P 点在直线 BC 上方时, PD=﹣ m2+6m﹣5﹣( m﹣ 5) =4;当 P 点在直线 BC 下方时, PD=m﹣ 5﹣(﹣ m2+6m﹣5 ),而后分别解方程即可获得 P 点的横坐标;②作 AN⊥BC 于 N, NH⊥x 轴于 H,作 AC 的垂直均分线交 BC 于 M 1,交 AC 于 E,如图 2,利用等腰三角形的性质和三角形外角性质获得∠AM1B=2∠ ACB,再确立 N(3,﹣ 2),AC 的分析式为y=5x﹣ 5, E 点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的分析式为 y=﹣x+b,把 E(,﹣)代入求出 b 获得直线 EM1的分析式为 y=﹣x﹣,则解方程组得 M 1点的坐标;作直线BC上作点 M1对于 N 点的对称点M2,如图 2,利用对称性获得∠AM2C=∠ AM 1B=2∠ ACB,设 M2( x,x﹣5 ),依据中点坐标公式获得3=,而后求出x 即可获得M2的坐标,从而获得知足条件的点M 的坐标.【解答】解:( 1)当 x=0 时, y=x﹣5=﹣ 5,则 C( 0,﹣ 5),当 y=0 时, x﹣5=0,解得 x=5,则 B( 5, 0),。
2018年中考数学试卷及答案
2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
2023年河南省中考数学真题(解析版)
2023年河南省普通高中招生考试试卷数学一、选择题1. 下列各数中,最小的数是( )A. -lB. 0C. 1D. 【答案】A【解析】【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101-<<<,∴最小的数是-1.故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A. 74.5910´B. 845.910´C. 84.5910´D. 90.45910´【答案】C【解析】【分析】将一个数表示为10n a ´的形式,其中110a £<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510==´.故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ´,其中110a £<,确定a与n 的值是解题的关键.4. 如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A. 30︒B. 50︒C. 60︒D. 80︒【答案】B【解析】【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简11a a a -+的结果是( )A 0 B. 1 C. a D. 2a -【答案】B【解析】的.【分析】根据同母的分式加法法则进行计算即可.【详解】解:11111a a a a a a a--++===,故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A ,B ,C 在O e 上,若55C ∠=︒,则AOB ∠的度数为( )A. 95︒B. 100︒C. 105︒D. 110︒【答案】D【解析】【分析】直接根据圆周角定理即可得.【详解】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x 的一元二次方程280x mx +-=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】对于20(0)ax bx c a ++=¹,当0D >, 方程有两个不相等的实根,当Δ0=, 方程有两个相等的实根,Δ0<, 方程没有实根,根据原理作答即可.【详解】解:∵280x mx +-=,∴()2248320m m D =-´-=+>,所以原方程有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. 12 B. 13 C. 16 D. 19【答案】B【解析】【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答.【详解】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PB y PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A. 6B. 3C.D. 【答案】A【解析】【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==O 作OD AB ^,解直角三角形可得cos303AD AO =×︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC V 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==,∴30BAO ABO ∠=∠=︒,过点O 作OD AB ^,∴AD BD =,则cos303AD AO =×︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【解析】【分析】根据总共配发的数量=年级数量´每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组35,37x y x y +=ìí+=î的解为______.【答案】12x y =ìí=î【解析】【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=ìí+=î①②由3´-①②得,88x =,解得1x =,把1x =代入①中得315y ´+=,解得2y =,故原方程组的解是12x y =ìí=î,故答案为:12x y =ìí=î.【点睛】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280【解析】【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280´=棵,故答案为:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,PA 与O e 相切于点A ,PO 交O e 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【解析】【分析】连接OC ,证明OAC OBC V V ≌,设CB CA x ==,则12PC PA CA x =-=-,再证明PAO PBC V V ∽,列出比例式计算即可.【详解】如图,连接OC ,∵PA 与O e 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =ìï=íï=î,∴OAC OBC V V ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC V V ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【解析】分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可.【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD==,即:1ND AN ==,【∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:135---+;(2)化简:()()224x y x x y ---.【答案】(1)15;24y 【解析】【分析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:配送速度得分服务质量得分项目统计量快递公司平均数中位数平均数方差甲78m 72s 甲乙8872s乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;<.(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】【分析】(1)根据中位数和方差概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.【小问1详解】由题意可得,787.52m +==,()()()()22222137748726757110s éù=´´-+´-+´-+-=ëû甲()()()()()()()222222221478721072679725777 4.210s éù=´-+-+´-+´-+-+´-+-=ëû乙,∴22s s <甲乙,故答案为:7.5;<;【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,ABC V 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用角平分线的作图步骤作图即可;的(2)证明()SAS BAE DAE △≌△,即可得到结论.【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数k y x =图象上的点)A 和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA 长为半径作 AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1(2)半径为2,圆心角为60︒(3)23p -【解析】【分析】(1)将)A 代入k y x=中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出AOCD S =菱形,再计算出扇形的面积,根据菱形的性质及结合k 的几何意义可求出FBO S =V 【小问1详解】解:将)A 代入k y x=中,得1=,解得:k =【小问2详解】解:Q 过点A 作OD 的垂线,垂足为G ,如下图:)A Q ,1,AG OG \==,2OA \==,\半径为2;12AG OA =Q ,∴1sin 2AG AOG OG ∠==,30AOG \∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC \∠=︒,\扇形AOC 的圆心角的度数:60︒;【小问3详解】解:2OD OG ==Q ,1AOCD S AG OD \=´=´=菱形221122663AOC S r p p p =´=´´=Q 扇形,如下图:由菱形OBEF 知,FHO BHO S S =V V ,2BHO k S ==V Q2FBO S \==V ,2233FBO AOCD AOC S S S S p p \=+-=+=V 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m 【解析】【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+»,答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元 (3)当300400a £<或600800a £<时,活动二更合算【解析】【分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a £<时,所需付款为()80a -元,当600900a £<时,所需付款为()160a -元,然后根据题意列出不等式即可求解.【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360´=元,活动二需付款:45080370-=元,∴活动一更合算;【小问2详解】设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,【小问3详解】这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a £<时,所需付款为:()80a -元,当600900a £<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a £<时,800.8a a -<,解得300400a £<,即:当300400a £<时,活动二更合算,③当600900a £<时,1600.8a a -<,解得600800a £<,即:当600800a £<时,活动二更合算,综上:当300400a £<或600800a £<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =-+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x =-+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】【分析】(1)在一次函数上0.4 2.8y x =-+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x =-+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x -+=,()20.41 3.20x --+=,即可求得落地点到O 点的距离,即可判断谁更近.【小问1详解】解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;【小问2详解】∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±+(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y P 轴,作ABC V 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC V 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BAD a a ∠=︒<<︒,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP b ∠=,请判断b 与a 的数量关系,并说明理由;②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60a =︒,AD =,15PAB ∠=︒,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180︒,8.(2)①2b a =,理由见解析;②2sin m a(3)或【解析】【分析】(1)观察图形可得222A B C △与ABC V 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,得出32PP EF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DG DAG DA∠=,即可求解;(3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD a =,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC V 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC V 关于O 点中心对称,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=´=,即38AA =,333A B C △可以看作是ABC V 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.【小问2详解】①2b a =,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2b a =,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ^,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ^^,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ^^^,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG a ∠=,AD m=∵sin DG DAG DA∠=,∴sin sin DG AD DAG m a =×∠=,∴3222sin PP EF DG m a===【小问3详解】解:设AP x =,则12AP AP x ==,依题意,12PP AD ^,当23P P AD ∥时,如图所示,过点P 作1PQ AP ^于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60a =︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则12PP =,在1APP V 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴13212PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,AQ x ==,在1Rt PQP V 中,11PQ AP AQ x x =-=,1PP x ====,∴3113PP PP PP x x =+=+=由(2)②可得32sin PP AD a =,∵AD =∴326PP =´=6x =,解得:x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则131212PP PP x ==,∵1PP x =,3PP x x x =+=,∵36PP =,6=,解得:x =,综上所述,AP 的长为或【点睛】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。
