等差数列的前n项和公式推导及例题解析
高中数学同步教学课件 等差数列前n项和公式的推导及简单应用
[跟踪训练] 植树节某班 20 名同学在一段直线公路一侧植树,每人植树一棵,相 邻两棵树相距 10 m,开始时需将树苗集中放置在某一棵树坑旁边, 使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小, 此最小值为________m.
解析:假设 20 位同学是 1 号到 20 号依次排列,使每位同学从各自树 坑出发前来领取树苗往返所走的路程总和最小,则树苗需放在第 10 或第 11 号树坑旁,此时两侧的同学所走的路程分别组成以 20 为首项, 20 为公差的等差数列,故所有同学往返的总路程为 S=9×20+9×2 8×20+10×20+10×2 9×20=2 000(m). 答案:2 000
(2)由 an=4n-32,得 an-1=4(n-1)-32(n≥2), 所以 an-an-1=4n-32-[4(n-1)-32]=4(常数), 所以数列{an}是等差数列.
[母题探究] (变条件)将本例中“Sn=2n2-30n”改为“Sn=-2n2+n+2”, 如何求解下列问题? (1)求{an}的通项公式; (2)判断{an}是否为等差数列?
[解] 从第一辆车投入工作算起,各车工作时间(单位:小时) 依次设为 a1,a2,…,a25. 由题意可知,此数列为等差数列,且 a1=24,公差 d=-13. 25 辆翻斗车完成的工作量为: a1+a2+…+a25=25×24+25×12×-13=500, 而需要完成的工作量为 24×20=480. ∵500>480 ,∴在 24 小时内能构筑成第二道防线.
3.公式 Sn=na12+an中涉及四个量:Sn,n,a1,an;公式 Sn=na1 +nn- 2 1d 中也涉及四个量:Sn,n,a1,d.结合等差数列{an}的通 项公式 an=a1+(n-1)d,对于等差数列中的五个量:Sn,n,a1, an,d,已知其中的三个量就可以求出另外的两个量. 4.等差数列{an}的求和公式 Sn=na12+an与梯形面积公式 S = 梯形 上底+下2 底×高类似,可对比记忆为上底是“a1”,下底是“an”, 高是“n”.
高中数学等差数列求和公式的推导与分析
高中数学等差数列求和公式的推导与分析等差数列是高中数学中常见的数列类型之一,它的每一项与前一项之差都相等。
求和公式是等差数列的重要性质之一,可以帮助我们快速求得数列的和。
本文将对等差数列求和公式进行推导与分析,并给出一些实例来说明其应用。
一、等差数列求和公式的推导设等差数列的首项为a,公差为d,共有n项。
我们首先考虑将等差数列倒序排列,得到一个新的等差数列。
设新等差数列的首项为a',公差为d,共有n项。
原等差数列:a, a+d, a+2d, ..., a+(n-1)d新等差数列:a'+(n-1)d, a'+(n-2)d, ..., a'将原等差数列与新等差数列对应项相加,得到:2S = (a+a') + (a+d+a'-(n-1)d) + (a+2d+a'-(n-2)d) + ... + (a+(n-1)d+a')根据等差数列的性质可知,对应项相加的结果都相等,即:2S = n(a+a')将a'替换为a+(n-1)d,得到:2S = n(a+a'+(n-1)d)将a+a'展开并整理,得到:2S = n(2a+(n-1)d)最终得到等差数列求和公式:S = n(2a+(n-1)d) / 2二、等差数列求和公式的应用下面通过一些实例来说明等差数列求和公式的应用。
例1:求等差数列1, 4, 7, 10, ..., 100的和。
首先确定等差数列的首项a为1,公差d为3,共有n项。
代入求和公式可得:S = n(2a+(n-1)d) / 2= n(2*1+(n-1)*3) / 2= n(2+3n-3) / 2= n(3n-1) / 2代入n=34可得:S = 34(3*34-1) / 2= 34(102-1) / 2= 34*101 / 2= 3434因此,等差数列1, 4, 7, 10, ..., 100的和为3434。
等差数列的前n项和公式推导与例题解析
等差数列的前n 项和·例题解析一、等差数列前n 项和公式推导:(1) Sn=a1+a2+......an-1+an 也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)=n(a1+an)所以Sn=[n (a1+an )]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)二、对于等差数列前n 项和公式的应用【例1】 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而直接去求,所列方程组化简后可得++相减即得+,a2a9d=28a4d=25a5d=3 6111⎧⎨⎩即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3若a m=b N,则有3n-1=5N-3即=+ n N 213 () N-若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,…,40 n=1,6,11,…,66∴两数列相同项的和为2+17+32+…+197=1393【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12 解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于 [ ]A 1B C D ....23199299200301 分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312=+ 解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+ bn∵S T n n n n =+231可设S n =2n 2k ,T n =n(3n +1)k∴∴××a b S S T T n k n k n n k n n kn n n n a b n n n n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n =+231S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S =(a +a )n 2n 1n ·×=-=-+=--+()()633232632322123218222n n n n n ∵n ∈N ,∴当n=10或n=11时,S n 取最大值165.【例11】 求证:前n 项和为4n 2+3n 的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n -1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证由S n=an2+bn,得当n≥2时,a n=S n-S n-1=an2+bn-a(n-1)2-b(n-1)=2na+b-aa1=S1=a+b∴对于任何n ∈N ,a n =2na +b -a且a n -a n-1=2na +(b -a)-2(n -1)a -b +a=2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-1212221 若令,则-,即d d 22=a a =b 1 S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件. 说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d按题意,则有S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212 即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()() =-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m 22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m∵m ≠n ∴ A(m +n)+B=-1故A(m +n)2+B(m +n)=-(m +n)即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d=1725d d=29817162∴a n=25+(n-1)(-2)=-2n+27∴-+≥-++≥≤≥∴2n2702(n1)270n13.5n12.5n=13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n项和公式可求得S13=169.解法三利用S9=S17寻找相邻项的关系.由题意S9=S17得a10+a11+a12+…+a17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bn二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。
4.2.2等差数列的前n项和公式
= 1 +
.
2
作用:已知 a1,d和 n,求 Sn.
典型例题
例1已知数列{an}是等差数列.
(1)若a1=7,a50=101,求 S50;
5
(2)若a1=2,a2= ,求S10;
2
1
1
(3)若a1= ,d= − ,Sn=−5,求n.
2
6
解:(1)∵a1=7,a50=101,
当n=6时,an=0;
所以 an+1<an .所以{an}是递减数列.
当n>6时,an<0.
由 a1=10,dБайду номын сангаас=-2,
得 an=10+(n-1)×(-2) =-2n+12.
所以 , S1<S2<…<S5=S6> S7>…
令 an>0,解得 n <6.
所以,当n=5或6时,Sn最大.
因为5 = 5 × 10
2
= + (1 − ).
2
2
Sn=Sn-1+an(n≥2)
函数思想
课后作业
1.某市一家商场的新年最高促销奖设立了两种领奖方式:第一种,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
=
.
2
作用:已知 a1,an 和 n,求 Sn.
an=a1+(n-1)d,(n∈N*)
,有
2
101 + 45 = 310,
求数列前N项和的七种方法(含例题和答案)
求数列前N 项和的七种方法1. 公式法等差数列前n 项和:11()(1)22n n n a a n n S na d ++==+特别的,当前n 项的个数为奇数时,211(21)k k S k a ++=+ ,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算。
等比数列前n 项和:q=1时,1n S na = ()1111nn a q q S q-≠=-,,特别要注意对公比的讨论。
[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.解:由212loglog3log1log3323=⇒-=⇒-=x x x由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n--1)1(=211)211(21--n=1-n21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n nS n S n f =64342++n n n =nn 64341++=50)8(12+-n n 501≤∴ 当 88-n ,即n =8时,501)(max =n f2. 错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ……………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………. ② (设制错位)①-②得 nn n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 再利用等比数列的求和公式得:nn n x n xxx S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n xn S nn n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn 前n 项的和.解:由题可知,{nn 22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积设nn n S 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n n S ………………………………②①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n nn n S (错位相减)1122212+---=n n n ∴ 1224-+-=n n n S3. 反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S ……..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin)2cos 2(sin)1cos 1(sin 2222222++⋅⋅⋅++++=S =89∴ S =44.54. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aaaS n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aaaS n n (分组) 当a =1时,2)13(nn n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11nn a a a n-+---[例7] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk nk nk ∑∑∑===++1213132 (分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n =2)2()1(2++n n n练习:求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。
等差数列的前n项和公式的性质及应用 课件
因为 S2k=2ka1+12×2k(2k-1)d=8a1+42,
所以 8a1+42=54,故 a1=32,
所以此数列的首项是32,公差是32,项数为 8.
法二:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 根据题意,得S偶=30,
a2k-a1=221,
12ka1+a2k-1=24, 即12ka2+a2k=30,
和 30,最后一项与第一项之差为221,求此数列的首项、公差以及项数. [解析] 法一:设此数列的首项为 a1,公差为 d,项数为 2k(k∈N*),
S奇=24, 由已知得S偶=30,
a2k-a1=221,
S偶-S奇=6, 所以a2k-a1=221,
kd=6,
k=4,
即2k-1d=221, 解得d=32.
②若项数为 2n-1,则 S2n-1=(2n-1)an(an 为中间项)且 S 奇-S 偶= an , n-1
SS偶 奇=___n____.
(3)若 Sn 为数列{an}的前 n 项和,则{an}为等差数列等价于Snn是等差 数列. (4)若{an}、{bn}都为等差数列,Sn、Sn′为它们的前 n 项和,则abmm= SS′2m2- m1-1. (5)项数(下标)的“等和”性质: Sn=na12+an=nam+2an-m+1.
()
A.130
B.65
C.70
D.以上都不对
解析:S13=a1+2 a13×13=a5+2 a9×13=130.
答案:A
3.已知某等差数列共 20 项,其所有项和为 75,偶数项和为 25,则
公差为( )
A.5
B.-5
C.-2.5
D.2.5
4.2.2等差数列的前n项和公式说课课件(人教版)
列的首项和公差得到它的前n项和公式吗?
转化为基本量a1和d
Sn
n(a1 2
an )
an a1 (n 1)d
n(n 1) Sn na1 2 d
也可以通过
Sn a1 a2 a3 an
利用求和公式和每 项具体化
a1 (a1 d ) (a1 2d ) [a1 (n 1)d ]
1
n项 2
2
n 1个
n n 1
2
2
n 1 1 n n 1 n n 1
2
2
2
演绎推理“推”公式
问题4:在求前n个正整数的和时,对n分奇偶数进行讨论得到的结果是一样
的,那么怎样避开分类讨论实现“配对”,将“不同数的求和”化归为“相
同数的求和”呢?
“奇数加奇数、偶数加偶数”都可以变成偶数,根据这个性质让它自己和自己配对.
3+98 =101 a3+a98 =101
50+51 =101 a50+a51=101
S100 (1 100 ) (2 99) (50 51)
=50 ×101=5050 首尾配对法
通过S配10对0=凑(a成1+相a1同00)的+数(a,2+变a9“9) 多+…步+求(和a5”0+为a51) “一步相乘=5”0 ,×即10将1“=5不05同0数的求和”转化为
(简化计算)
设计意图:高斯算法蕴含着等差数列的特殊性 质,让学生去观察、探索、发现等差数列的 这一性质,引导学生提炼高斯算法的实质, 体会转化与化归的思想方法.
高斯 Gauss.C.F (1777~1855)
高斯, 德国数学家. 与阿基米德, 牛顿 并称为历史上最 伟大的数学家, 有 “数学王子”之称.
2.2.2等差数列前n项和公式
练习3 已知一个共有n项的等差数列前4项之 和为26,末四项之和为110,且所有项的和为 187,求n.
n=11
提示:a1+a2+a3+a4=26
a1+an=34
an+an-1+an-2+an-3=110
Sn
n(a1 2
an )
34n 2
187,n
11
课堂小结
1.等差数列前n项和的公式;(两个)
解:(1)由已知得 12a1+6×11d>0
13a1+13×6d<0
24 d 3 7
(2)
∵
Sn
na1
1 2
n(n
1)d
1
n(12 2d ) n(n 1)d
2
d n2 (12 5d )n
2
2 5 12
∴Sn图象的对称轴为 n
由(1)知 24 7
+ S =100 + 99 + 98 + … + 3 + 2 + 1
2S = 101 +101+101 + … + 101 + 101 + 101
100101
S=
2
=5050
实例2
如图,表示堆放的钢管共8层,自上而下各 层的钢管数组成等差数列4, 5, 6, 7, 8, 9, 10, 11, 求钢管的总数 .
Sn
n(a1 2
an )
Sn
na1
n(n 1) 2
d
2.等差数列前n项和公式的推导方法— —倒序相加法;
等差数列前n项和公式推导
这个故事告诉我们求等差数列前 n项和的一种很重要的思想方法,就
是我们要介绍的“倒序相加”法。
二、等差数列前n项和公式1:
对等差数列a1,a2,…,an前n项求和, 得
Sn=a1+a2+a3+…+an, Sn=an+an-1+an-2+...+a2+a1,
上面两式相加得:
解之得:n1=9, n2=-3(舍)所以等 差数列-10,-6,-2,2,…前9项和 是54.
四、巩固练习
1、求集合M={m/m=7n,n ∈N +且m <100}的元 素个数,并求这些元素的和。
2、已知一个等差数列的前100项和是310, 前20项的和是1220,求其前n项和公式.
五、课后作业
S
n
=
na1
n(n 1)d 2
(2)
公式(2)又可化为
n d
S n= 2
2 (a1 d)n 2
当d ≠0时,这是一个常数项为零的关 于n的二项式.
三、讲解例题:
例1、一堆放铅笔的V型架的最下层放一支铅笔,往上 每一层都比它下一层多放一支,最上层放120支,问:这 个V型架上共放多少支铅笔?
解:由题意知,这个V型架上共放120层铅笔且自下而 上各层的铅笔成等差数列,记为{an}其中a1=1,a120=120,根 据等差数列前n项和公式得:
已知等差数列的前n项和为a,前2n 项和为b,求前3n项和。
下课!
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
等差数列前n项和的公式
21
1
问题2
一个堆放铅笔的V形架 的最下面一层放一支铅 笔,往上每一层都比它 下面一层多放一支,最 上面一层放100支.这个 V形架上共放着多少支 铅笔?
问题就是 求 “1+2+3+4+…+100=?”
问题2:对于这个问题,德国著名数学家高斯10岁 时曾很快求出它的结果。(你知道应如何算吗?)
假设1+2+3+ +100=x,
【变式】若Sn=-3n2 +6n +1,求an? 【解析】当n=1时,a1=S1=4. 当n≥2时,an=Sn-Sn-1 =(-3n2+6n+1)-[-3(n-1)2+6(n-1) +1]
=9-6n,
a1=4不符合此式.
故an=
4(n 1) 9 6n(n 2)
.
n
1 11 1从 而a1=,3或a1=-1.
na1 2 d 35
(A)33
(B)34
(C)35
(D)36
3.数列{an}为等差数列,an=11,d=2, Sn=35,则a1等于( )
(A)5或7
(B)3或5 (C)7或-1
(D)3或-1
4.设等差数列{an}的前n项和为Sn,a2+a4=6,则S5=_______.
5.两个等差数列{an}和{bn}的前n项和分别是Sn,Tn,若
(1)
那么100+99+98+ +1=x.
(2)
由(1)+(2)得101+101+101+ +101=2x,
100个101
所以 2x 101100, x=5050.
等差数列前n项和课件
即Sn=a+n an-1+an-2+…+a3+ a2 +a1,
+得: 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1).
由等差数列的性质:当m+n=p+q时,am+an=ap+aq 知: a1+an=a2+an-1=a3+an-2=…=an+a1,所以式可化为: 2Sn=(a1+an)+(a1+an)+ … +(a1+an) = n(a1+an).
an = Sn - Sn-1
= n2 + 1 n -[(n - 1)2 + 1(n - 1)]= 2n - 1 .
2
2
2
当n = 1时,
a1
=
S1
=
12
+
1×1 2
=
3 ,也满足上式. 2
所以数列an 的通项公式为an
=
2n
-
1. 2
由此可知,数列an
是一个首项为3 2
,公差为2的等差数列.
技巧方法:
下面来看1+2+3+…+98+99+100的高斯算法.
设S100=1 + 2 + 3 +…+98+99+100 作
+ +++
+ + +加
反序S100=100+99+98+…+ 3+ 2 + 1 法
等差数列的前n项和
2 4 问题8:已知等差数列,4 , ,的前n项和为S n , 5 3 7 7 求使得S n 最大时的序号 的值。 n
问 题9: 已 知 等 差 数 列a n }中 ,a1 9, a4 a7 0 { (1)求 通 项 公 式 n ; a ( 2)求 当S n 最 大 时 的 序 号 的 值 。 n
( 2)求a n ?;
( 3)( 选做)若bn 2(1 n)a n ( n 2), 求证:
若 等 差 数 列a n }的 前n项 和 为S n, 公 差 为 , 则 : { d 性 质2: 数 列S k , S 2 k S k , S 3 k S 2 k , 是 公 差 为 k 2 d的 等 差 数 列 ; Sn d 性 质3 : 数 列{ }是 公 差 为 的 等 差 数 列 ; n 2
2、已知等差数列an }的前4项和为25 { ,后4项和为63 , 前n项和为286 ,求n ?