2020年河南省中考数学试卷(1)
2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.22.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台<开学第一课>的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.(3分)电子档的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频档的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1 7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C .无实数根D .只有一个实数根8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500B .5000×2(1+x )=7500C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=75009.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数 . 12.(3分)已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.(3分)如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB 上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501 [整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量485≤x<490≤x<495≤x<500≤x<505≤x<510≤x<频数 机器 490 495 500 505 510 515甲 2 2 4 7 4 1 乙135731[分析数据]根据以上数据,得到以下统计量. 统计量 机器 平均数中位数方差不合格率甲 499.7 501.5 42.01 b 乙499.7a31.8110%根据以上信息,回答下列问题: (1)表格中的a = ,b = ;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45°.测角仪的高度为1.6m . (1)求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为y 1(元),且y 1=k 1x +b ;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用标尺作图平分一个任意角,而“利用标尺作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN 三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA 如图,点D是BC的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的(1)根据点D在BC几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE . (1)如图1,当α=60°时,△DEB ′的形状为 ,连接BD ,可求出BB′CE的值为 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E 的值.2020年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.2【解答】解:2的相反数是﹣2.故选:A.2.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台<开学第一课>的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【解答】解:A、调查中央电视台<开学第一课>的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.5.(3分)电子档的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频档的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B【解答】解:由题意得:210×210×210B=210+10+10=230B,故选:A.6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .只有一个实数根【解答】解:由题意可知:1☆x =x 2﹣x ﹣1=0, ∴△=1﹣4×1×(﹣1)=5>0, 故选:A .8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500B .5000×2(1+x )=7500C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=7500【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x , 由题意得:5000(1+x )2=7500, 故选:C .9.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)【解答】解:如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形, ∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0), ∴AC =6,OC =2,OB =7, ∴BC =9,∵四边形OCDE 是正方形, ∴DE =OC =OE =2,∴O ′E ′=O ′C ′=2, ∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°, ∴E ′O ′∥AC , ∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC,∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2), 故选:B .10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3【解答】解:连接BD 交AC 于O , ∵AD =CD ,AB =BC , ∴BD 垂直平分AC , ∴BD ⊥AC ,AO =CO , ∵AB =BC ,∴∠ACB =∠BAC =30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=√3,∴AD=CD=√3AB=3,∴四边形ABCD的面积=2×12×3×√3=3√3,故选:D.二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数√3.【解答】解:大于1且小于2的无理数是√3,答案不唯一.故答案为:√3.12.(3分)已知关于x的不等式组{x>a,x>b,其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为x>a.【解答】解:∵b<0<a,∴关于x的不等式组{x>a,x>b,的解集为:x>a,故答案为:x>a.13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是14.【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种, ∴P (两次颜色相同)=416=14, 故答案为:14.14.(3分)如图,在边长为2√2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为 1 .【解答】解:设DF ,CE 交于O , ∵四边形ABCD 是正方形,∴∠B =∠DCF =90°,BC =CD =AB , ∵点E ,F 分别是边AB ,BC 的中点, ∴BE =CF ,∴△CBE ≌△DCF (SAS ), ∴CE =DF ,∠BCE =∠CDF , ∵∠CDF +∠CFD =90°, ∴∠BCE +∠CFD =90°, ∴∠COF =90°, ∴DF ⊥CE ,∴CE=DF=√(2√2)2+(√2)2=√10,∵点G,H分别是EC,FD的中点,∴CG=FH=√10 2,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF=CF2DF=√2)2√10=√105,∴OH=3√1010,OD=4√105,∵OC2=OF•OD,∴OC=√√105×4√105=2√105,∴OG=CG﹣OC=√102−2√105=√1010,∴HG=√OG2+OH2=√110+910=1,故答案为:1.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为6√2+π3.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√OC2+OD′2=√22+22=2√2,CD̂的长l=30π×2180=π3,∴阴影部分周长的最小值为2√2+π3=6√2+π3. 故答案为:6√2+π3.三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:(1−1a+1)÷aa 2−1,其中a =√5+1. 【解答】解:(1−1a+1)÷a a 2−1=a+1−1a+1×(a−1)(a+1)a=a ﹣1,把a =√5+1代入a ﹣1=√5+1﹣1=√5.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下: 甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501 [整理数据]整理以上数据,得到每袋质量x (g )的频数分布表.质量 频数 机器485≤x <490490≤x <495495≤x <500500≤x <505505≤x <510510≤x <515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量平均数中位数方差不合格率机器甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=501,b=15%;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b=3➗20=15%,故答案为:501,15%;(2)选择乙机器,理由:乙的不合格率较小,18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°=AEBE=x16+x=0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)∵y 1=k 1x +b 过点(0,30),(10,180), ∴{b =3010k 1+b =180,解得{k 1=15b =30, k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下: 由题意可知,y 1=15x +30,y 2=20x . 当健身8次时,选择方案一所需费用:y 1=15×8+30=150(元), 选择方案二所需费用:y 2=20×8=160(元), ∵150<160,∴选择方案一所需费用更少.20.(9分)我们学习过利用标尺作图平分一个任意角,而“利用标尺作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN 三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分.【解答】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤4或﹣21≤y Q≤﹣5.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA 如图,点D是BC的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的(1)根据点D在BC几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是5;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).̂的中点,【解答】解:(1)∵点D为BĈ=CD̂,∴BD∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE .(1)如图1,当α=60°时,△DEB ′的形状为 等腰直角三角形 ,连接BD ,可求出BB′CE的值为 √2 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E的值.【解答】解:(1)∵AB 绕点A 逆时针旋转至AB ′, ∴AB =AB ',∠BAB '=60°, ∴△ABB '是等边三角形, ∴∠BB 'A =60°,∴∠DAB '=∠BAD ﹣∠BAB '=90°﹣60°=30°, ∵AB '=AB =AD , ∴∠AB 'D =∠ADB ', ∴∠AB 'D =180°−30°2=75°, ∴∠DB 'E =180°﹣60°﹣75°=45°, ∵DE ⊥B 'E ,∴∠B 'DE =90°﹣45°=45°, ∴△DEB '是等腰直角三角形. ∵四边形ABCD 是正方形, ∴∠BDC =45°, ∴BD DC=√2,同理B′D DE=√2,∴BD DC=B′D DE,∵∠BDB '+∠B 'DC =45°,∠EDC +∠B 'DC =45°, ∴BDB '=∠EDC , ∴△BDB '∽△CDE , ∴BB′CE=BD DC=√2.故答案为:等腰直角三角形,BB′CE=√2.(2)①两结论仍然成立. 证明:连接BD ,∵AB =AB ',∠BAB '=α, ∴∠AB 'B =90°−α2,∵∠B 'AD =α﹣90°,AD =AB ', ∴∠AB 'D =135°−α2,∴∠EB 'D =∠AB 'D ﹣∠AB 'B =135°−α2−(90°−α2)=45°, ∵DE ⊥BB ',∴∠EDB '=∠EB 'D =45°, ∴△DEB '是等腰直角三角形, ∴DB′DE=√2,∵四边形ABCD 是正方形, ∴BD CD =√2,∠BDC =45°,∴BD CD=DB′DE,∵∠EDB '=∠BDC ,∴∠EDB '+∠EDB =∠BDC +∠EDB , 即∠B 'DB =∠EDC , ∴△B 'DB ∽△EDC , ∴BB′CE =BD CD=√2.②BE B′E=3或1.若CD 为平行四边形的对角线,点B '在以A 为圆心,AB 为半径的圆上,取CD 的中点.连接BO 交⊙A 于点B ', 过点D 作DE ⊥BB '交BB '的延长线于点E ,由(1)可知△B 'ED 是等腰直角三角形, ∴B 'D =√2B 'E ,由(2)①可知△BDB '∽△CDE ,且BB '=√2CE . ∴BE B′E=B′B+B′E B′E=BB′B′E+1=√2CEB′E+1=√2B′DB′E+1=√2×√2+1=3.若CD 为平行四边形的一边,如图3,点E与点A重合,∴BEB′E=1.综合以上可得BEB′E =3或1.。
河南中考数学试题及答案解析[版]