思考:已知数列a n }的前n项和为S n 满足a n 2 S n S n-1 0 { 1 (n 2 ; a1 , ) 2 1 (1)求证数列 }是等差数列 { ; Sn
2 2 2 b2 b3 bn 1.
等差数列前n项和(2)
一、创建设问
问题1:上节课我们学习了那 些内容?
问 题2: 已 知 等 差 数 列a n }中 , { 3 1 (1)a1 , d , S n 15, 求n及a n ; 2 2 ( 2)a1 1, a n 512, S n 1022, 求d ; ( 3) S 5 24, 求a 2 a4 .
倒序相加 S 解: n=a1+ a2 +a3 +…+an-2+an-1+an Sn=an+an-1+an-2+…+a3 + a2 +a1 因为a1+an=a2+an-1=a3+an-2=…
4.2.2等差数列的前n项和公式 (解析版)
4.2.2等差数列的前n 项和公式知识点一.前n 项和1.数列的前n 项和:对于数列{a n },一般地称a 1+a 2+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+…+a n .2.等差数列的前n 项和公式已知量首项,末项与项数首项,公差与项数选用公式S n =n (a 1+a n )2S n =na 1+n (n -1)2d 3、等差数列前n 项和公式的推导对于公差为d 的等差数列,S n =a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -1)d ],①S n =a n +(a n -d )+(a n -2d )+…+[a n -(n -1)d ],②由①+②得2S n =(a 1+a n )+(a 1+a n )+…+(a 1+a n )n 个=n (a 1+a n ),由此得等差数列前n 项和公式S n =n (a 1+a n )2,代入通项公式a n =a 1+(n -1)d 得S n =na 1+n (n -1)2d .知识点二.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和.(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.知识点三.等差数列与函数的关系1.通项公式:当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且一次项系数为公差d .若公差d >0,则为递增数列,若公差d <0,则为递减数列.2.前n 项和:当公差d ≠0时,S n =na 1+n (n -1)2d =d 2n 21是关于n 的二次函数且常数项为0.知识点四.两个常用结论1.关于等差数列奇数项和与偶数项和的性质①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1;②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1.2.两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为S 2n -1T 2n -1=a n b n.【注意】1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数.2.注意利用“a n -a n -1=d ”时加上条件“n ≥2”.题型1等差数列前n 项和基本量的计算【例题1】(一题多解)(2019·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则()A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n【解析】(1)方法一:设等差数列{a n }的公差为d 4=0,5=5,a 1+4×32d =0,1+4d =5,解得1=-3,=2,所以a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d 4=0,5=5,a 1+4×32d =0,1+4d =5,1=-3,=2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ;选项C ,S 1=2-8=-6,排除C ;选项D ,S 1=12-2=-32,排除D.故选A.【变式1-1】1.(2022·甘肃·宁县第二中学高二阶段练习)已知等差数列a n 的前n 项和为S n ,若S 9=54,a 11+a 12+a 13=27,则S 16=()A .120B .60C .160D .80【答案】A【分析】首先根据等差数列通项公式和前n 项和公式将题干条件中的等式转化成基本量a 1和d ,然后联立方程组解出a 1和d ,最后根据公式求解S 16即可.【详解】∵a n 为等差数列,∴S 9=9a 1+9×82d =9a 1+36d =54,a 11+a 12+a 13=a 1+10d +a 1+11d +a 1+12d =3a 1+33d =27,9a 1+36d =543a 1+33d =27,解得a 1=307d =37.S 16=16a 1+16×152d =16×307+120×37=120.故选:A.【变式1-1】2.(2022·湖南省桃源县第一中学高三阶段练习)设等差数列a n 的前n 项和为S n ,已知a 3=11,a 5=19,则S 10=()A .310B .210C .110D .39【答案】B【分析】根据等差数列的公差以及求和公式,可得答案.【详解】由等差数列a n ,则公差d =a 5-a 35-3=19-112=4,即S 10=5×a 3+a 8=5×a 3+a 3+5d =5×11×2+5×4=5×42=210.故选:B.【变式1-1】3.(2022·江苏南京·高三阶段练习)设S n 为等差数列{a n }的前n 项和,若a 8=6,S 21=0,则a 1的值为()A .18B .20C .22D .24【答案】B【分析】根据等差数列的通项公式和求和公式代入求解即可.【详解】解:由题意得:设等差数列的通项公式为a n =a 1+(n -1)d ,则S n =na 1+n (n -1)2da 8=6S 21=0⇒a 1+7d =721a 1+20×212d =0解得:d =-2a 1=20故选:B 【变式1-1】4.(2023·上海·高三专题练习)已知数列{a n }的前n 项和为S n ,且满足a n =1+(n −1)d ,5a 2=a 8,则S n =___________.【答案】n 2【分析】根据通项公式列出方程求出d ,利用前n 项和公式求解.【详解】因为a n =1+(n −1)d ,5a 2=a 8所以5(1+d )=1+7d ⇒d =2,所以{a n }是以2为公差的等差数列,所以S n =n (1+2n −1)2=n 2,故答案为:n 2【变式1-1】5.(2020·河南部分重点高中联考)记等差数列{a n }的前n 项和为S n ,若3S 5-5S 3=135,则数列{a n }的公差d =________.【解析】因为3S 5-5S 3=135,所以a 1+5×42d a 1+3×22d135,所以15d =135,解得d =9.【变式1-2】1.(2020·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=()A .18B .16C .14D .12【答案】选C.【解析】设{an }的公差为d ,1+3d +5a 1+5×42d =2,a 1+7×62d =14a 1+13d =2,1+3d =2,1=-4,=2,所以a 10=-4+9×2=14,选C.【变式1-2】2.已知数列{a n}(n∈N+)是等差数列,S n是其前n项和,若a2a5+a8=0,S9=27,则S8的值是________.【答案】16【解析】设等差数列{a n}的公差为d,则a2a5+a8=(a1+d)·(a1+4d)+a1+7d=a21+4d2+5a1d +a1+7d=0,S9=9a1+36d=27,解得a1=-5,d=2,则S8=8a1+28d=-40+56=16.【变式1-2】3.(2017·全国卷Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【答案】C【解析】设等差数列{a n}的公差为d4+a5=24,6=48,1+3d+a1+4d=24,a1+6×52d=48,即a1+7d=24,a1+5d=16,解得d=4.【变式1-2】4.(2020·高考全国卷Ⅱ)记S n为等差数列{a n}的前n项和.若a1=-2,a2+a6=2,则S10=________.【答案】25【解析】设等差数列{a n}的公差为d,则a2+a6=2a1+6d=2.因为a1=-2,所以d=1.所以S10=10×(-2)+10×92×1=25.【变式1-2】5.(2020·合肥第一次教学检测)已知等差数列{a n}的前n项和为S n,a1=1,S4=4S2.(1)求数列{a n}的通项公式;(2)若a m+a m+1+a m+2+…+a m+9=180(m∈N*),求m的值.【解析】(1)设等差数列{a n}的公差为d,由S4=4S2得,4a1+6d=8a1+4d,整理得d=2a1,又a1=1,所以d=2,所以a n=a1+(n-1)d=2n-1(n∈N*).(2)a m+a m+1+a m+2+…+a m+9=180可化为10a m+45d=20m+80=180.解得m=5.【变式1-2】6.(2021·新高考卷Ⅱ)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.【解析】(1)由等差数列的性质可得S5=5a3,则a3=5a3,所以a3=0,设等差数列的公差为d,从而有a2a4=(a3-d)(a3+d)=-d2,S4=a1+a2+a3+a4=(a3-2d)+(a3-d)+a3+(a3+d)=-2d,从而-d2=-2d,由于公差不为零,故d=2,数列的通项公式为a n=a3+(n-3)d =2n-6.(2)由数列的通项公式可得a1=2-6=-4,则S n=n×(-4)+n(n-1)2×2=n2-5n,则不等式S n>a n即n2-5n>2n-6,整理可得(n-1)·(n-6)>0,解得n<1或n>6,又n为正整数,故n的最小值为7.题型2等差数列前n项和Sn与等差中项的关系2n-1n【例题2-1】等差数列{a n}的前n项和为S n,若a1+a3+a5+a7+a9=20,则S9=() A.27B.36C.45D.54【答案】选B.【解析】依题意a1+a3+a5+a7+a9=5a5=20,a5=4,所以S9=a1+a92×9=9a5=36.【变式2-1】1.已知数列{a n}为等差数列,S n为其前n项和,2+a5=a6+a3,则S7=() A.2B.7C.14D.28【答案】选C.