2016年河南省普通高中招生考试试卷数学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上.2.答卷前请将密封线内的项目填写清楚.题号一二三总分1~8 9~15 16 17 18 19 20 21 22 23分数一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.的相反数是()(A)(B)(C)-3 (D)32.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为()A.9.5×10-7B. 9.5×10-8C.0.95×10-7D. 95×10-83. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()4.下列计算正确的是()(A)=(B)(-3)2=6(C)3a4-2a3 = a2(D)(-a3)2=a55. 如图,过反比例函数y=(x> 0)的图象上一点A,作AB⊥x轴于点B,S△AOB=2,则k的值为()(A)2 (B)3 (C)4 (D)56. 如图,在ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为()(A)6 (B)5 (C)4 (D)37、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()(A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2)二、填空题(每小题3分,共21分)9.计算:(-2)0-= .10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是 .11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围= .12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 .13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是 .14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点C.若OA=2,则阴影部分的面积为______.15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上的一个动点,连接AE,将△ABE沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD、BC于点M、N,当点B'为线段MN的三等份点时,BE的长为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中x的值从不等式组的整数解中选取。
2023年河南省中考数学模拟试卷(经典三)及答案解析
2023年河南省中考数学模拟试卷(经典三)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣3B.3C.D.﹣2.(3分)如图是由4个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.(3分)下列运算正确的是()A.3a﹣a=2B.a2•a3=a6C.a6÷2a2=D.(2a2b)3=6a8b24.(3分)2022年11月2日,焦作市山阳区举办“学习二十大出彩组工人”主题演讲比赛.下表是5位评委对某参赛选手的打分情况,则该组数据的中位数是()评委甲乙丙丁戊打分9.59.69.6109.8 A.9.6B.9.7C.9.8D.105.(3分)如图为两直线m、n与△ABC相交的情形,其中m、n分别与BC、AB平行.根据图中标示的角度,∠A的度数为()A.75°B.60°C.55°D.50°6.(3分)若方程kx2﹣2x+1=0没有实数根,则k的值可以是()A.﹣1B.0C.1D.27.(3分)如图,在边长为5的菱形ABCD中,对角线BD=8,点O为菱形的中心,作OE ⊥BC,垂足为E,则sin∠COE的值为()A.B.C.D.8.(3分)在“河南美食简介”竞答活动中,第一题组共设置“河南烩面”“胡辣汤”“洛阳酸浆面条”“开封双麻火烧”四种美食,参赛的甲、乙二人从以上四种美食中随机选取一个进行简介,则两人恰好选中同一种美食的概率是()A.B.C.D.9.(3分)中国古代涌现包括“锝、钧、镒、铢”等在内的质量单位,而现代的质量单位有:吨(t)、千克(kg)、克(g)、毫克(mg)、微克(μg)等.其中1t=103kg,1kg=103g,1g=103mg,则1t等于()A.109mg B.1027mg C.3×103mg D.39mg10.(3分)血药浓度(PlasmaConcentration)指药物吸收后在血浆内的总浓度,已知药物在体内的浓度随着时间而变化.某成人患者在单次口服1单位某药后,体内血药浓度及相关信息如图所示,根据图中提供的信息,下列关于成人患者使用该药血药浓度(mg/L)5a最低中毒浓度(MTC)物的说法中正确的是()A.从t=0开始,随着时间逐渐延长,血药浓度逐渐增大B.当t=1时,血药浓度达到最大为5amg/LC.首次服用该药物1单位3.5小时后,立即再次服用该药物1单位,不会发生药物中毒D.每间隔4h服用该药物1单位,可以使药物持续发挥治疗作用二、填空题(每小题3分,共15分)11.(3分)请写出一个图象经过点(1,2)的函数的关系式.12.(3分)不等式组的解集是.13.(3分)如图,Rt△ABC中∠ACB=90°,线段CO为斜边AB的中线.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于P,Q两点,作过P、Q两点的直线恰过点C,交AB于点D,若AD=1,则BC的长是.14.(3分)如图,在▱ABCD中,E为BC的中点,以E为圆心,CE长为半径画弧交对角线BD于点F,若∠BAD=116°,∠BDC=39°,BC=4,则扇形CEF的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AB=4,E为斜边AB 的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;(2)化简:.17.(9分)中国是世界上最早使用铸币的国家.距今3000年前殷商晚期墓葬出土了不少“无文铜贝”,为最原始的金属货币.下列装在相同的透明密封盒内的古钱币材质相同,其密封盒上分别标有古钱币的尺寸及质量(例如:钱币“状元及第”密封盒上所标“48.1*2.4mm,24.0g”是指该枚古钱币的直径为48.1mm,厚度为2.4mm,质量为24.0g).根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径数据的平均数是,所标厚度数据的众数是;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.18.(9分)如图,直线y=kx+b与双曲线相交于A(﹣3,1),B两点,与x 轴相交于点C(﹣4,0).(1)分别求一次函数与反比例函数的解析式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x<0时,关于x的不等式的解集.19.(9分)宝轮寺塔,为供奉舍利由尼姑道秀主持建筑,始建于隋文帝仁寿元年(601年),故又称仁寿建塔,位于河南省三门峡市陕州风景区.数学活动小组欲测量宝轮寺塔DE的高度,如图,在A处测得宝轮寺塔塔基C的仰角为15°,沿水平地面前进23米到达B处,测得宝轮寺塔塔顶E的仰角∠EBD为53°,测得塔基C的仰角∠CBD 为30°(图中各点均在同一平面内).(1)求宝轮寺塔DE的高度;(2)实际测量时会存在误差,请提出一条减小误差的合理化建议.(结果精确到0.1米,参考数据:20.(9分)当前我国约有十分之一的教师因为种种原因患上嗓音疾病.针对于此,某校工会计划为超课时任务的教师配备音频放大器.已知购买2个A型音频放大器和3个B型音频放大器共需352元;购买3个A型音频放大器和4个B型音频放大器共需496元.(1)求A、B两种类型音频放大器的单价;(2)该校准备采购A、B两种类型的音频放大器共30个,且A型音频放大器的数量不少于B型音频放大器数量的2倍,请给出最省钱的购买方案,并说明理由.21.(9分)某跳台滑雪运动员进行比赛,起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,已知标准台的高度OA为66m,当运动员在距标准台水平距离25m处达到最高,最高点距地面76m,建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k.其中x(m)是运动员距标准台的水平距离,y(m)是运动员距地面的高度.(2)已知着陆坡上有一基准点K,且K到标准台的水平距离为75m,高度为21m.判断该运动员的落地点能否超过K点,并说明理由.22.(10分)如图,△ABC为⊙O的内接三角形,其中AB为⊙O的直径,且AC=3,BC=4.(1)尺规作图:分别以B、C为圆心,大于长为半径画弧,在BC的两侧分别相交于P、Q两点,画直线PQ交BC于点D,交劣弧于点E,连接CE;(2)追根溯源:由所学知识可知,点O(填“在”或“在”)直线PQ上;(3)数据运算:在(1)所作的图形中,求点O到BC的距离及∠DCE的余弦值.23.(10分)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时;PA与DC的数量关系为;∠DCP的度数为;(2)如图2,当α=120°时,请问(1)中PA与DC的数量关系还成立吗?∠DCP的度数呢?说明你的理由.(3)当α=120°时,若,请直接写出点D到CP的距离.2023年河南省中考数学模拟试卷(经典三)参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
2019年河南省中考数学试题、答案(解析版)(可编辑修改word版)
2 2019 年河南省中考数学试题、答案(解析版)本试卷满分 120 分,考试时间 100 分钟.第Ⅰ卷(选择题 共 30 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. - 1的绝对值是( )2A. - 12B. 1 2C. 2D. -22. 成人每天维生素 D 的摄入量约为 0.000 004 6 克.数据“0.000 004 6”用科学记数法表示为()A . 46 ⨯10-7B . 4.6 ⨯10-7C . 4.6 ⨯10-6D . 0.46 ⨯10-53.如图, AB ∥CD , ∠B = 75 , ∠E = 27 ,则∠D 的度数为()A . 45B . 48C . 50D . 584. 下列计算正确的是()A . 2a + 3a = 6aB . (-3a )2 = 6a 2C . (x - y )2 = x 2 - y 2D . 3 - = 25. 如图 1 是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图 2.关于平移前后几何体的三视图,下列说法正确的是( )A. 主视图相同B .左视图相同C .俯视图相同D .三种视图都不相同图 1 图 26. 一元二次方程(x + 1)(x -1) = 2x + 3 的根的情况是( )A. 有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7. 某超市销售 A ,B ,C ,D 四种矿泉水,它们的单价依次是 5 元、3 元、2 元、1 元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )A .1.95 元2 24⎨B .2.15 元C.2.25 元D.2.75 元8.已知抛物线y =-x2+bx + 4 经过(-2, n) 和(4, n) 两点,则n 的值为( )A.-2B.-4C.2D.49.如图,在四边形ABCD 中, AD∥BC ,∠D = 90 ,AD = 4 ,BC = 3 .分别以点A,C 为圆心,大于1AC 长为半径作弧,两弧交2于点E,作射线BE 交AD 于点F,交AC 于点O.若点O 是AC 的中点,则CD 的长为( )A.2B.4C.3D.10.如图,在△OAB 中,顶点O(0, 0) ,A(-3, 4) ,B(3, 4) .将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90 ,则第70 次旋转结束时,点D 的坐标为( )A. (10,3)B. (-3,10)C. (10, -3)D. (3, -10)第Ⅱ卷(非选择题共90 分)二、填空题(本大题共5 小题,每小题3 分,共15 分.把答案填写在题中的横线上)11.计算:- 2-1=.⎧x≤-1,12.不等式组⎪2⎪⎩-x+7>4的解集是.13.现有两个不透明的袋子,一个装有2 个红球、1 个白球,另一个装有1 个黄球、2 个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1 个球,摸出的两个球颜色相同的概率是.14.如图,在扇形AOB 中, ∠AOB =120 ,半径OC 交弦AB 于点D,且OC ⊥OA .若OA = 2 ,则阴影部分的面积为.21033 15. 如图,在矩形 ABCD 中, AB = 1 , BC = a ,点 E 在边 BC 上,且 BE =3.连接 AE ,将△ABE 沿 AE 折叠,若点 B 的对应点 B '5落在矩形 ABCD 的边上,则 a 的值为.三、解答题(本大题共 8 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分 8 分)先化简,再求值: ( x + 1 x - 2 -1) ÷x 2 - 2x x 2 - 4x + 4,其中 x = .17.(本小题满分 9 分)如图,在△ABC 中, BA = BC , ∠ABC = 90 .以 AB 为直径的半圆 O 交 AC 于点 D ,点 E 是 B D 上不与点 B ,D 重合的任意一点,连接 AE 交 BD 于点 F ,连接 BE 并延长交 AC 于点 G .(1) 求证: △ADF ≅ △BDG ;(2) 填空:①若 AB = 4 ,且点 E 是 B D 的中点,则 DF 的长为 ;②取 AE 的中点 H ,当∠EAB 的度数为时,四边形 OBEH 为菱形.18.(本小题满分 9 分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取 50 名学生进行测试,并对成绩 (百分制)进行整理、描述和分析.部分信息如下:a. 七年级成绩频数分布直方图:3b. 七年级成绩在70≤x <80 这一组的是:70 72 74 75 76 76 77 77 77 78 79c. 七、八年级成绩的平均数、中位数如下:年级平均数 中位数 七 76.9 m 八79.279.5根据以上信息,回答下列问题:(1) 在这次测试中,七年级在 80 分以上(含 80 分)的有人;(2) 表中 m 的值为;(3) 在这次测试中,七年级学生甲与八年级学生乙的成绩都是 78 分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4) 该校七年级学生有 400 人,假设全部参加此次测试,请估计七年级成绩超过平均数 76.9 分的人数.19.(本小题满分 9 分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像 DE 在高 55 m 的小山 EC 上,在A 处测得塑像底部 E 的仰角为34 ,再沿 AC 方向前进 21 m 到达 B 处,测得塑像顶部 D 的仰角为60 ,求炎帝塑像 DE 的高 度.(精确到 1 m .参考数据: sin34 ≈ 0.56 , cos34 = 0.83 , tan34 ≈ 0.67 , ≈ 1.73 )20.(本小题满分 9 分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买 3 个 A 奖品和 2 个 B 奖品共需 120 元;购买 5 个 A 奖品和 4个B 奖品共需210 元. (1)求A,B 两种奖品的单价;(2)学校准备购买A,B 两种奖品共30 个,且A 奖品的数量不少于B1奖品数量的 .请设计出最省钱的购买方案,并说明理由.321.(本小题满分10 分)模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x ,y .由矩形的面积为4,得xy = 4 ,即y =4;由周长为m ,得2(x +y) =m ,即y =-x +m.满x 2 足要求的(x, y) 应是两个函数图象在第象限内交点的坐标;(2)画出函数图象函数y =4(x>0) 的图象如图所示,而函数y =-x +m的图象可由直线y =-x 平移得到.请在同一直角坐标系中直接画出x 2直线y =-x ;(3)平移直线y =-x ,观察函数图象①当直线平移到与函数y =4(x>0) 的图象有唯一交点(2, 2) 时,周长m 的值为;x②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围.(4)得出结论若能生产出面积为4 的矩形模具,则周长m 的取值范围为.22.(本小题满分10 分)在△ABC 中,CA =CB ,∠ACB =.点P 是平面内不与点A,C 重合的任意一点,连接AP,将线段AP 绕点P 逆时针旋转得到线段DP,连接AD,BD,CP.(1) 观察猜想如图 1,当= 60 时, BD的值是,直线 BD 与直线 CP 相交所成的较小角的度数是;CP(2) 类比探究如图 2,当= 90 时,请写出 BD的值及直线 BD 与直线 CP 相交所成的小角的度数,并就图 2 的情形说明理由;CP(3) 解决问题当= 90 时,若点 E ,F 分别是 CA ,CB 的中点,点 P 在直线 EF 上,请直接写出点 C ,P ,D 在同一直线上时 AD的值.CP图 1图 2备用图23.