【解析】因为2+a5=a6+a3,所以2+a4+d=a4+2d+a4-d.解得a4=2,所以S7=7(a1+a7)2=7a4=14.【变式2-1】2.(2023·全国·高三专题练习)设公差不为0的等差数列a n的前n项和为S n,已知S9=3a3+a5+a m,则m=()A.9B.8C.7D.6【答案】C【分析】根据等差数列的前n项和的性质及等差数列通项公式化简可得.【详解】因为S9=3a3+a5+a m,又S9=9a5,所以9a5=3a3+a5+a m,所以a3+a5+ a m=3a5,即a3+a m=2a5,设等差数列a n的公差为d,则a1+2d+a1+(m−1)d=2(a1+ 4d),所以(m+1)d=8d,又d≠0,所以1+m=8,所以m=7.故选:C.【变式2-1】3.(2021·陕西渭南·一模(理))已知数列a n为等差数列,其前n项和为S n,若S15=90,则a8=()A.12B.6C.4D.3【答案】B【分析】根据等差数列的性质及前n项和公式即可求出答案.【详解】因为数列a n为等差数列,所以S15=15×2a82=15a8=90,所以a8=6.故选:B.◆类型2a n bn =S2n−1 T2n−1【例题2-2】(2023·全国·高三专题练习)两个等差数列a n和b n的前n项和分别为S n、T n,且S n Tn =5n+2n+3,则a2+a20b7+b15等于()A.10724B.724C.14912D.1493【答案】A【分析】根据给定条件,利用等差数列前n项和公式结合等差数列性质计算作答.【详解】两个等差数列a n和b n的前n项和分别为S n、T n,且S n Tn =5n+2n+3,所以a2+a20b7+b15=a1+a21b1+b21=a1+a21 2×21b1+b21 2×21=S21T21=5×21+221+3=10724.故选:A【变式2-2】1.(2022·辽宁·沈阳市第五十六中学高二阶段练习)若等差数列a n 和b n 的前n 项的和分别是S n 和T n ,且an b n=n 2n +1,则S 11T 11=()A .1221B .1123C .613D .1223【答案】C【分析】根据等差数列的前n 项的和的公式即可转化成a n b n=n2n +1,进而求解.【详解】因为a n 和b n 是等差数列,故S11T 11==a 6b 6=613故选:C【变式2-2】2.(2022·天津·高二期末)若等差数列a n ,b n 的前n 项和分别为S n ,T n ,满足S n T n=2n −13n +1,则a4b 4=_______.【答案】1322【分析】根据等差数列下标和性质及等差数列前n 项和公式计算可得;【详解】解:依题意可得a4b 4=2a 42b 4=a 1+a 7b 1+b 7=21+a 77b 1+b 7=S 7T 7=2×7−13×7+1=1322;故答案为:1322【变式2-2】3.(2022·全国·高三专题练习)已知S n ,T n 分别是等差数列a n ,b n 的前n 项和,且S n T n=3n +1n +1,n ∈N ∗,则a 10b3+b 18+a 11b6+b 15=______.【答案】6121【答案】利用等差数列的性质和前n 项和公式即可求得.【详解】因为b n 为等差数列,所以b 3+b 18=b 6+b 15,所以a 10b3+b 18+a 11b6+b 15=a 10+a 11b 6+b 15=a 1+a20b 1+b 20=12×a 1+a 20×2012×b 1+b 20×20=S 20T 20=3×20+120+1=6121.故答案为:6121【变式2-2】4.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S nT n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.【答案】1941【解析】∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 9b 5+b 7+a 3b 8+b 4=1941.【变式2-2】5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -13n -2,则a 11b 6+b 10+a 5b 7+b 9________.【答案】2943【解析】a 11b 6+b 10+a 5b 7+b 9=a 11+a 52b 8=2a 82b 8=a 8b 8,又a 8b 8=S 2×8-1T 2×8-1=S 15T 15=2×15-13×15-2=2943.【变式2-2】6.(2022·陕西·西安工业大学附中高一阶段练习)有两个等差数列a n ,b n ,其前n 项和分别为S n ,T n .(1)若a n b n=2n −13n +1,则S 11T 11=___________.(2)若S n T n=2n −13n +1,则a 5b 4=___________.【答案】11191722【分析】利用S11T 11=11a 611b 6可得填空1的答案;若SnT n=2n −13n +1=2n 2−n 3n 2+n,则可设S n =2n 2−n k ,T n =3n 2+n k ,然后可计算a5b 4的值.【详解】若a n b n=2n −13n +1,则S 11T 11=11a 611b 6=2×6−13×6+1=1119;若S n T n=2n −13n +1=2n 2−n 3n 2+n,则可设S n =2n 2−n k ,T n =3n 2+n k 所以a 5=S 5−S 4=45k −28k =17k ,b 4=T 4−T 3=52k −30k =22k ,所以a 5b 4=1722,故答案为:1119;1722【变式2-2】7.(2023·全国·高三专题练习)设公差不为零的等差数列a n 的前n 项和为S n ,a 4=2a 5,则S7S 4=()A .74B .-1C .1D .54【答案】C【分析】利用等差中项2a 5=a 4+a 6,2a 6=a 5+a 7及等差数列前n 项和的性质即可求解.【详解】解:在等差数列a n 中,2a 5=a 4+a 6,a 4=2a 5,故a 6=0,又2a 6=a 5+a 7,故a 7=−a 5,则S 7=S 4+a 5+a 6+a 7=S 4,故S7S 4=1.故选:C.【变式2-2】8.(2023·全国·高三专题练习)设等差数列a n 与等差数列b n 的前n 项和分别为S n,T n.若对于任意的正整数n都有S n Tn =2n+13n−1,则a8b9=()A.3552B.3150C.3148D.3546【答案】B【分析】先设S n=2n+1nt,T n=3n−1nt,由a8=S8−S7,b9=T9−T8直接计算a8b9即可.【详解】设S n=2n+1nt,T n=3n−1nt,t≠0.则a8=S8−S7=136t−105t=31t,b9= T9−T8=234t−184t=50t,所以a8b9=3150.故选:B.【变式2-2】9.(2022·安徽宿州·高二期中)已知两个等差数列a n和b n的前n项和分别为A n和B n,且A n Bn =2n+1n+4,则b2+b8a3+a5+a7=()A.43B.3839C.1319D.2657【答案】D【分析】根据等差数列性质与前n项公式化简即可求解.【详解】由b2+b8a3+a5+a7=b1+b93a1+a9=23⋅B9A9=23×9+42×9+1=2657.故选:D【变式2-2】10.(2022·黑龙江·鹤岗一中高二开学考试)等差数列a n和b n的前n项和分别记为S n与T n,若S2n Tn =6n3n+4,则a3+a12b4=()A.725B.1425C.2125D.4225【答案】D【分析】根据等差数列的性质,将a3+a12b4变形为数列的前n项和的比的形式,即可求得答案.【详解】a n和b n为等差数列,故a3+a12b4=a1+a1412×2b4=142(a1+a14)72(b1+b7)=S14T7=6×73×7+4=4225,故选:D.【变式2-2】11.两个等差数列{a n}和{b n}的前n项和分别为A n,B n,且满足A nB n =7n+45n+3,则使得a nb n为正整数的n的个数是() A.5B.4C.3D.2【解析】选A.因为a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以当n +1=2,3,4,6,12,即n =1,2,3,5,11时,an b n为正整数.故选A.题型3等差数列前n 项和S n 的性质k 2k k 3k 2k 列【例题3-1】(2022·上海市延安中学高二阶段练习)已知等差数列{a n }的前n 项和为S n ,若S 10=20,S 30=90,则S 20=___________【答案】50【分析】由等差数列片段和的性质知S 10,S 20−S 10,S 30−S 20成等差数列,再由等差中项的性质求结果.【详解】由题设S 10,S 20−S 10,S 30−S 20成等差数列,所以2(S 20−S 10)=S 10+S 30−S 20,则3S 20=3S 10+S 30=150,所以S 20=50.故答案为:50【变式3-1】1.等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为()A .130B .170C .210D .260【答案】C【解析】利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n-S n ),即30+(S 3n -100)=2(100-30),解得S 3n =210.【变式3-1】2.(2022·江西·高三开学考试)等差数列a n 的前n 项和为S n ,若a 3=0,a 4+a 5+a 6=6,则S 7=______.【答案】7【分析】方法一:设出公差,利用题干条件得到a 5=2,进而求出公差,再求出首项,利用求和公式进行求解;方法二:利用题干条件得到a 5=2,再利用求和公式的性质进行求解.【详解】方法一:设公差为d ,由a 4+a 5+a 6=3a 5=6,∴a 5=2,又a 3=0,∴d =a 5−a 35−3=1,a 1=a 3−2d =−2,∴S 7=7a 1+7×6d 2=7.方法二:由已知得a 4+a 5+a 6=3a 5=6,∴a 5=2,又a 3=0,所以S 7===7.故答案为:7【变式3-1】3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于()A .63B .45C .36D .27【答案】B【解析】∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.【变式3-1】4.