(本小题满分 11 分)如图,抛物线 y = ax 2 + 1 x + c 交 x 轴于 A ,B 两点,交 y 轴于点 C .直线 y = - 1x - 2 经过点 A ,C .2 2(1) 求抛物线的解析式;(2) 点 P 是抛物线上一动点,过点 P 作 x 轴的垂线,交直线 AC 于点 M ,设点 P 的横坐标为 m .①当△PCM 是直角三角形时,求点 P 的坐标;②作点 B 关于点 C 的对称点 B ' ,则平面内存在直线 l ,使点 M ,B , B '到该直线的距离都相等.当点 P 在 y 轴右侧的抛物线上, 且与点 B 不重合时,请直接写出直线 l : y = kx + b 的解析式.(k ,b 可用含 m 的式子表示)备用图2 河南省 2019 年普通高中招生考试数学答案解析第Ⅰ卷一、选择题1. 【答案】B【解析】解: | - 1 |= 1,故选:B .2 2【提示】根据一个负数的绝对值是它的相反数进行解答即可.【考点】绝对值的概念.2. 【答案】C【解析】解: 0.000 004 6 = 4.6 ⨯10-6 .【提示】本题用科学记数法的知识即可解答.【考点】科学记数法.3. 【答案】B【解析】解:∵ AB ∥CD ,∴ ∠B = ∠1 ,∵ ∠1 = ∠D + ∠E ,∴ ∠D = ∠B - ∠E = 75 - 27 = 48 ,故选:B .【提示】根据平行线的性质解答即可.【考点】平行线的性质,三角形外角的性质.4. 【答案】D【解析】解: 2a + 3a = 5a ,A 错误; (-3a )2 = 9a 2 ,B 错误; (x - y )2 = x 2 - 2xy + y 2 ,C 错误; 3 - = 2 ,D 正确;故选:D .【提示】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可.【考点】整式的运算.5. 【答案】 C2 2【解析】解:观察几何体,确定三视图,此几何体将上层的小正方体平移后俯视图相同,故选C. 【提示】根据三视图解答即可.【考点】几何体的三视图.6.【答案】A【解析】解:原方程可化为:x2 - 2x - 4 = 0 ,∴a = 1 , b =-2 , c =-4 ,∴∆= (-2)2- 4 ⨯1⨯ (-4) = 20>0 ,∴方程由两个不相等的实数根.故选:A.【提示】先化成一般式后,再求根的判别式.【考点】一元二次方程根的情况.7.【答案】C【解析】解:这天销售的矿泉水的平均单价是5 ⨯10% + 3⨯15% + 2 ⨯ 55% + 1⨯ 20% = 2.25 (元), 故选:C.【提示】根据加权平均数的定义列式计算可得.【考点】加权平均数的计算.8.【答案】B【解析】解:抛物线y =-x2+bx + 4 经过(-2, n) 和(4, n) 两点,可知函数的对称轴x = 1 ,∴b= 1, 2∴b = 2 ;∴ y =-x2+ 2x + 4 ,将点(-2, n) 代入函数解析式,可得n = 4 ;故选:B.【提示】根据(-2, n) 和(4, n) 可以确定函数的对称轴x = 1 ,再由对称轴的x =b即可求解.2【考点】二次函数点的坐标特征,二元一次方程组的解法.2 ⎩9. 【答案】A【解析】解:如图,连接 FC ,则 AF = FC .∵ AD ∥BC ,∴ ∠FAO = ∠BCO .在△FOA 与△BOC 中,⎧∠FAO = ∠BCO ⎪⎨OA = OC, ⎪∠AOF = ∠COB∴△FOA ≅ △BOC (ASA) ,∴ AF = BC = 3 ,∴ FC = AF = 3 , FD = AD - AF = 4 - 3 = 1 .在△FDC 中,∵ ∠D = 90 ,∴ CD 2 + DF 2 = FC 2 ,∴ CD 2 + 12 = 32 ,∴ CD = 2 .故选:A .【 提示】 连接 FC ,根据基本作图,可得 OE 垂直平分 AC ,由垂直平分线的性质得出 AF = FC .再根据 ASA 证明△FOA ≅ △BOC ,那么 AF = BC = 3 ,等量代换得到 FC = AF = 3 ,利用线段的和差关系求出 FD = AD - AF = 1.然后在直角△FDC 中利用勾股定理求出 CD 的长.【考点】尺规作图,平行线的性质,勾股定理,角平分线的性质,全等三角形的判定与性质.10. 【答案】D【解析】解:∵ A (-3, 4) , B (3, 4) ,∴ AB = 3 + 3 = 6 ,∵四边形 ABCD 为正方形,∴ AD = AB = 6 ,∴D(-3,10) ,∵70 = 4 ⨯17 + 2 ,∴每 4 次一个循环,第70 次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2 次,每次旋转90 , ∴点D 的坐标为(3, -10) .故选:D.【提示】先求出AB = 6 ,再利用正方形的性质确定D(-3,10) ,由于70 = 4 ⨯17 + 2 ,所以第70 次旋转结束时,相当于△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转2 次,每次旋转90 ,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【考点】图形的旋转,点的坐标的确定.第Ⅱ卷二、填空题11.【答案】3 2【解析】解:- 2 -1= 2 -12=3 . 2故答案为:3. 2【提示】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【考点】实数的相关运算.12.【答案】x≤- 2【解析】解:解不等式x…2-1,得:x≤- 2 ,解不等式-x + 7>4 ,得:x<3 ,则不等式组的解集为x≤- 2 ,故答案为:x≤- 2 .【提示】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【考点】解不等式组.13.【答案】4 94333【解析】解:列表如下:黄红红红(黄,红) (红,红) (红,红)红(黄,红) (红,红) (红,红)白(黄,白) (红,白) (红,白)由表知,共有9 种等可能结果,其中摸出的两个球颜色相同的有4 种结果,所以摸出的两个球颜色相同的概率为4, 9故答案为:4. 9【提示】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得. 【考点】概率的计算.14.【答案】+π【解析】解:作OE ⊥AB 于点F,∵在扇形AOB 中, ∠AOB =120 ,半径OC 交弦AB 于点D,且OC ⊥OA .OA=2 ,∴∠AOD = 90 , ∠BOC = 90 , OA =OB ,∴∠OAB =∠OBA = 30 , ∴OD =OA tan30 = 2 3 ⨯3= 2 , AD = 4 , AB = 2 A F = 2 ⨯ 2 3 ⨯33= 6 , OF =,2∴B D = 2 ,2 3 ⨯ 2 30 ⨯π(23)2 2 ⨯ 3∴阴影部分的面积是:S△AOD +S扇形OBC-S△BDO=2+360-=+π,2故答案为:+π.【提示】根据题意,作出合适的辅助线,然后根据图形可知阴影部分的面积是△AOD 的面积与扇形OBC 的面积之和再减去△BDO 的面积,本题得以解决.【考点】不规则图形面积的计算.15.【答案】5或5 3 3 31-a 2 ⎩【解析】解:分两种情况:①当点 B ' 落在 AD 边上时,如图 1.图 1∵四边形 ABCD 是矩形,∴ ∠BAD = ∠B = 90 ,∵将△ABE 沿 AE 折叠,点 B 的对应点 B ' 落在 AD 边上,∴ ∠BAE = ∠B 'AE = 1 ∠BAD = 45 ,2∴ AB = BE ,∴ 3a = 1 , 5∴ a = 5 ;3②当点 B ' 落在 CD 边上时,如图 2.图 2∵四边形 ABCD 是矩形,∴ ∠BAD = ∠B = ∠C = ∠D = 90 , AD = BC = a .∵将△ABE 沿 AE 折叠,点 B 的对应点 B ' 落在 CD 边上,∴ ∠B = ∠AB 'E = 90 , AB = AB ' = 1, EB = EB ' = 3 a ,5∴ DB ' == ,EC = BC - BE = a - 3a = 5 . 5在△ADB ' 与△B 'CE 中,⎧∠B 'AD = ∠EB 'C = 90 - ∠AB 'D⎨∠D = ∠C = 90,∴△ADB ' △B 'CE ,B 'A 2 - AD 21 -a233333DB'=AB'=1∴CE B'E,即,2a3a5 5解得a =5, a = 0 (舍去).1 3 2综上,所求a 的值为5或5.3 3故答案为5或5.3 3【提示】分两种情况:①点B'落在AD 边上,根据矩形与折叠的性质易得AB =BE ,即可求出a 的值;②点B'落在CD 边上, 证明△ADB' △B'CE ,根据相似三角形对应边成比例即可求出a 的值.【考点】图形的折叠,勾股定理.三、解答题16.【答案】解:原式= (x +1-x - 2) ÷x(x - 2)x - 2 x - 2 (x -2)2=3x - 2x - 2 x=3,x当x =时,原式=.【解析】解:原式= (x +1-x - 2) ÷x(x - 2)x - 2 x - 2 (x -2)2=3x - 2当x =时,原式x - 2 x=3,x=.【提示】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【考点】分式的化简求值.17.【答案】解:(1)证明:如图1,∵ BA =BC , ∠ABC = 90 ,图1333∴ ∠BAC = 45∵AB 是 O 的直径,∴ ∠ADB = ∠AEB = 90 ,∴ ∠DAF + ∠BGD = ∠DBG + ∠BGD = 90∴ ∠DAF = ∠DBG∵ ∠ABD + ∠BAC = 90∴ ∠ABD = ∠BAC = 45∴ AD = BD∴△ADF ≅ △BDG (ASA) ;(2)① 4 - 2② 30【解析】解:(1)证明:如图 1,∵ BA = BC , ∠ABC = 90 ,图 1∴ ∠BAC = 45∵AB 是 O 的直径,∴ ∠ADB = ∠AEB = 90 ,∴ ∠DAF + ∠BGD = ∠DBG + ∠BGD = 90∴ ∠DAF = ∠DBG∵ ∠ABD + ∠BAC = 90∴ ∠ABD = ∠BAC = 45∴ AD = BD∴△ADF ≅ △BDG (ASA) ;(2)①如图 2,过 F 作 FH ⊥ AB 于 H ,∵点 E 是 BD 的中点, 222 22+12图 2∴∠BAE =∠DAE∵ FD ⊥AD , F H ⊥AB ∴ FH =FD∵FH= sin∠ABD = sin45 =2, BF 2∴FD=BF2,即BF =22FD∵AB = 4 ,∴BD = 4cos45 = 2∴FD == 4 -2,即BF +FD = 2, ( +1)FD = 2故答案为4 - 2 .②连接OE,EH,∵点H 是 AE 的中点,∴OH ⊥AE ,∵∠AEB = 90∴BE ⊥AE∴BE∥OH∵四边形OBEH 为菱形,∴BE =OH =OB =1 AB 2∴ sin∠EAB =BE=1AB 22222∴∠EAB = 30 .故答案为:30 .【提示】(1)利用直径所对的圆周角是直角,可得∠ADB =∠AEB = 90 ,再应用同角的余角相等可得∠DAF =∠DBG ,易得AD =BD , △ADF≌△BDG 得证;(2)作FH ⊥AB ,应用等弧所对的圆周角相等得∠BAE =∠DAE ,再应用角平分线性质可得结论;由菱形的性质可得BE =OB ,结合三角函数特殊值可得∠EAB = 30 .【考点】圆的相关性质,全等三角形的判定和性质,菱形的判定和性质,圆周角定理.18.【答案】(1)23(2)77.5(3)甲学生在该年级的排名更靠前.∵七年级学生甲的成绩大于中位数78 分,其名次在该班25 名之前,八年级学生乙的成绩小于中位数78 分,其名次在该班25 名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9 分的人数为400 ⨯5 + 15 + 8= 224 (人).50【解析】解:(1)在这次测试中,七年级在80 分以上(含80 分)的有15 + 8 = 23 人,故答案为:23;(2)七年级50 人成绩的中位数是第25、26 个数据的平均数,而第25、26 个数据分别为78、79,∴m =77 + 78= 77.5 , 2故答案为:77.5;(3)甲学生在该年级的排名更靠前.∵七年级学生甲的成绩大于中位数78 分,其名次在该班25 名之前, 八年级学生乙的成绩小于中位数78 分,其名次在该班25 名之后, ∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9 分的人数为400 ⨯5 + 15 + 8= 224 (人).50【提示】(1)根据条形图及成绩在70≤x<80 这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9 分的人数所占比例可得. 【考点】统计知识的实际应用.3 3 ⎨⎩19.【答案】解:∵ ∠ACE = 90 , ∠CAE = 34 , CE = 55 m ,∴ tan ∠CAE = CE,AC∴ AC =CEtan34 = 55 0.67≈ 82.1 m ,∵ AB = 21 m ,∴ BC = AC - AB = 61.1 m ,在Rt △BCD 中, tan60 =CD = ,BC∴ CD = 3BC ≈ 1.73⨯ 61.1 ≈ 105.7 m ,∴ DE = CD - EC = 105.7 - 55 ≈ 51 m ,答:炎帝塑像 DE 的高度约为 51 m .【解析】解:∵ ∠ACE = 90 , ∠CAE = 34 , CE = 55 m ,∴ tan ∠CAE = CE ,AC∴ AC =CEtan34 = 55 0.67≈ 82.1 m ,∵ AB = 21 m ,∴ BC = AC - AB = 61.1 m ,在Rt △BCD 中, tan60 =CD = ,BC∴ CD = 3BC ≈ 1.73⨯ 61.1 ≈ 105.7 m ,∴ DE = CD - EC = 105.7 - 55 ≈ 51 m ,答:炎帝塑像 DE 的高度约为 51 m .【 提 示 】 由 三 角 函 数 求 出 AC =CEtan34≈ 82.1 m ,得 出 BC = AC - AB = 61.1 m ,在 Rt △BCD 中 ,由 三 角 函 数 得 出CD = 3BC ≈ 105.7 m ,即可得出答案.【考点】解直角三角形的实际应用.20. 【答案】解:(1)设 A 的单价为 x 元,B 的单价为 y 元,⎧3x + 2 y = 120根据题意,得 , ⎩5x + 4 y = 210⎧x = 30 ∴ ⎨y = 15 ,∴A 的单价 30 元,B 的单价 15 元;(2)设购买 A 奖品 z 个,则购买 B 奖品为(30 - z )个,购买奖品的花费为 W 元,⎨⎩由题意可知, z ≥1(30 - z ) ,3∴ z ≥15 ,2W = 30z + 15(30 - z ) = 450 + 15z ,当 z = 8 时,W 有最小值为 570 元,即购买 A 奖品 8 个,购买 B 奖品 22 个,花费最少.【解析】解:(1)设 A 的单价为 x 元,B 的单价为 y 元,⎧3x + 2 y = 120根据题意,得 , ⎩5x + 4 y = 210⎧x = 30 ∴ ⎨y = 15 ,∴A 的单价 30 元,B 的单价 15 元;(2)设购买 A 奖品 z 个,则购买 B 奖品为(30 - z )个,购买奖品的花费为 W 元,由题意可知, z ≥1(30 - z ) ,3∴ z ≥15 ,2W = 30z + 15(30 - z ) = 450 + 15z ,当 z = 8 时,W 有最小值为 570 元,即购买 A 奖品 8 个,购买 B 奖品 22 个,花费最少.⎧3x + 2 y = 120【提示】(1)设 A 的单价为 x 元,B 的单价为 y 元,根据题意列出方程组⎨ ⎩5x + 4 y = 210,即可求解;(2)设购买 A 奖品 z 个,则购买 B 奖品为 (30 - z ) 个,购买奖品的花费为 W 元,根据题意得到由题意可知, z ≥1(30 - z ) ,3W = 30z + 15(30 - z ) = 450 + 15z ,根据一次函数的性质,即可求解.【考点】二元一次方程组,不等式及一次函数解决实际问题.21. 【答案】(1)一(2)图象如下所示:(3)①8②在直线平移过程中,交点个数有:0 个、1 个、2 个三种情况,联立y =4和y =-x +m并整理得:x2-1mx + 4 = 0 , x 2 2∆=1m2- 4 ⨯ 4≥0 时,两个函数有交点, 4解得:m≥8 ;(4) m≥8【解析】解:(1) x, y 都是边长,因此,都是正数, 故点(x, y) 在第一象限,答案为:一;(2)图象如下所示:(3)①把点(2, 2) 代入y =-x +m得:22 =-2 +m,解得:m = 8 ;2②在直线平移过程中,交点个数有:0 个、1 个、2 个三种情况,联立y =4和y =-x +m并整理得:x2-1mx + 4 = 0 , x 2 22 2 ∆ = 1 m 2 - 4 ⨯ 4≥0 时,两个函数有交点, 4解得: m ≥8 ;(4)由(3)得: m ≥8 .