设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则13141516a a a a +++=()A .12B .8C .20D .16【答案】C【解析】∵等差数列{}n a 的前n 项和为n S ,488,20S S ==,由等差数列的性质得:4841281612,,,S S S S S S S ---成等比数列又4848,20812,S S S =-=-=∴128122012416,S S S -=-=+=16121314151616420S S a a a a -=+++=+=.故选:C .【变式3-1】5.(2022·全国·高二课时练习)设等差数列a n 的前n 项和为S n ,若S k =2,S 2k =8,则S 4k =______.【答案】32【分析】由等差数列a n 前n 项和的性质,可得S k ,S 2k −S k ,S 3k −S 2k ,S 4k −S 3k 成等差数列,进而即得.【详解】由等差数列a n 前n 项和的性质,可得S k ,S 2k −S k ,S 3k −S 2k ,S 4k −S 3k 成等差数列,∴2S 2k −S k =S k +S 3k −S 2k ,解得S 3k =18,∴2,6,10,S 4k −18成等差数列,可得2×10=6+S 4k −18,解得S 4k =32.故答案为:32.【变式3-1】6.(2022·黑龙江·哈尔滨市第六中学校高二期末)在等差数列a n 中,其前n 项和为S n ,若S 21:S 7=6:1,则S 28:S 14=()A .16:1B .6:1C .12:1D .10:3【答案】D【分析】根据等差数列前n 项和的性质求解即可【详解】由等差数列前n 项和的性质可得,S 7,S 14−S 7,S 21−S 14,S 28−S 21成等差数列,设S 7=s ,则S 21=6s ,即s ,S 14−s ,6s −S 14成等差数列,故2S 14−s =s +6s −S 14,解得S 14=3s ,故S 7,S 14−S 7,S 21−S 14,S 28−S 21即s ,2s ,3s ,4s ,故S 28−6s =4s ,S 28=10s ,故S 28:S 14=10:3故选:D【变式3-1】7.n S 是等差数列n a }的前n 项和,若3613S S =,则612S S 为()A .310B .13C .18D .19【答案】A【解析】设36,3S a S a ==,根据36396129,,,S S S S S S S ---是一个首项为a ,公差为a 的等差数列,各项分别为,2,3,4a a a a ,故6123323410S a S a a a a ==+++.故选:A .【变式3-1】8.(2022·全国·高二课时练习)已知一个等差数列a n 的前4项和为32,前8项和为56.(1)求S12、S16的值;(2)通过计算观察,寻找S4、S8、S12、S16之间的关系,你发现什么结论?(3)根据上述结论,请你归纳出对于等差数列而言的一般结论,并证明.【答案】(1)S12=72,S16=80(2)S4,S8−S4,S12−S8,S16−S12成等差数列.(3)已知a n是等差数列,前n项和为S n,则S t,S2t−S t,S3t−S2t,…,S kt−S k−1t,…k,t∈N∗成等差数列;证明见解析.【分析】(1)设{a n}公差为d,由等差数列前n项和公式列方程组求得a1和d,再计算出S12,S16;(2)由(1)求出S4,S8−S4,S12−S8,S16−S12后可得结论;(3)根据等差数列的定义证明.(1)设{a n}公差为d,则S4=4a1+6d=32S8=8a1+28d=56,解得a1=354d=−12,S12=12a1+66d=12×354+66×(−12)=72,S16=16a1+120d=16×354+120×(−12)=80;(2)由(1)得S4=32,S8−S4=24,S12−S8=16,S16−S12=8,所以S4,S8−S4,S12−S8,S16−S12成等差数列;(3)设{a n}公差为d,则S kt−S(k−1)t=(a1+a2+⋯+a kt)−(a1+a2+⋯+a(k−1)t)= a(k−1)t+1+a(k−1)t+2+⋯+a kt,同理S(k+1)t−S kt=a kt+1+a kt+2+⋯+a(k+1)t,所以(S(k+1)t−S kt)−(S kt−S(k−1)t)=(a kt+1−a(k−1)t+1)+(a kt+2−a(k−1)t+2)+⋯+(a(k+1)t−a kt)=td+td+⋯+td=t2d为常数,所以S t,S2t−S t,S3t−S2t,…,S kt−S k−1t,…k,t∈N∗成等差数列.◆类型2数列{a n}是等差数列⇔S n=an2+bn(a,b为常数)⇔为等差数列【例题3-2】(2023·全国·高三专题练习)已知S n是等差数列{a n}的前n项和,若a1=﹣2018,S20192019−S2*******=6,则S2020等于()A.﹣4040B.﹣2020C.2020D.4040【答案】C【分析】根据等差数列前n 项和的性质,结合等差数列的通项公式进行求解即可.【详解】∵S n 是等差数列{a n }的前n 项和,∴数列{S n n}是等差数列.∵a 1=﹣2018,S 20192019−S 20132013=6,∴数列{S n n}的公差d =66=1,首项为﹣2018,∴S 20202020=−2018+2019×1=1,∴S2020=2020.故选:C .【变式3-2】1.(2022·河北·河间一中高三开学考试)在等差数列a n 中,a 1=−2021,其前n 项和为S n ,若S 1010−S 88=2,则S 2021等于()A .2021B .−2021C .−2020D .2020【答案】Bd =1,结合等差数列通项公式可求得S 20212021,进而得到结果.【详解】∵数列a n 为等差数列,∴设其公差为d ,又S1010−S 88=2d =2,解得:d =1,又S11=a 1=−2021,∴S 20212021=−2021+2020=−1,∴S 2021=−2021.故选:B.【变式3-2】2.在等差数列{a n }中,a 1=-2018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2018的值等于()A .-2018B .-2016C .-2019D .-2017【答案】A【解析】由题意知,数列{S n n }为等差数列,其公差为1,∴S 20182018=S 11+(2018-1)×1=-2018+2017=-1.∴S 2018=-2018.【变式3-2】3.(2022·浙江·高二阶段练习)(多选)若等差数列a n 的公差为d ,前n 项和为S n ,记b n =S nn,则()A .数列b n 是公差为12d 的等差数列B .数列b n 是公差为2d 的等差数列C .数列a n +b n 是公差为32d 的等差数列D.数列a n−b n是公差为32d的等差数列【答案】AC【分析】利用等差数列的定义可判断各选项的正误.【详解】由已知可得b n=S n n=2n=a1+a n2,对于AB选项,b n+1−b n=a n+1+a12−a n+a12=a n+1−a n2=d2,所以,数列b n是公差为12d的等差数列,A对B错;对于C选项,a n+1+b n+1−a n+b n=a n+1−a n+b n+1−b n=d+d2=3d2,所以,数列a n+b n是公差为32d的等差数列,C对;对于D选项,a n+1−b n+1−a n−b n=a n+1−a n−b n+1−b n=d−d2=d2,所以,数列a n−b n是公差为12d的等差数列,D错.故选:AC.【变式3-2】4.(2021·全国·高二专题练习)等差数列{a n}的通项公式是a n=2n+1,其前n项和为S n10项的和.【答案】75【分析】先求得S n,然后求得S n n,进而求得数列10项的和.【详解】a n=2n+1,a1=3,S n=3+2n+12⋅n=n+2⋅n,所以S n n=n+2是首项为1+2=3,公差为1的等差数列,其前10项和为10×3+10×92×1=75.【变式3-2】5.(2022·全国·高三阶段练习(理))已知等差数列a n的前n项和为S n,S10=30,S20=70,则S110=___________.【答案】880【分析】设等差数列a n的公差为d为等差数列,且公差为d2,求出5d的值,可求得S110110的值,即可得解.【详解】设等差数列a n的公差为d,∵S n n=2n=a1+a n2,则S n+1n+1−S n n=a n+1+a12−a n+a12=d2,为等差数列,且公差为d2,所以,S2020−S1010=72−3=12=10×d2=5d,故S110110=S1010+100×d2=3+10×5d=3+10×12=8,所以,S110=880.故答案为:880.【变式3-2】6.(2021·安徽·高三阶段练习(理))在等差数列{a n}中,a1=1,其前n项和为S n,若S6−3S2=24,则S10=_____.【答案】100d,进而得S66−S22=4d=4,故S n n=n,进而得S n=n2,再计算S10即可.【详解】∵数列a n为等差数列,∴设其公差为d,又S66−S22=4d=4,解得:d=1,又∵S11=a1=1,∴S n n=n,即S n=n2∴S10=100故答案为:100.【变式3-2】7.(2021·全国·高二课时练习)设等差数列{a n}的前n项和为Sn,且Sm=-2,Sm+1=0,Sm+2=3,则m=________.【答案】4是等差数列,从而可得S m m+S m+2m+2=2S m+1m+1,然后将Sm=-2,Sm+1=0,Sm+2=3,代入可求出m的值【详解】因为Sn是等差数列{an}的前n所以S m m+S m+2m+2=2S m+1m+1,即−2m+3m+2=0,解得m=4.故答案为:4◆类型3奇偶数项的和为()A.6B.5C.4D.3【答案】D【解析】因为某等差数列共有10项,其奇数项之和为15,偶数项之和为30,因此数列的第一、三、五、七、九项的和,写出数列的第二、四、六、八、十项的和,都用首项和公差表示,两式相减,得到结果.5a1+20d=15,5a1+25d=30,d=3,选B【变式3-3】1.等差数列{a n}共有2n+1项,所有的奇数项之和为132,所有的偶数项之和为120,则n等于________.【答案】10【解析】因为等差数列共有2n+1项,所以S奇-S偶=a n+1=S2n+12n+1,即132-120=132+1202n+1,解得n=10.【变式3-3】2.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.【答案】117【解析】设等差数列{a n}的项数为2n+1,S奇=a1+a3+…+a2n+1=n+1a1+a2n+12=(n+1)a n+1,S偶=a2+a4+a6+…+a2n=n a2+a2n2=na n+1,所以S奇S偶=n+1n=4433,解得n=3,所以项数2n+1=7,S奇-S偶=a n+1,即a4=44-33=11为所求中间项.