【提示】(1) x , y 都是边长,因此,都是正数,即可求解;(2) 直接画出图象即可;(3) ①把点(2, 2) 代入 y = -x + m即可求解;②在直线平移过程中,交点个数有:0 个、1 个、2 个三种情况,联立 y = 4 和 2x y = - x + m 并整理得: x 2 - 1 mx + 4 = 0 ,即可求解;2 2(4)由(3)可得.【考点】反比例函数与一次函数图象的应用.22. 【答案】160(2) 如图 2 中,设 BD 交 AC 于点 O ,BD 交 PC 于点 E .图 2∵ ∠PAD = ∠CAB = 45 ,∴ ∠PAC = ∠DAB ,∵ AB= AD= ,AC AP ∴△DAB △PAC ,∴ ∠PCA = ∠DBA , BD = AB =,PCAC ∵ ∠EOC = ∠AOB ,∴ ∠CEO = ∠OABB = 45 ,∴直线 BD 与直线 CP 相交所成的小角的度数为 45 .(3) 如图 3-1 中,当点 D 在线段 PC 上时,延长 AD 交 BC 的延长线于 H.a a + 2 a 2图 3-1∵ CE = EA , CF = FB ,∴ EF ∥AB ,∴ ∠EFC = ∠ABC = 45 ,∵ ∠PAO = 45 ,∴ ∠PAO = ∠OFH ,∵ ∠POA = ∠FOH ,∴ ∠H = ∠APO ,∵ ∠APC = 90 , EA = EC ,∴ PE = EA = EC ,∴ ∠EPA = ∠EAP = ∠BAH ,∴ ∠H = ∠BAH ,∴ BH = BA ,∵ ∠ADP = ∠BDC = 45 ,∴ ∠ADB = 90 ,∴ BD ⊥ AH ,∴ ∠DBA = ∠DBC = 22.5 ,∵ ∠ADB = ∠ACB = 90 ,∴A ,D ,C ,B 四点共圆,∠DAC = ∠DBC = 22.5 , ∠DCA = ∠ABD = 22.5 ,∴ ∠DAC = ∠DCA = 22.5 ,∴ DA = DC ,设 AD = a ,则 DC = AD = a , PD =2 a , 2∴AD == 2 - .CP 2aa-2a2如图3-2 中,当点P 在线段CD 上时,同法可证:DA =DC ,设AD =a ,则CD =AD =a ,PD =2a , 2∴PC =a -图3-2 2a ,2∴AD== 2 +. PC2【解析】解:(1)如图 1 中,延长CP 交BD 的延长线于E,设AB 交EC 于点O.图 1∵∠PAD =∠CAB = 60 ,∴∠CAP =∠BAD ,∵CA =BA , PA =DA ,∴△CAP ≅△BAD(SAS) ,∴PC =BD , ∠ACP =∠ABD ,∵∠AOC =∠BOE ,∴∠BEO =∠CAO = 60 ,∴ BD= 1 ,线BD 与直线CP 相交所成的较小角的度数是60 ,PC故答案为1, 60 .(2)如图2 中,设BD 交AC 于点O,BD 交PC 于点E.2 2图 2∵ ∠PAD = ∠CAB = 45 ,∴ ∠PAC = ∠DAB ,∵ AB = AD = , AC AP∴△DAB △PAC ,∴ ∠PCA = ∠DBA , BD = AB = ,PC AC∵ ∠EOC = ∠AOB ,∴ ∠CEO = ∠OABB = 45 ,∴直线 BD 与直线 CP 相交所成的小角的度数为 45 .(3) 如图 3-1 中,当点 D 在线段 PC 上时,延长 AD 交 BC 的延长线于 H .图 3-1∵ CE = EA , CF = FB ,∴ EF ∥AB ,∴ ∠EFC = ∠ABC = 45 ,∵ ∠PAO = 45 ,∴ ∠PAO = ∠OFH ,∵ ∠POA = ∠FOH ,∴ ∠H = ∠APO ,∵ ∠APC = 90 , EA = EC ,∴ PE = EA = EC ,a a + 2 a 2 a a - 2 a 2 ∴ ∠EPA = ∠EAP = ∠BAH ,∴ ∠H = ∠BAH ,∴ BH = BA ,∵ ∠ADP = ∠BDC = 45 ,∴ ∠ADB = 90 ,∴ BD ⊥ AH ,∴ ∠DBA = ∠DBC = 22.5 ,∵ ∠ADB = ∠ACB = 90 ,∴A ,D ,C ,B 四点共圆,∠DAC = ∠DBC = 22.5 , ∠DCA = ∠ABD = 22.5 ,∴ ∠DAC = ∠DCA = 22.5 ,∴ DA = DC ,设 AD = a ,则 DC = AD = a , PD =2 a ,2 ∴ AD == 2 - .CP 2如图 3-2 中,当点 P 在线段 CD 上时,同法可证: DA = DC ,设 AD = a ,则CD = AD = a , PD =2 a ,2∴ PC = a -图 3-2 2 a ,2 ∴ AD == 2 + .PC2 【提示】(1)如图 1 中,延长 CP 交 BD 的延长线于 E ,设 AB 交 EC 于点 O .证明△CAP ≌△BAD (SAS) ,即可解决问题.(2) 如图 2 中,设 BD 交 AC 于点 O ,BD 交 PC 于点 E .证明△DAB ∽△PAC ,即可解决问题.(3) 分两种情形:①如图 3-1 中,当点 D在线段 PC 上时,延长 AD 交 BC 的延长线于 H .证明 AD=DC 即可解决问题.②如图 3-2 中,当点 P 在线段 CD 上时,同法可证: DA = DC 解决问题.⎨ 【考点】图形变换,规律探究.23.【答案】解:(1)当 x = 0 时, y = - 1 x - 2= -2 ,2∴点 C 的坐标为(0, -2) ; 当 y = 0 时, - 1 x - 2 = 0 ,2解得: x = -4 ,∴点 A 的坐标为(-4, 0) .将 A (-4, 0) , C (0, -2) 代入 y = ax 2 + 1 x + c ,得: 2 ⎧16a - 2 + c = 0 ⎧a = 1 ⎨c = -2 ,解得: ⎪ 4 ,⎪⎩c = -2∴抛物线的解析式为 y = 1 x 2 + 1 x - 2 .4 2(2) ①∵ PM ⊥ x 轴,∴ ∠PMC ≠ 90 ,∴分两种情况考虑,如图 1 所示.图 1(i) 当∠MPC = 90时, PC ∥x 轴,∴点 P 的纵坐标为-2 .当 y = -2 时, 1 x 2 + 1 x - 2 = -2 ,4 2解得: x 1 = -2 , x 2 = 0 ,∴点 P 的坐标为(-2, -2) ;(ii) 当∠PCM = 90时,设 PC 与 x 轴交于点 D .∵ ∠OAC + ∠OCA = 90 , ∠OCA + ∠OCD = 90 ,∴ ∠OAC = ∠OCD .⎩⎨ 1 2 1 又∵ ∠AOC = ∠COD = 90 ,∴△AOC △COD ,∴ OD = OC ,即 OD = 2 , OC OA 2 4∴ OD = 1 ,∴点 D 的坐标为(1, 0) .设直线 PC 的解析式为 y = kx + b (k ≠ 0) ,将C (0, -2) , D (1, 0) 代入 y = kx + b ,得:⎧b = -2 ⎧k = 2 ⎨k + b = 0 ,解得: ⎨ = -2 ,⎩ ⎩b∴直线 PC 的解析式为 y = 2x - 2 .⎧ y = 2x - 2 联立直线 PC 和抛物线的解析式成方程组,得: ⎪ , y = x + x - 2解得: ⎧x 1 = 0 , ⎧x 2 = 6 , ⎩⎪ 4 2 ⎨ y = -2 ⎨ y = 10 ⎩ 1 ⎩ 2点 P 的坐标为(6,10) .综上所述:当△PCM 是直角三角形时,点 P 的坐标为(-2, -2) 或(6,10) .②当 y = 0 时, 1 x 2 + 1 x - 2 = 0 ,4 2解得: x 1 = -4 , x 2 = 2 ,∴点 B 的坐标为(2, 0) .∵点 P 的横坐标为 m (m >0且m ≠ 0) ,∴点 P 的坐标为(m , 1 m 2 + 1 m - 2) ,4 2∴直线 PB 的解析式为 y = 1 (m + 4)x - 1 (m + 4) (可利用待定系数求出).4 2∵点 B , B ' 关于点 C 对称,点 B , B ' ,P 到直线 l 的距离都相等,∴直线 l 过点 C ,且直线l ∥直线PB ,∴直线 l 的解析式为 y = 1 (m + 4)x - 2 .4⎨【解析】解:(1)当 x = 0 时, y= - 1 x -2 = -2 ,2∴点 C 的坐标为(0, -2) ;当 y = 0 时, - 1 x - 2 = 0 ,2解得: x = -4 ,∴点 A 的坐标为(-4, 0) .将 A (-4, 0) , C (0, -2) 代入 y = ax 2 + 1 x + c ,得: 2 ⎧16a - 2 + c = 0 ⎧a = 1 ⎨c = -2 ,解得: ⎪ 4 ,⎪⎩c = -2∴抛物线的解析式为 y = 1 x 2 + 1 x - 2 .4 2(2) ①∵ PM ⊥ x 轴,∴ ∠PMC ≠ 90 ,∴分两种情况考虑,如图 1 所示.图 1(i) 当∠MPC = 90时, PC ∥x 轴,∴点 P 的纵坐标为-2 .当 y = -2 时, 1 x 2 + 1 x - 2 = -2 ,4 2解得: x 1 = -2 , x 2 = 0 ,⎩⎨ 1 2 1 ∴点 P 的坐标为(-2, -2) ;(ii)当∠PCM = 90时,设 PC 与 x 轴交于点 D .∵ ∠OAC + ∠OCA = 90 , ∠OCA + ∠OCD = 90 ,∴ ∠OAC = ∠OCD .又∵ ∠AOC = ∠COD = 90 ,∴△AOC △COD ,∴ OD = OC ,即 OD = 2 , OC OA 2 4∴ OD = 1 ,∴点 D 的坐标为(1, 0) .设直线 PC 的解析式为 y = kx + b (k ≠ 0) ,将C (0, -2) , D (1, 0) 代入 y = kx + b ,得:⎧b = -2 ⎧k = 2 ⎨k + b = 0 ,解得: ⎨ = -2 ,⎩ ⎩b∴直线 PC 的解析式为 y = 2x - 2 .⎧ y = 2x - 2 联立直线 PC 和抛物线的解析式成方程组,得: ⎪ , y = x + x - 2解得: ⎧x 1 = 0 , ⎧x 2 = 6 , ⎩⎪ 4 2 ⎨ y = -2 ⎨ y = 10 ⎩ 1 ⎩ 2点 P 的坐标为(6,10) .综上所述:当△PCM 是直角三角形时,点 P 的坐标为(-2, -2) 或(6,10) .②当 y = 0 时, 1 x 2 + 1 x - 2 = 0 ,4 2解得: x 1 = -4 , x 2 = 2 ,∴点 B 的坐标为(2, 0) .∵点 P 的横坐标为 m (m >0且m ≠ 0) ,∴点 P 的坐标为(m , 1 m 2 + 1 m - 2) ,4 2∴直线 PB 的解析式为 y = 1 (m + 4)x - 1 (m + 4) (可利用待定系数求出).4 2∵点 B , B ' 关于点 C 对称,点 B , B ' ,P 到直线 l 的距离都相等,∴直线 l 过点 C ,且直线l ∥直线PB ,∴直线l 的解析式为y =1(m + 4)x - 2 .4【提示】(1)利用一次函数图象上点的坐标特征可求出点A,C 的坐标,根据点A,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC ≠ 90 ,分∠MPC = 90 及∠PCM = 90 两种情况考虑:(i)当∠MPC = 90 时, PC∥x 轴,利用二次函数图象上点的坐标特征可求出点P 的坐标;(ii)当∠PCM = 90 时,设PC 与x 轴交于点D,易证△AOC △COD,利用相似三角形的性质可求出点D 的坐标,根据点C,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式成方程组,通过解方程组可求出点P 的坐标.综上,此问得解;②利用二次函数图象上点的坐标特征可得出点B,P 的坐标,根据点P,B 的坐标,利用待定系数法可求出直线PB 的解析式,结合题意可知:直线l 过点C,且直线l∥直线PB ,再结合点C 的坐标即可求出直线l 的解析式.【考点】二次函数的图象和性质,直角三角形的性质,相似三角形的判定和性质,中位线定理,一次函数的性质,分类讨论思想.。
2024年河南省郑州市中考数学第一次适应性试卷及答案解析
2024年河南省郑州市中考数学第一次适应性试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.(3分)如图,数轴上点A所表示的数的相反数为()A.﹣3B.3C.D.2.(3分)砚台与笔、墨、纸是中国传统的文房四宝,是中国书法的必备用具.如图是一方寓意“规矩方圆”的砚台,它的俯视图是()A.B.C.D.3.(3分)中原熟,天下足.处于中原的河南一直是我国重要的粮食大省,最近几年粮食总产量更是连续突破1300亿斤,为保证国家粮食安全做出了突出贡献.数据“1300亿”用科学记数法表示为()A.1.3×1011B.1.3×1010C.0.13×1012D.0.13×1010 4.(3分)甲、乙两个学校统计男女生人数,分别绘制了扇形统计图(如图),下列说法正确的是()A.甲校的男生人数比乙校的男生人数多B.甲、乙两个学校的人数一样多C.乙校的女生人数比甲校的女生人数多D.甲校的男女生人数一样多5.(3分)如图所示,直线a∥b,∠2=31°,∠A=28°,则∠1=()A.61°B.60°C.59°D.58°6.(3分)对任意整数n,(2n+1)2﹣25都能()A.被3整除B.被4整除C.被5整除D.被6整除7.(3分)如图,点A是⊙O中优弧BAD的中点,∠ABD=70°,C为劣弧上一点,则∠BCD的度数是()A.120°B.130°C.140°D.150°8.(3分)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sinα)m B.(4+3tanα)mC.(4+)m D.(4+)m9.(3分)如图,在▱ABCD中,∠C=120°,AB=2,AD=2AB,点H,G分别是边DC,BC上的动点,连接AH,HG,点E为AH的中点,点F为GH的中点,连接EF,则EF 的最小值为()A.2B.C.1D.10.(3分)植物研究者在研究某种植物1~5年内的植株高度时,将得到的数据用如图直观表示.现要根据这些数据选用函数模型来描述这种植物在1~5年内的生长规律.若选择y=ax2+bx+c,则a______0,b______0;若选择函数y=,则a______0,b______0.依次填入的不等号为()A.<,>,<,>B.<,>,>,<C.>,<,<,>D.>,>,<,<二、填空题(每小题3分,共15分)11.(3分)写出一个大小在和之间的整数是.12.(3分)鱼缸里饲养A、B两种鱼,A种鱼的生长温度x℃的范围是20≤x≤28,B种鱼的生长温度x℃的范围是19≤x≤25,那么鱼缸里的温度x℃应该控制在范围内.13.(3分)小明笔袋里有两支红笔和两支黑笔(4支笔的款式相同),上课做笔记时,他随机从笔袋中抽出两支笔,刚好是一红一黑的概率是.14.(3分)如图,AB是⊙O的直径,CD与⊙O相切于点C,AB的延长线交直线CD于点E,连接AC,BC.若∠ACD=60°,AC=,则BE的长度是.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D,E分别是边AB,AC的中点,连接DE.将△ADE绕点D按顺时针方向旋转α(0°≤α≤90°),点A,E 的对应点分别为点G,F,GF与AC交于点P.当直线GF与△ABC的一边平行时,CP 的长为.三、解答题(本大题共8个小题,满分75分)16.(10分)(1)计算:;(2)化简:2x(x﹣1)﹣(x﹣1)2.17.(7分)中小学午餐配送是郑州教育的“暖心服务”工程.某校午餐原来由甲公司配送,为了提高饭菜质量,新学期午餐由乙公司配送.学生会为了解用餐学生对甲、乙两家公司配送饭菜的满意情况,组织学生对两家公司的饭菜质量进行分数评价(满分为10分).学生会随机抽取了10位学生的评价分数:学生A学生B学生C学生D学生E学生F学生G学生H学生I学生J甲公司76769798109乙公司65878889810学生会同学在进行数据分析时首先计算了各公司得分的平均数:甲公司7.8分;乙公司7.7分.(1)为了能够更加全面、客观地对甲、乙两家公司配送饭菜的满意情况进行评价,你认为还需要了解中位数、众数、方差等中的哪些统计量?请至少选择一个你认为合适的统计量进行数据分析;(2)你认为用餐学生对哪家公司的饭菜质量更加满意,为什么?18.(9分)如图,正比例函数y=k1x的图象与反比例函数的图象的一个交点是(1,3).(1)求出这两个函数的表达式,并直接写出这两个函数图象的另一个交点坐标;(2)写出使反比例函数大于正比例函数的x的取值范围;(3)点A(2,y1)在正比例函数的图象上,点B(2,y2),点C(﹣2,y3),点D(﹣3,y4)都在反比例函数y=的图象上,比较y1,y2,y3,y4的大小关系,并用“<”连接.19.(9分)请你完成命题“等腰三角形两底角的平分线相等”的证明.(提示:证明命题应首先依据命题画出几何图形,再写出“已知”“求证”,最后写出证明过程.)20.(9分)2024年植树节来临之际,某学校计划采购一批树苗,参加“保护黄河,远离雾霾”植树节活动.已知每棵甲种树苗比每棵乙种树苗贵10元,用400元购买甲种树苗的棵数恰好与用300元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格分别是多少元?(2)学校决定购买甲、乙两种树苗共100棵,实际购买时,甲种树苗的售价打九折,乙种树苗的售价不变.学校用于购买两种树苗的总费用不超过3200元,最多可购买多少棵甲种树苗?21.(9分)如图,△ABC是等边三角形,将△ABC沿直线BC平移到△DCE的位置,连接BD,交AC于点O.(1)线段BD与AC的数量关系是BD:AC=;(2)判断BD与AC的位置关系,并说明理由;(3)请在图中连接AD,则四边形ABCD一定是菱形吗?为什么?22.(10分)“诗圣”杜甫出生在郑州巩义市笔架山下的窑洞里,窑洞是黄土高原、黄河中游特有的民居形式.如图,某窑洞口的截平面下部为矩形EFGH,上部为抛物线.已知下部矩形的长为4米,宽为2米,窑洞口的最高点P离地面EF的距离为4米.(1)请在图中建立适当的平面直角坐标系,写出P点的坐标;(2)求(1)中所建坐标系中抛物线的表达式;(3)若在窑洞口的上部安装一个矩形窗户ABCD(窗户的边框忽略不计),使得点A,B 在下部矩形的边上,点C,D在抛物线上,且AB=2BC,那么这个窗户的宽BC为多少米?23.(12分)数学社团活动课上,同学们研究一个问题:任意给定一个矩形,是否存在一个新矩形,它的周长和面积分别是原矩形周长和面积的?【阶段一】同学们认为可以先研究给定矩形为正方形的情况,即是否存在一个正方形,其周长和面积都为原正方形周长和面积的?思路一:设给定的正方形的边长为a,则其周长为4a,面积为a2.若新正方形的周长是原正方形周长的,则新正方形的边长为a,此时新正方形的面积是①.思路二:正方形是相似图形,周长之比等于相似比,面积之比等于相似比的平方,如果新正方形的面积是原正方形面积的,则新矩形与原矩形相似比为1:,此时新矩形周长应是原矩形周长的②.结论:③(“存在”或“不存在”)一个新正方形,其周长和面积都为给定正方形周长和面积的.拓展:除正方形外,上面的结论对哪种图形也成立?请写出一种图形.④【阶段二】同学们对矩形(不包括正方形)的情况进行探究.活动一:从特殊的矩形入手,如果已知矩形的长和宽分别为4和2,是否存在一个新矩形,它的周长和面积分别是原矩形周长和面积的?分析:设新矩形长和宽分别为x,y,根据题意,得.思路一:消去未知数y,得到关于x的方程,根据方程的解的情况解决问题.思路二:借助一次函数l1:y=﹣x+3与反比例函数l2:y=的图象(画出简单的函数图象即可)研究.结论:⑤(“存在”或“不存在”)一个新矩形,使其周长和面积都是长和宽分别为4和2的矩形周长和面积的.活动二:对于一般的矩形,如果已知矩形的长和宽分别为m和n,是否存在一个新矩形,它的周长和面积分别是原矩形周长和面积的?若存在,请指出需要满足的条件;若不存在,请说明理由.请你完成以下任务:(1)将【阶段一】中的①~④分别补充完整.(2)分别按照【阶段二】中活动一的思路一、思路二解决问题,并将⑤补充完整.(3)完成对【阶段二】中活动二的研究.2024年河南省郑州市中考数学第一次适应性试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.【分析】通过识图可得点A所表示的数为3,然后结合相反数的概念求解.【解答】解:由图可得,点A所表示的数为3,∴数轴上点A所表示的数的相反数为﹣3,故选:A.【点评】本题考查数轴上的点与相反数的概念,准确识图,理解相反数的定义是解题关键.2.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:从上边看,可得如图:故选:C.【点评】本题考查了简单几何体的三视图,从上面看到的视图是俯视图.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1300亿=130000000000=1.3×1011.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据扇形图描述的意义,逐个分析得结论.【解答】解:因为甲、乙两个学校的总人数没有告诉,所以通过扇形图不能判断甲、乙两个学校的人数一样多,故选项B错误;由于甲、乙两个学校的总人数不确定,通过扇形图不能判断甲校的男生人数比乙校的男生人数多,乙校的女生人数比甲校的女生人数多,故选项A、C均不正确;由扇形图知,甲校男、女生各占总人数的50%,甲校的男女生人数一样多,故选项D正确.故选:D.【点评】本题考查了扇形图,掌握“扇形统计图直接反映部分占总体的百分比大小”是解决本题的关键.5.【分析】根据三角形外角的性质∠DBC=∠A+∠2,欲求∠1,需求∠DBC.根据平行线的性质,由a∥b,得∠1=∠DBC,从而解决此题.【解答】解:∵a∥b,∴∠1=∠DBC,∵∠DBC=∠A+∠2,=28°+31°=59°.故选:C.【点评】本题主要考查平行线的性质、三角形外角的性质,熟练掌握平行线的性质、三角形外角的性质是解决本题的关键.6.【分析】先利用平方差公式因式分解可得(2n+1)2﹣25=4(n﹣2)(n+3),因此对任意整数n,4都是4(n﹣2)(n+3)的一个因数,据此即可得出答案.【解答】解:∵(2n+1)2﹣25=(2n+1)2﹣52=(2n+1﹣5)(2n+1+5)=(2n﹣4)(2n+6)=4(n﹣2)(n+3),∴对任意整数n,4都是4(n﹣2)(n+3)的一个因数,∴对任意整数n,(2n+1)2﹣25都能被4整除,故选:B.【点评】本题考查的是因式分解的应用,利用平方差公式进行因式分解是解题的关键.7.【分析】根据弧、弦、圆心角的关系得到AB=AD,根据等边对等角求出∠A,再根据圆内接四边形对角互补得到∠BCD.【解答】解:∵点A是⊙O中优弧BAD的中点,∴AB=AD,∵∠ABD=70°,∴∠ADB=70°,∴∠A=180°﹣70°×2=40°,∴∠C=180°﹣∠A=140°,故选:C.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了圆内接四边形的性质.8.【分析】过点A作AD⊥BC于点D,利用直角三角形的边角关系定理求得AD,.用AD+BE 即可表示出房顶A离地面EF的高度.【解答】解:过点A作AD⊥BC于点D,如图,∵它是一个轴对称图形,∴AB=AC,∵AD⊥BC,∴BD=BC=3m,在Rt△ADB中,∵tan∠ABC=,∴AD=BD•tanα=3tanαm.∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,故选:B.【点评】本题主要考查了解直角三角形的意义,轴对称的性质,等腰三角形的三线合一,利用直角三角形的边角关系定理求得AD的长是解题的关键.9.【分析】连接AG,利用三角形中位线定理,可知EF=AG,求出AG的最小值即可解决问题.【解答】解:如图,连接AG,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∴∠B=180°﹣120°=60°,∵点E、F分别是AH、GH的中点,∴EF是△AGH的中位线,∴EF=AG,当AG最小时,EF有最小值,当AG⊥BC时,AG最小,则∠BAG=30°,此时BG=AB=1,AG=BG=,∴EF=AG=,即EF的最小值是,故选:D.【点评】本题考查平行四边形的性质、三角形的中位线定理、含30°角的直角三角形的性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,求出AG的最小值.10.【分析】根据二次函数的图象与性质、反比例函数的图象与性质即可得.【解答】解:若选择y=ax2+bx+c,由函数图象可知,此抛物线的开口向下,对称轴x=﹣>0,∴a<0,b>0;若选择函数y=,由函数图象可知,将反比例函数y=(a<0)的图象从第四象限向上平移b个单位即可得到函数y=的图象,∴a<0,b>0;则依次填入的不等号为<,>,<,>,故选:A.【点评】本题考查了二次函数的图象与性质、反比例函数的图象与性质,熟练掌握二次函数的图象与性质、反比例函数的图象与性质是解题关键.二、填空题(每小题3分,共15分)11.【分析】先估算的大小,然后根据估算结果,写出一个在和之间的整数即可.【解答】解:∵,即,∴大小在和之间的整数是2,故答案为:2(答案不唯一).【点评】本题主要考查了无理数的估算,解题关键是熟练掌握如何估算无理数的大小.12.【分析】根据题意列出不等式组,求不等式解集的公共部分即可.【解答】解:由题意得:,解得:20≤x≤25,故答案为:20≤x≤25.【点评】此题主要考查了由实际问题抽象出不等式组.关键是掌握解集的规律:“同大取大,同小取小,大小小大取中间”进行分析求解.13.【分析】利用列表法或树状图法解答即可.【解答】解:记两支红笔为:红1,红2,两支黑笔为:黑1,黑2,画树状图如下:一共有12种等可能的情况,其中刚好是一红一黑有8种可能的情况,∴P(刚好是一红一黑的)==,故答案为:.【点评】本题考查列表法和树状图法求等可能事件的概率,掌握列表法和树状图法求等可能事件的概率的方法是解题的关键.14.【分析】连接OC,根据切线的性质可得∠OCD=∠OCE=90°,从而可得∠ACO=30°,再利用等腰三角形的性质可得∠A=∠ACO=30°,然后利用圆周角定理可得∠COB =60°,从而利用直角三角形的两个锐角互余可得∠A=∠E=30°,从而可得AC=CE =,最后在Rt△COE中,利用锐角三角函数的定义进行计算,即可解答.【解答】解:连接OC,∵CD与⊙O相切于点C,∴∠OCD=∠OCE=90°,∵∠ACD=60°,∴∠ACO=∠OCD﹣∠ACD=30°,∵OA=OC,∴∠A=∠ACO=30°,∴∠COB=2∠A=60°,∴∠E=90°﹣∠COB=30°,∴∠A=∠E=30°,∴AC=CE=,在Rt△COE中,CO=CE•tan30°=×=1,∴OE=2CO=2,∵OB=OC=1,∴BE=OE﹣OB=2﹣1=1,∴BE的长度为1,故答案为:1.【点评】本题考查了切线的性质,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.15.【分析】根据题意,由旋转性质,结合直线GF与△ABC的一边平行,分两类:当GF ∥AB时;当GF∥BC时;两种情况讨论求解即可得到答案,【解答】解:根据题意,将△ADE绕点D按顺时针方向旋转α(0°≤α≤90°)得到△GDF,即△GDF≌△ADE,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,∴AB=5.∵点D,E分别是边AB.AC的中点,∴DE是△ABC的中位线,∴AD=AB=,AE=AC=2.DE=BC=,当GF∥AB时,如图所示:∴∠ADG=∠DGP,∠A=∠GPA,∵△GDF≌△ADE,∴∠A=∠DGP,∴△MDA和△MPG均为等腰三角形,且MD=MA.MP=MG,∴AP=AM+MP=MD+MG=DG,由△GDF≌△ADE得到DG=AD=,则CP=AC﹣AP=4﹣=,当GF∥BC时,如图所示:∵DE∥BC,∴GF∥DE,∵∠C=90°,∴∠EPF=90°,∴EP∥DF,∴四边形DFPE是平行四边形,∵DE=DF,∠DFP=90°,∴▱DFPE是正方形,∴EP=DF=DE=,∵EC=AC=2,∴PC=EC﹣EP==,解得PC=,综上所述,CP的长为或.故答案为:或.【点评】本题考查求旋转性质、全等三角形性质、勾股定理、中点定义、中位线的性质、等腰三角形的判定与性质、相似三角形的判定与性质,熟练掌握相关几何性质,分类讨论是解决问题的关键.三、解答题(本大题共8个小题,满分75分)16.【分析】(1)利用负整数指数幂,绝对值的性质及零指数幂计算即可;(2)利用单项式乘多项式法则,完全平方公式计算即可.【解答】解:(1)原式=+2﹣1=1;(2)原式=2x2﹣2x﹣(x2﹣2x+1)=2x2﹣2x﹣x2+2x﹣1=x2﹣1.【点评】本题考查实数及整式的运算,熟练掌握相关运算法则是解题的关键.17.【分析】(1)根据方差,判断哪家公司配送饭菜的满意情况波动更小;(2)比较平均数,判断用餐学生对哪家公司的饭菜质量更加满意.【解答】解:(1)还需了解方差,甲公司方差=[(7﹣7.8)2+(6﹣7.8)2+(7﹣7.8)2+(6﹣7.8)2+(9﹣7.8)2+(7﹣7.8)2+(9﹣7.8)2+(8﹣7.8)2+(10﹣7.8)2+(9﹣7.8)2]=1.76(分),乙公司方差=[(6﹣7.7)2+(5﹣7.7)2+(8﹣7.7)2+(7﹣7.7)2+(8﹣7.7)2+(8﹣7.7)2+(8﹣7.7)2+(9﹣7.7)2+(8﹣7.7)2+(10﹣7.7)2]=1.81(分),∵1.76<1.81,∴甲公司配送饭菜的满意情况波动更小;(2)∵7.8>7.7,∴用餐学生对甲公司的饭菜质量更加满意.【点评】本题考查了统计量的选择,关键是掌握平均数、方差、中位数、众数的定义.18.【分析】(1)利用待定系数法以及函数的中心对称性即可求解;(2)根据图象即可求解;(3)观察图象即可得出结论.【解答】解:(1)∵正比例函数y=k1x的图象与反比例函数的图象的一个交点是(1,3)∴3=k1,3=,∴k1=3,k2=3,∴正比例函数为y=3x,反比例函数y=,∵正比例函数y=k1x的图象与反比例函数的图象的一个交点是(1,3),∴两个函数图象的另一个交点坐标为(﹣1,﹣3);(2)由图象可知,使反比例函数大于正比例函数的x的取值范围是x<﹣1或0<x<1;(3)观察图象,y3<y4<y2<y1.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的系数,图象上点的坐标特征,数形结合是解题的关键.19.【分析】根据等腰三角形的两底角相等可得到∠ABC=∠ACB,再根据角平分线的性质可得到∠BCE=∠CBF,从而可利用ASA判定△BCE≌△CBF,由全等三角形的对应边相等即可证得结论.【解答】已知:△ABC中,AB=AC,BF,CE分别∠ABC,∠ACB的角平分线.求证:BF=CE,即等腰三角形的两底角的平分线相等证明:∵AB=AC,∴∠ABC=∠ACB,∵BF,CE分别是∠ABC,∠ACB的角平分线,∴∠BCE=∠CBF,∵∠ABC=∠ACB,BC=BC,∴△BCE≌△CBF(ASA),∴BF=CE,即等腰三角形两底角的平分线相等.【点评】此题主要考查等腰三角形的性质以及全等三角形的判定与性质的综合运用.20.【分析】(1)设甲种树苗每棵的价格是x元,根据用400元购买甲种树苗的棵数恰好与用300元购买乙种树苗的棵数相同得:=,解方程并检验可得答案;(2)设购买m棵甲种树苗,根据学校用于购买两种树苗的总费用不超过3200元得:40×0.9m+30×(100﹣m)≤3200,解不等式取最大整数解即可.【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x﹣10)元,根据题意得:=,解得x=40,经检验,x=40是原方程的解,也符合题意,∴x﹣10=40﹣10=30;∴甲种树苗每棵的价格是40元,乙种树苗每棵的价格是30元;(2)设购买m棵甲种树苗,根据题意得:40×0.9m+30×(100﹣m)≤3200,解得m≤33,∵m为整数,∴m最大取33;∴最多可购买33棵甲种树苗.【点评】本题考查分式方程,一元一次不等式的应用,解题的关键是读懂题意,列出方程和不等式.21.【分析】(1)由平移的性质得△ABC≌△DCE,又因为它们都是等边三角形,所以可得CB=CD,∠ACD=60°,根据等腰三角形的性质求出∠CBD=∠CDB=30°,可证∠BDE=90°,即得BD与DE之间的关系,由此得出BD与AC的数量关系;(2)由∠CBD=30°,∠ACB=60°,可得∠BOC=180°﹣∠CBD﹣∠ACB=90°,故BD⊥AC;(3)由△ABC是等边三角形,知AB=BC=AC,∠ACB=60°,根据将△ABC沿直线BC平移到△DCE的位置,有AB=CD,∠DCE=∠ABC=60°,可得∠ACD=180°﹣∠ACB﹣∠DCE=60°,AC=CD,故△ACD是等边三角形,从而AB=BC=AC=AD=CD,四边形ABCD是菱形.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠ABC=∠ACB=60°,∵将△ABC沿直线BC平移到△DCE的位置,∴△ABC≌△DCE,△DCE是等边三角形,∴DC=CE=DE,∠CDE=∠DCE=∠CED=60°,∴CB=CD=AC=DE,∠ACB=∠DCE=60°,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴∠BCD=∠ACB+∠ACD=120°,∴∠CBD=∠CDB=(180°﹣120°)÷2=30°,∴∠BDE=∠CDB+∠CDE=90°,∴BD=DE,∴BD=AC,∴BD:AC=:1;故答案为::1;(2)BD⊥AC,理由如下:由(1)知∠CBD=30°,∠ACB=60°,∴∠BOC=180°﹣∠CBD﹣∠ACB=90°,∴BD⊥AC;(3)四边形ABCD一定是菱形,理由如下:如图:∵△ABC是等边三角形,∴AB=BC=AC,∠ACB=60°,∵将△ABC沿直线BC平移到△DCE的位置,∴AB=CD,∠DCE=∠ABC=60°,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,AC=CD,∴△ACD是等边三角形,∴AD=CD=AC,∴AB=BC=AC=AD=CD,∴四边形ABCD是菱形.【点评】本题考查四边形综合应用,涉及平移变换,等边三角形性质及判定,含30°角的直角三角形三边关系等知识,解题的关键是掌握等边三角形的判定定理.22.