【变式3-3】3.(2022·全国·高三专题练习)已知等差数列a n共有2n+1项,其中奇数项之和为290,偶数项之和为261,则a n+1的值为().A.30B.29C.28D.27【答案】B【分析】由等差数列的求和公式与等差数列的性质求解即可【详解】奇数项共有n+1项,其和为a1+a2n+12⋅n+1=2a n+12⋅n+1=290,∴n+1a n+1=290.偶数项共有n项,其和为a2+a2n2⋅n=2a n+12⋅n=na n+1=261,∴a n+1=290−261=29.故选:B.【变式3-3】4.(2021·全国·高二专题练习)已知某等差数列a n的项数n为奇数,前三项与最后三项这六项之和为78,所有奇数项的和为65,则这个数列的项数n 为()A .9B .11C .13D .15【答案】A【分析】由等差数列的性质与求和公式求解即可【详解】由已知,a 1+a 2+a 3+a n +a n −1+a n −2=78,所以a 1+a n =26,所有奇数项的和为a 1+a 3+a 5+⋅⋅⋅+a n =a 1+a n22==65,于是可得n =9.故选:A.【变式3-3】5.(2022·全国·高二课时练习)已知等差数列a n 的前n 项和为377,项数n 为奇数,且前n 项中,奇数项的和与偶数项的和之比为7:6,则中间项为________.【答案】29【分析】由题意可得S 奇S偶=n +1n −1=76,求出n =13,再利用等差数列求和公式的性质可求得答案【详解】因为n 为奇数,所以S奇S 偶=n +1n −1=76,解得n =13.所以S 13=13a 7=377,所以a 7=29.故所求的中间项为29.故答案为:29题型4等差数列前n 项和S n 的最值【例题4-1】已知数列{a n }中,,744,2511-==+n n a a a 若其前n 项和为S n ,则S n 的最大值为()A.15B.750C.4765 D.2705【解析】由4a n+1=4a n -7,知数列{a n }为等差数列,公差d=-74,{a n }为单调递减数列,其通项公式为a n =25+(n-1)×(-74)=-74n +1074.当a n ≥0且a n+1<0时,S n 最大,得n≤1077且n>1077,所以n=15,即数列{a n }的前15项均为正值,第16项开始为负值,故S 15最大,S 15=15×25+15×142×(−74)=7654,故选C.【变式4-1】1.(2018·河南信阳·高二期中(文))数列{an}中,如果a n =49﹣2n ,则Sn 取最大值时,n 等于()A .23B .24C .25D .26【答案】B【分析】由题意,根据等差数列的求和公式,结合二次函数的性质,可得答案.【详解】由题意,可知数列a n 为等差数列,则S n ==48n −n 2=−n −242+242,则当n =24时,S n 取最大值.故选:B.【变式4-1】2.(2022·北京·高三开学考试)等差数列a n 的前n 项和为S n .已知a 1+2a 3=−1,S 4=0.则S n 的最小值为()A .−4B .−3C .−2D .−1【答案】A【分析】根据题意,列方程求得d =2,a 1=−3,再求解S n 的最小值即可.【详解】解:设等差数列a n 的公差为d ,因为等差数列a n 中,a 1+2a 3=−1,S 4=0,所以a 1+2a 3=3a 1+4d =−1S 4=0=4a 1+6d,解得d =2,a 1=−3,所以a 1=−3,a 2=−1,a 3=1,且n ≥3时a n >0,所以S n 的最小值为S 2=a 1+a 2=−4.故选:A【变式4-1】3.(2022·甘肃·永昌县第一高级中学)记S n 为等差数列{a n }的前n 项和,已知a 3=-7,S 4=-32.(1)求{a n }的公差d ;(2)求S n 的最小值.【答案】(1)d =2(2)-36【分析】(1)依题意得到方程组,解得即可;(2)由(1)求出a n 的通项公式及S n ,再根据二次函数的性质计算可得.(1)解:依题意得a 3=a 1+2d =-7S 4=4a 1+6d =-32,解得a 1=-11d =2,所以{a n }的公差d =2;(2)解:由(1)知a n =-11+2(n -1)=2n -13,所以S n =n (a 1+a n )2=n (-11+2n -13)2=n 2-12n =n -62-36,由二次函数性质得,当n =6时,(S n )min =-36.【变式4-1】4.已知数列{}n a 中1116,2(*)n n a a a n N +=-=-∈,则数列{}n a 的前n 项和n S 最大时,n 的值为()A .8B .7或8C .8或9D .9【答案】C 【解析】12n n a a +-=-,∴数列{}n a 是等差数列,并且公差为2-,()()21162172n n n S n n n -=⨯+⨯-=-+21728924n ⎛⎫=--+⎪⎝⎭,对称轴是178.52n ==,*n N ∈,所以当8n =或9时,n S 取得最大值.故选:C ◆类型2相邻两项异号【例题4-2】设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为()A .6B .7C .12D .13【答案】选C.【解析】因为在等差数列{a n }中a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.【变式4-2】1.(2022·浙江·高一期中)若等差数列满足a 7+a 8+a 9>0,a 7+a 10<0,则当a n 的前n 项和最大时,n 的值为________.【答案】8【分析】利用等差数列的性质可得3a8=a7+a8+a9>0,a8+a9=a7+a10<0,分析即得解【详解】∵等差数列{a n}满足a7+a8+a9>0,a7+a10<0∴3a8=a7+a8+a9>0,a8+ a9=a7+a10<0∴a8>0,a9<0∴d=a9−a8<0∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴当{a n}的前n项和最大时n的值为8故答案为:8【变式4-2】2.(2022·福建省福安市第一中学高二阶段练习)(多选)已知等差数列a n 中,a3+a9=0,公差d<0,则使其前n项和S n取得最大值的自然数n是()A.4B.5C.6D.7【答案】BC【分析】由等差数列a n中,a3+a9=0可求出a6=0,从而判断a5>0,a7<0,即可求得答案.【详解】∵在等差数列a n中,a3+a9=0,∴a6=0.又公差d<0,∴a5>0,a7<0,∴使其前n项和S n取得最大值的自然数n是5或6,故选:BC.【变式4-2】3.(2022·江苏·无锡市第一中学高三阶段练习)已知{a n}为等差数列,S n为{a n}的前n项和.若S10<0,a3+a7>0,则当S n取最大值时,n的值为()A.3B.4C.5D.6【答案】C【分析】根据等差数列的前n项和公式及等差数列下角标的性质即可求解.=5(a1+a10)=5(a5+a6)<0,所以a5+a6<0,又a3+a7=【详解】因为S10=10(a1+a10)22a5>0,所以a5>0,所以a6<0,则(S n)max=S5.故选:C.【变式4-2】4.(2022·全国·高三专题练习)设等差数列{a n}的前n项和为S n,且S4045>0,S4044<0,则S n取最小时,n=()A.4045B.4044C.2023D.2022【答案】D【分析】由已知,利用等差数列前n项和公式及其性质得a2023>0,a2022+a2023<0,进而得出结论.【详解】∵等差数列{a n }的前n 项和为S n ,且S 4045>0,S 4044<0,∴4045(a 1+a 4045)2=4045×2a 20232>0,4044(a 1+a 4044)2=2022(a 2022+a 2023)<0,∴a 2023>0,a 2022+a 2023<0,∴a 2023>0,公差d >0,则当n =2022时S n 最小.故选:D【变式4-2】5.等差数列{a n }的前n 项和为S n ,S 100>0,S 101<0,则满足a n a n +1<0的n =()A .50B .51C .100D .101【答案】A【解析】根据题意,等差数列{}n a 中,1000S >,1010S <,则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =;故选:A【变式4-2】6.已知等差数列{}n a 的前n 项和为n S ,若190S >,200S <,则11S a ,22S a ,…,2020S a 中最大的是()A .88S a B .99S a C .1100S a D .1111S a 【答案】C 【解析】由119191019()1902a a S a +==>,得到100a >;由12020101120()10()02a a S a a +==+<,得到110a <,∴等差数列{}n a 为递减数列,且1231011120a a a a a a >>>>>>>>,12100S S S <<<<,1011121920210S S S S S S >>>>>>>>,当10n ≤时,0,0n n S a >>,且10S 最大,10a 最小,所以110S a 最大;当1119n ≤≤时,0,0n n S a ><,此时0nnS a <;当20n =时,20200,0S a <<,且20100S S <<,20100a a >>,所以202010202010S S S a a a =<,综上所述,11S a ,22S a ,…,2020S a 中最大的是1100S a .故选:C .【变式4-2】7.在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是()A .11S a B .88S a C .55S a D .99S a 【答案】C 【解析】由于191109510569()10()9050222a a a a S a S a a ++====+>,()<,所以可得5600a a >,<.这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,而125125S S S a a a ⋯⋯<<<,>>>>0,,所以在912129...S S S a a a ,,,中最大的是55S a .故选C .◆类型3利用前n 项和的函数特征(二次函数)【例题4-3】在等差数列{a n }中,a 1>0,S 4=S 11,则S n 取最大值时n 的值是________.【答案】7或8【解析】设S n =An 2+Bn.由a 1>0,S 4=S 11可知,d <0,则d2=A <0.