【分析】(1)以H为原点,HG所在直线为x轴,建立平面直角坐标系,可得P的坐标为(2,2);(2)根据题意,抛物线顶点为(2,2),且经过点(0,0),用待定系数法可得抛物线的表达式为y=﹣x2+2x;(3)设D(m,﹣m2+2m),根据AB=2BC,可得C(﹣m2+5m,﹣m2+2m),把C(﹣m2+5m,﹣m2+2m)代入y=﹣x2+2x得﹣m2+2m=﹣(﹣m2+5m)2+2(﹣m2+5m),解方程可得答案.【解答】解:(1)以H为原点,HG所在直线为x轴,建立平面直角坐标系如下:∵窑洞口的最高点P离地面EF的距离为4米,矩形的长为4米,宽为2米,∴P的坐标为(2,2);故答案为:(2,2);(2)根据题意,抛物线顶点为(2,2),且经过点(0,0),设抛物线的表达式为y=a(x﹣2)2+2,将(0,0)代入得:0=4a+2,解得a=﹣,∴y=﹣(x﹣2)2+2=﹣x2+2x,∴抛物线的表达式为y=﹣x2+2x;(3)设D(m,﹣m2+2m),则AD=﹣m2+2m=BC,∵AB=2BC,∴AB=2(﹣m2+2m)=﹣m2+4m,∵m+(﹣m2+4m)=﹣m2+5m,∴C(﹣m2+5m,﹣m2+2m),把C(﹣m2+5m,﹣m2+2m)代入y=﹣x2+2x得:﹣m2+2m=﹣(﹣m2+5m)2+2(﹣m2+5m),∴m2﹣4m=(﹣m2+5m)2﹣4(﹣m2+5m),∴m(m﹣4)=m(m﹣5)(m﹣1)(m﹣4),∴m(m﹣4)[1﹣(m﹣5)(m﹣1)]=0,∴m(m﹣4)(﹣m2+6m﹣4)=0,∴m=0或m﹣4=0或﹣m2+6m﹣4=0,解得m=0(不符合题意,舍去)或m=4(不符合题意,舍去)或m=3﹣或m=3+(不符合题意,舍去),∴D(3﹣,﹣1+),∴BC=AD=﹣1+(米);∴窗户的宽BC为(﹣1+)米.【点评】本题考查二次函数综合应用,解题的关键是读懂题意,建立直角坐标系求出二次函数解析式.23.【分析】(1)根据推理过程,按照面积公式和逻辑推理即可求解;(2)思路一:由x+y=3和xy=4得:x2﹣3x+4=0,此方程无解,即两个函数没有交点,即可求解;思路二:画出两个函数的大致图象,由思路一知道两个函数没有交点,即可求解;(3)由(2)知,x+y=(m+n),xy=mn,得到2x2﹣(m+n)x+mn=0,由Δ=(m+n)2﹣8mn≥0,即可求解.【解答】解:(1)①正方形的边长为a,则面积为a2;②根据周长比等于相似比,得到新矩形的周长为原矩形周长的;③由①②知,不存在一个新正方形,其周长和面积都为给定正方形周长和面积的;④由①~③可以推想正三角形也适合上述结论,理由:按照思路一:正三角形的边长为a,则周长为3a,面积为a2,当新正三角形边长为a时,则周长为3a,而面积为:(a)2,即新正方形周长是原来的,但是面积不是原来的;故答案为:a2;;不存在;正三角形(答案不唯一);(2)思路一:由x+y=3和xy=4得:x2﹣3x+4=0,此方程无解,即两个函数没有交点,即不存在一个新矩形,使其周长和面积都是长和宽分别为4和2的矩形周长和面积的;思路二:画出两个函数的大致图象,由思路一知道两个函数没有交点,故得出和思路一相同的结论;故⑤的答案为:不存在;(3)由(2)知,x+y=(m+n),xy=mn,化简为:2x2﹣(m+n)x+mn=0,∵Δ=(m+n)2﹣8mn,当△≥0时,即(m+n)2≥8mn时,两个函数有交点,即存在满足条件的新矩形,否则不存在.【点评】本题以求矩形的周长和面积为背景,考查了学生对二元方程组的解法掌握情况和一次函数与反比例函数图象的关系.在解方程组的时候选用消元法,借助根的判别式Δ的值可以快速得到结果。
【3套试卷】中考数学免费试题及答案
中考一模数学试卷及答案一、选择题(共10 题,每小题3分,共30分)1. 由5a=6b(a≠0,b≠0),可得比例式( )A.B.C.D.2.若△ABC∽△DEF,相似比为3∶2,则对应面积的比为( )A.3∶2 B.3∶5 C.4∶9 D.9∶43.如图是由几个大小相同的小立方块所搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.4.如图,下列条件中,可以判定△ACD和△ABC相似的是( )A.B.C.AC2=AD·AB D.CD2=AD·BD 5.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )A.B.C.D.6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠BDE=55°,使A、C、E在一条直线上,那么点E与D的距离是( )A.500cos55°米B.500cos35°米C.500sin55°米D.500tan55°米7.已知反比例函数,则下列结论中不正确的是( )A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为( )A.210x+90(18-x)<2.1B.210x+90(18-x)≥2100C.210x+90(18-x)≤2100D.210x+90(18-x)≥2.19.如图所示,河堤横断面迎水坡AB的坡比是1∶,堤高BC=5 m,则坡面AB的长是( )A.10 m B.m C.15 m D.m10.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是( )A.B.C.D.二、填空题(共6 题,每小题3分,共18分)11. 已知反比例函数的图像经过点(-3,-1),则k= .12.已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为.13.如图,路灯距离地面8 m,身高1.6 m的小明站在距离灯的底部(点O)20 m的A处,则小明的影子AM的长为 m.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为.16.如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图象分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.三、解答题(共9 题,72分)17.(4分)计算:.18.(4分)如图已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2∶1.19.(4分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.20.(6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01 m3)21.(8分)如图:直线y=x与反比例函数(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式.22.(10 分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设.(1)求证:AE=BF;(2)连接BE,DF,设∠EDF=α,∠EBF=β.求证:23.(10 分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若,求tan∠BDC的值.24.(12 分)已知:A(a,y1),B(2a,y2)是反比例函数(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且,求a的值;(3)在(2)的条件下,如果3m=﹣4x+24,,求使得m>n的x的取值范围.25.(14 分)在平面直角坐标系中,点A(m,m+1)在反比例函数的图象上.(1)求点A的坐标;(2)若直角∠NAM绕点A旋转,射线AN分别交x轴、y轴于点B、N,射线AM交x轴于点M,连接MN.①当点B和点N分别在x轴的负半轴和y轴的正半轴时,若△BAM∽△MON,求点N的坐标;②在直角∠NAM绕点A旋转的过程中,∠AMN的大小是否会发生变化?请说明理由.答案:1-5 BDCCB6-10 ADBAC11.312.13.514. 915.16.817.解:原式.18.解:(1)如图所示,点C1的坐标是(2,﹣2);(2)如图所示.19.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴,.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴∠ACD=∠CAD=45°∴DC=AD=4,∴.20.解:(1)设,由题意知,所以k=96,故该函数的解析式为;(2)当P=140 kPa时,(m3).所以为了安全起见,气体的体积应不少于0.69 m3.21.解:(1)∵直线y=x经过点A(2,m),∴m=2,∴A(2,2),∵A在的图象上,∴k=4.(2)设B(0,n),由题意:,∴n=﹣2,∴B(0,﹣2),设AB所在直线的解析式为y=k′x+b,则有,∴,∴AB所在直线的解析式为y=2x﹣2.22.解:(1)∵四边形ABCD是正方形,∴∠BAF+∠EAD=90°,又∵DE⊥AG,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF⊥AG,∴∠DEA=∠AFB=90°,又∵AD=AB∴Rt△DAE≌Rt△ABF,∴AE=BF(2)易知Rt△BFG∽Rt△DEA,所以,在Rt△DEF和Rt△BEF中,,∴∴23.(1)证明:∵DC是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠DAB.(2)解:设线段AD与⊙O相交于点M如图,连接BM、OC交于点N.∵AB是直径,∴∠AMB=90°,由(1)知AD∥OC,∴∠ONB=∠AMB=90°=∠CNB,由垂径定理可知MN=BN∵OC=OB,∴∠OCB=∠OBC,∴,设BN=4k,BC=5k,则CN=3k,∵∠CDM=∠DMN=∠DCN=90°,∴四边形DMNC是矩形,∴DM=CN=3k,MN=BN=4k,CD∥BM,∴∠CDB=∠DBM,∴.24.解:(1)∵A、B是反比例函数(k>0)图象上的两点,∴a≠0,当a>0时,A、B在第一象限,由a<2a可知,y1>y2,同理,a<0时,y1<y2;(2)∵A(a,y1)、B(2a,y2)在反比例函数(k>0)的图象上,∴,,∴y1=2y2.又∵点A(a,y1)、B(2a,y2)在一次函数的图象上,∴,,∴,∴b=4a,∵又∵∴∴,∴a2=4,∵a>0,∴a=2.(3)由(2)得,A(2,),B(4,),将A,B两点代入得解得∴一次函数的解析式为,反比例函数的解析式为:,A、B两点的横坐标分别为2、4,∵3m=﹣4x+24,,∴、,因此使得m>n的x的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出2<x<4或x<0.25.解:(1)∵点A(m,m+1)在反比例函数的图象上.∴;解得m1=3,m2=-4∵m>0,∴m=3,∴点A的坐标是(3,4).(2)①如图,过点A作AC⊥y轴于C,作AD⊥x轴于D,则AC=3,AD=4,∠ACN=∠ADM=90°,设ON=x,则CN=4﹣x,∵△BAM∽△MON,∴∠ABM=∠NMO∴NB=NM,∵NO⊥BM,∴OB=OM=OA=5∵CA∥BO,∴△CAN∽△OBN,∴∴,解得∴点N的坐标为(0,);②在直角∠NAM绕点A旋转的过程中,∠AMN的大小不会发生变化.理由:当点B和点N分别在x轴的负半轴和y轴的正半轴时,∵∠CAD=∠NAM=90°,∴∠CAN=∠DAM,∴△CAN∽△DAM,∴∴∴∠AMN的大小不会发生变化.当点B和点N分别在x轴的非负半轴和y轴的非正半轴时,同理可证∠AMN的大小不会发生变化.中考第一次模拟考试数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共40 分)1、(4分) 点关于原点对称的点的坐标是()A. B. C. D.2、(4分) 下列事件中,属于随机事件的是()B.某篮球运动员投篮一次,命中.A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7C.在只装了红球的袋子中摸到黑球D.在三张分别标有数字2,4,6,的卡片中摸两球,数字和是偶数3、(4分) 如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.和B.C.D.4、(4分) 下列事件中,最适合采用全面调查的是()A.对某班全体学生出生日期的调查B.对全国中小学生节水意识的调查C.对某批次的灯泡使用寿命的调查.D.对厦门市初中学生每天阅读时间的调查5、(4分) 对于的图象,下列叙述正确的是()B.开口向下A.顶点坐标为C.当,y随x的增大而增大D.对称轴是直线6、(4分) 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是()A. B. C. D.7、(4分) 如图,正六边形中,分别是的中点,绕正六边形的中心经逆时针旋转后与重合,则旋转角度是()A.60°B.90°C.120°D.180°8、(4分) 已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.9、(4分) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变10、(4分) 已知(其中为常数,且),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()A. B.一元二次方程没有实数根C.当时D.一元二次方程有一根比3大二、填空题(本大题共 6 小题,共24 分)11、(4分) 计算:=12、(4分) 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为13、(4分) 方程的根是14、(4分) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是15、(4分) 已知,计算16、(4分) 如图,在菱形中,分别是边的中点,于点P,,则的度数是三、解答题(本大题共9 小题,共86 分)17、(8分) (1)不等式组的解集.(2)先化简,再求值:其中18、(8分) 画出函数的图象19、(8分) 在两个不透明的袋子中分别装入一些相同的纸牌,甲袋内的4张牌分别标记数字1、2、3、4:乙袋内的3张牌分别标记数字2、3、4.从甲、乙两个袋子里分别随机摸出一张牌,求两张牌上的标数相同的概率.20、(8分) 如图,在,以为直径的分别交于点,点F在的延长线上,且.(1)求证:直线是的切线。
历年河南省中考数学试卷(含答案)
2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.(3分)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.(3分)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣二、填空题(每小题3分,共15分)11.(3分)计算:23﹣=.12.(3分)不等式组的解集是.13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m 与n的大小关系为.14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本题共8个小题,满分75分)16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A (m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•河南)下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣3【分析】根据正数大于零、零大于负数,可得答案.【解答】解:2>0>﹣1>﹣3,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.【分析】左视图是从左边看到的,据此求解.【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1,D不符合,故选D.【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,难度不大.4.(3分)(2017•河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断.【解答】解:分式方程整理得:﹣2=﹣,去分母得:1﹣2(x﹣1)=﹣3,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分【分析】将题目中的数据按照从小到大排列,从而可以得到这组数据的众数和中位数,本题得以解决.【解答】解:位于中间位置的两数分别是95分和95分,故中位数为95分,数据95出现了3次,最多,故这组数据的众数是95分,故选A.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根 D.没有实数根【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0,∴方程有两个不相等的实数根.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴两个数字都是正数的概率是:=.故选:C.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选D.【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A 逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A. B.2﹣C.2﹣D.4﹣【分析】连接OO′,BO′,根据旋转的性质得到∠OAO′=60°,推出△OAO′是等边三角形,得到∠AOO′=60°,推出△OO′B 是等边三角形,得到∠AO′B=120°,得到∠O′B′B=∠O′BB′=30°,根据图形的面积公式即可得到结论. 【解答】解:连接OO′,BO′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°, ∴∠OAO′=60°,∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,∴△OO′B 是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分的面积=S △B′O′B ﹣(S 扇形O′OB ﹣S △OO′B )=×1×2﹣(﹣×2×)=2﹣.故选C .【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.二、填空题(每小题3分,共15分) 11.(3分)(2017•河南)计算:23﹣= 6 .【分析】明确表示4的算术平方根,值为2.【解答】解:23﹣=8﹣2=6,故答案为:6.【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.12.(3分)(2017•河南)不等式组的解集是﹣1<x≤2.【分析】先求出不等式的解集,再求出不等式解集的公共部分.【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为m<n.【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12.【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:12【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为+或1.【分析】①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,于是得到结论;②如图2,当∠MB′C=90°,推出△CMB′是等腰直角三角形,得到CM=MB′,列方程即可得到结论.【解答】解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=+1,y=﹣1代入化简后的算式,求出算式的值是多少即可.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=9【点评】此题主要考查了整式的混合运算﹣化简求值问题,要熟练掌握,解答此题的关键是要明确:先按运算顺序把整式化简,再把对应字母的值代入求整式的值.17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有50人,a+b=28,m=8;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.【分析】(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.【解答】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可.【解答】(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A 船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=,可得=,求出x,再求出BC、AC,分别求出A、B两船到C的时间,即可解决问题.【解答】解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.【分析】(1)先将B(3,1)代入反比例函数即可求出k的值,然后将A代入反比例函数即可求出m的,再根据B两点的坐标即可求出一次函数的解析式.(2)设P的坐标为(x,y),由于点P在直线AB上,从而可知PD=y,OD=x,由题意可知:1≤x≤3,从而可求出S的范围【解答】解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.【分析】(按买3个A种魔方和买4个B种魔方钱数相同解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.(按购买3个A种魔方和4个B种魔方需要130元解答)(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据两种活动方案即可得出w活动一、w活动二关于m的函数关系式,再分别令w活动一<w活动二、w活动一=w活动二和w活动一>w活动二,解出m的取值范围,此题得解.【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E 分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是PM=PN,位置关系是PM ⊥PN;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,=2+5=7,∴MN最大=PM2=×MN2=×(7)2=.∴S△PMN最大方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,=PM2=×72=∴S△PMN最大【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y 轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(分)今年一季度,河南省对“一带一路”沿线国家进出口总额达亿元,数据“亿”用科学记数法表示为()A.×102B.×103C.×1010D.×10113.(分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我|4.(分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:%,%,%,%,%.关于这组数据,下列说法正确的是()A.中位数是% B.众数是%C.平均数是% D.方差是06.(分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0;8.(分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB 于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)》11.(分)计算:|﹣5|﹣=.12.(分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(分)不等式组的最小整数解是.14.(分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)$16.(分)先化简,再求值:(﹣1)÷,其中x=+1.17.(分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:【(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.|19.(分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为°,高杠的支架BD与直线AB的夹角∠DBF为°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据°≈,°≈,°≈,°≈,°≈,°≈)21.(分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:8595105115 :销售单价x(元)日销售量y(个)17512575m87518751875875…日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元,22.(分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x ﹣5经过点B,C.《(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析-一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(分)﹣的相反数是()A.﹣ B.C.﹣ D.【解答】解:﹣的相反数是:.故选:B.2.(分)今年一季度,河南省对“一带一路”沿线国家进出口总额达亿元,数据“亿”用科学记数法表示为()A.×102B.×103C.×1010D.×1011【解答】解:亿,用科学记数法表示为×1010,故选:C.%3.(分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.(4.(分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.5.(分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:%,%,%,%,%.关于这组数据,下列说法正确的是()A.中位数是% B.众数是%,C.平均数是% D.方差是0【解答】解:A、按大小顺序排序为:%,%,%,%,%,故中位数是:%,故此选项错误;B、众数是%,正确;C、(%+%+%+%+%)=%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.)6.(分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.7.(分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,~方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0|(x﹣1)2=﹣1,则方程无实根;故选:B.8.(分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,;故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.9.(分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB 于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,、∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A./10.(分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=|Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.》二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(分)计算:|﹣5|﹣=2.【解答】解:原式=5﹣3=2.故答案为:2.12.(分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,(∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.13.(分)不等式组的最小整数解是﹣2.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,】∴不等式组的最小整数解是﹣2,故答案为:﹣2.14.(分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴{15.(分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,;∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,)∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;、三、计算题(本大题共8题,共75分,请认真读题)16.(分)先化简,再求值:(﹣1)÷,其中x=+1.【解答】解:当x=+1时,原式=•=1﹣x=﹣17.(分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项(单选)*A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是°;(3)请补全条形统计图;;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=°,故答案为:°;(3)D选项的人数为2000×25%=500,补全条形图如下:.(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).18.(分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),·∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.19.(分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:(①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为°时,四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,}∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,#而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;\②当∠D=°时,∠DAO=°,而OA=OC,∴∠OCA=∠OAC=°,∴∠AOC=180°﹣°﹣°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,*∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,°.20.(分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为°,高杠的支架BD与直线AB的夹角∠DBF为°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据°≈,°≈,°≈,°≈,°≈,°≈)【解答】解:在Rt△ACE中,,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.、21.(分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115m日销售量y(个)175125/75日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:%该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,]∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.22.(分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:%①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,$∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;¥(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,·在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,;,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,\(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.23.(分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x ﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).。