易知{S n }是y =Ax 2+Bx 图象上一系列孤立的点的纵坐标,y =Ax 2+Bx 的图象开口向下,对称轴是直线x =4+112=152.故S n 取最大值时n 的值是7或8.【变式4-3】1.在等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11.则当n 为多少时,S n 最大?【解析】方法一:设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.所以S n =d 2n 21=-a 113(n -7)2+4913a 1,因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.方法二:易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称.由方法一可知A =-a 113<0.故当n =7时,S n 最大.【变式4-3】2.在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值.【解析】由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2,法一公式法]S n =25n +nn -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169.法二邻项变号法]∵a 1=25>0n =25-2n -1≥0,n +1=25-2n ≤0,≤1312,≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.【变式4-3】3.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为()A .5B .6C .7D .8【答案】B【解析】由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d221的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.【变式4-3】4.(2022·全国·高二课时练习)已知等差数列a n 的前n 项和为S n ,若a 2+a 5=24,S 3=S 9,求S n 的最大值.【答案】72【分析】由题意可求出数列的首项和公差,即可求得数列的S n ,结合二次函数性质,求得答案.【详解】解法一(函数法):等差数列a n 中,由S 3=S 9,得a 4+a 5+⋅⋅⋅+a 9=0,则a 6+a 7=0.又a 2+a 5=24,设数列a n 的公差为d ,可得a 1+5d +a 1+6d =0a 1+d +a 1+4d =24,解得a 1=22d =−4,所以S n =−2n 2+24n =−2n −62+72,故当n =6时,S n 有最大值,为72.解法二(通项变号法):由S 3=S 9,得a 4+a 5+⋅⋅⋅+a 9=0,则a 6+a 7=0,又a 2+a 5=24,可得a 1+5d +a 1+6d =0a 1+d +a 1+4d =24,解得a 1=22>0d =−4<0,故结合a 6+a 7=0,可知数列a n 的前6项为正,从第7项开始为负,所以当n =6时,S n 有最大值,且最大值为S 6=3a 1+a 6=3a 2+a 5=72.【变式4-3】5.(2022·全国·高二课时练习)设a n 为等差数列,a 1=13,且前3项和与前11项和相等.问:前多少项和最大?并求前n 项和的最大值.【答案】前7项和最大,最大值为49【分析】先根据已知条件求出等差数列的公差,再表示出求和公式,配方后利用二次函数的性质可求得结果.【详解】设等差数列a n 的公差为d ,因为a 1=13,且前3项和与前11项和相等,所以3×13+3×22d =11×13+11×102d ,解得d =−2,所以前n 项和为S n =na 1+n (n −1)2d =13n +n (n −1)2×(−2)=−n 2+14n =−(n −7)2+49,所以当n =7时,前n 项和最大为49,◆类型4S n >0和S n <0问题【例题4-4】若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.【答案】405【解析】由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n}的前203项都是负数,那么2a203=a1+a405<0,所以S405<0,所以使前n项和S n<0的最大自然数n=405.【变式4-4】1.在等差数列{a n}中,a10<0,a11>0,且a11>|a10|,则满足S n<0的n的最大值为________.【答案】19【解析】因为a10<0,a11>0,且a11>|a10|,所以a11>-a10,a1+a20=a10+a11>0,所以S20=20a1+a202>0.又因为a10+a10<0,所以S19=19×a10+a102=19a10<0,故满足S n<0的n的最大值为19.【变式4-4】2.已知数列{a n}是等差数列,若a9+3a1<0,a10·a11<0,且数列{a n}的前n项和S n 有最大值,那么S n取得最小正值时n等于()A.1B.20C.10D.19【答案】D【解析】因为等差数列的前n项和有最大值,故可得d<0因为a9+3a1<0,故可得a9+a10+a11+a12<0,2(a10+a11)<0,a10+a11<0又因为a10·a11<0,故可得a10>0,a11<0又因为S n=19a n>0,S20=10(a10+a11)<0,故S n取得最小正值时n等于19.故选:D.【变式4-4】3.(2022·全国·高一专题练习)等差数列a n的前n项和为S n,公差为d,已知a1<0且2a1+7d=0.则使S n>0成立的最小正整数n的值为______.【答案】9【分析】先由2a1+7d=0求得d=−27a1,由S n>0求得n的取值范围,从而求得正确答案.【详解】因为2a1+7d=0,d=−27a1,所以S n=na1=−a17n2+87a1n,又a1<0,由S n=−a17n2+87a1n>0,可得n2−8n=n n−8>0,即n>8,所以使S n>0成立的最小正整数n的值为9.故答案为:9【变式4-4】4.(2022·广东韶关一模)设S n为等差数列{a n}的前n项和,a6+a7=1,则S12=________,若a7<0,则使得不等式S n<0成立的最小整数n=________.【答案】613【解析】根据{a n }为等差数列,且a 6+a 7=1,得S 12=6(a 6+a 7)=6;若a 7<0,则S 13=(a 1+a 13)×132=13a 7<0,又S 12>0,所以使不等式S n <0成立的最小整数n =13.题型5等差数列含有绝对值的求和【例题5】在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.【答案】60【解析】由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.【变式5-1】1.记S n 为等差数列{a n }的前n 项和,已知a 2=−3a 3,S 3=−9.(1)求{a n }的通项公式;(2)求|S n |的最小值,以及此时n 的值.【答案】(1)a n =4n −11.(2)|S n |的最小值及对应n 均为4.【分析】(1)设公差,由已知结合等差数列通项公式、前n 项和公式求基本量,写出通项公式即可.(2)由{a n }的前n 项和公式,根据|S n |的非负性质,易知最小值出现在S n 零点附近的自然数n 处,代入相应n 值计算即可.(1)设等差数列{a n }的公差为d ,由题意,{a 1+d =−3(a 1+2d )3a 1+3d =−9,,解得a 1=−7,d =4,∴a n =−7+4(n −1)=4n −11.(2)由(1)知,S n =n (−7+4n −11)2=n (2n −9),由f (x )=x (2x −9)的零点为0和92,∴|f (x )|的最小值是靠近零点处的函数值,又|S 1|=7,|S 4|=4,|S 5|=5,∴当n =4时,|S n |取得最小值为4.【变式5-1】2.(2022·全国·高二课时练习)记S n 是等差数列{a n }的前n 项和,若S 5=−35,S 7=−21.(1)求{a n}的通项公式,并求S n的最小值;(2)设b n=a n,求数列{b n}的前n项和T n.【答案】(1)a n=4n−19,-36;(2)T n=17n−2n2,n≤4,2n2−17n+72,n≥5.【分析】(1)求出a n=4n−19,再求出n=1,2,3,4时a n<0,n≥5时,a n>0,即得解;(2)对n分n≤4和n≥5两种情况讨论得解.(1)解:设{a n}的公差为d,则5a1+5×42d=−35,7a1+7×62d=−21,∴a1=−15,d=4,∴a n=−15+4(n−1)=4n−19.由a n=4n−19≥0得,n≥194,∴n=1,2,3,4时a n<0,n≥5时,a n>0,∴S n的最小值为S4=4a1+4×32d=−36.(2)解:由(1)知,当n≤4时,b n=|a n|=−a n;n≥5时,b n=|a n|=a n,S n=na1+n(n−1)2d=2n2−17n,当n≤4时,T n=−S n=17n−2n2.当n≥5时,T n=S n−2S4=2n2−17n−2×(−36)=2n2−17n+72,∴T n= 17n−2n2,n≤4,2n2−17n+72,n≥5.【变式5-1】3.(2021·北京·海淀教师进修学校附属实验学校高二期末)在①a1=−8,a2=−7,a n+1=ka n+1n∈N∗,k∈R②若{a n}为等差数列,且a3=−6,a7=−2③设数列{a n}的前n项和为S n,且S n=12n2−∈N∗.这三个条件中任选一个,补充在下面问题中,并作答(1)求数列{a n}的通项公式(2)求数列{a n}的前n项和为S n的最小值及n的值(3)记T n=a1+a2+a3+...+a n,求T20【答案】(1)a n=n−9(2)当n=8或n=9时,S n取得最小值为−36.(3)102【分析】(1)选①结合等差数列的定义求得a n;选②通过求a1,d来求得a n;选③利用a n= S1,n=1S n−S n−1,n≥2求得a n.(2)由a n≤0求得S n的最小值以及对应n的值.(3)结合等差数列前n项和公式求得T20.。
等差数列求和与性质
合作探究:
计算: 1+ 2+ 3 +… + 99 + 100+101
上页
下页
创设情景
平行四 三角形 边形
若V形架的的最下面一层放一支铅笔,往上每 一层都比它下面一层 多放一支,最上面 一层有很多支铅笔, 老师说有n支。问: 这个V形架上共放 着多少支铅笔? 问题就是: 1+ 2+ 3 +… + (n-1) + n 若用首尾配对相加法,需要分类讨论.
倒序相加法
计算: 1
分析:这 其实是求 一个具体 的等差数 列前n项 和.
2
3 (n 1) n ①
2 +1 ②
n + (n-1) + (n-2) +…+
2 1 2 3 (n 1) n n (n 1)
n (n 1) 1 2 3 (n 1) n 2
10 10 1 S10 10 500 50 7250 万元 2
答
变式练习
一个屋顶的某一斜面成等腰梯形,最 上面一层铺瓦片21块,往下每一层多铺1 块,斜面上铺了19层,共铺瓦片多少块?
解:由题意,该屋顶斜面每层所铺的瓦 片数构成等差数列{an},且a1=21,d=1, n=19. 于是,屋顶斜面共铺瓦片:
n(n 1) Sn na1 d 2
2.等差数列前n项和五个元素,只要 知道其中三个元素,结合通项公式就可求出另 两个元素.
上页 下页
又 a1 an a2 a n1 a3 an2 an a1
n(a1 an ) 2Sn n(a1 an ) 即S n 2
求和公式
等差数列的 前n项和等 等差数列的前n项和的公式: 于首末两项 的和与项数 n(a1 an ) 乘积的一半。
等差数列前N项和公式及应用
问题2:
学校为美化校园,决定在道路旁摆放盆景.从校门口 取出花盆到距校门1米处开始摆放,每隔1米摆放一盆,学 生小王每次拿两盆,若要完成摆放30盆的任务,最后返回 校门处,问小王走过的总路程是多少?
4m
8m
12m
60m
化归: 4+8+12+…+60=?
4m 8m
56m
60m
4 + 8 +12 +…+52+56+60=?S15 60+56+52 +…+12+ 8 +4 =?S15
(4 60) 15 2S15 S15 480.
答:小王走过的总路程是 480 米.
1 2 3 98 99 100 ?S100
100 99 98 3 2 1 ?S100
S100
(1 100) 00 2
5050
.
如图,工地有上一堆圆木,从上到下每 层的数目分别为1,2,3,……,10。 问共有多少根圆木?请用简便的方法计 算。
2.3.1 等差数列的前n项和(1)
一、温故知新
等差数列的通项公式:
an a1 (n 1)d (d为常数)
等差数列的性质: 对任意的m, n, p, q N , 且m n p q
则有: am an ap aq
二、新课引入
泰姬陵坐落于印度 距首都新德里200多 公里外的北方邦的阿 格拉市,是十七世纪 莫卧儿帝国皇帝沙杰 罕为纪念其爱妃所建, 她宏伟壮观,纯白大 理石砌建而成的主体 建筑令人心醉神迷, 陵寝以宝石镶嵌,图 案细致,绚丽夺目、美 丽无比,令人叫绝.成 为世界八大奇迹之一.
Sn
n(a1 2
等差数列的前n项和公式的性质
例 3. 项数为奇数的等差数列{an },奇数项之和为 44,偶数项之和为
33,求这个数列的中间项及项数.
解:设等差数列{an}共有(2n+1)项,则奇数项有(n+1)项,偶数项
有 n 项,中间项是第(n+1)项,即 an+1,
1
S奇 2a1+a2n+1n+1 n+1an+1 n+1 44 4
解法1: 由S3=S11, 得
1
1
3 13 3 2 d 1113 1110 d
2
2
∴ d=-2
1
Sn 13n n(n 1) (2)
2
n2 14n
( n 7)2 49
故当n=7时, Sn取最大值49.
解法2: 由S3=S11, 得d=-2<0
=
5+2
,则
+3
10n 3
67
7
=_______;
=_______;
2n 2
18
8
课堂小结
等差数列的前n项和公式的性质
性质1:数列{an}是等差数列⟺Sn=An2+Bn (A,B为常数)
Sn
性质2: 若数列{an}是公差为d的等差数列, 则数列 也
d
n
是等差数列, 且公差为 2 .
当m=n时,公式变化?
an S 2 n 1
bn T2 n1
例 4.已知{an},{bn}均为等差数列,其前 n 项和分别为 Sn,
5
a5
Sn 2n+2
Tn,且T =
,则b =________.
3
n
5
n+3
变式1. 若
等差数列及其前n项和(解析版)
等差数列及其前n 项和一、学习目标1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 二、知识讲解知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = 通项公式的推广:a n = (2)等差数列的前n 项和公式 S n =知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 三、例题辨析考点一 等差数列基本量的运算【典例1】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =-B .310n a n =-C .228n S n n=- D .2122n S n n =-【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。
等差数列前N项和的公式
Sn
d d 则 S =An2+Bn n 令 A , B a1 2 2
n (a1 )n 2 2
2
当d≠0时,Sn是常数项为零的二次函数
㈡【说明】
①推导等差数列的前n项和公式的 方法叫 倒序相加法 ;
②等差数列的前n项和公式类同 于 梯形的面积公式 ; 2+bn S = an ③{an}为等差数列 n ,这 是一个关于 n 的没有 常数项 的 “ 二次函数 ” ( 注意 a 还可以是 0)
3.等差数列{an}前n项和的性质的应用 例1.设等差数列{an}的前n项和为Sn,若 S3=9,S6=36,则a7+a8+a9=( B)
A.63
B.45
C.36
D.27
例2:已知等差数列{an }中,共有10项,S偶 =15,S奇 =12.5, 求a1与d。
解: 该等差数列的项数为10项, 1 S偶 S奇 =n d即15-12.5=5 d,解得d 2 又 S偶 S奇 1 10 9 2 S10即15 12.5 10a1 2
例 题 讲 解 1 2 例3.已知数列{an}的前n项和为Sn n n, 求这个数列 2 的通项公式,这个数列是等差数列吗?如果是,它的 首项与公差分别是什么?
解:Sn a1 a2 an1 an
2
1 1 1 2 a n s n s n1 n n [( n 1) (n 1)] 2n 当n >1时: 2 2 2 1 3 ① 2 当n=1时:a1 s1 1 1 也满足①式. 2 2 1 数列{an }的通项公式为an 2n . 3 2 由此可知:数列{an}是以 为首项,公差为2的等差数列. 2
等差数列的前n项和-概念解析
数学教育
等差数列的前n项和公式是数学 教育中的重要内容,是中学数学
课程中的必修知识点。
在物理领域的应用
物理学中的周期性现象
等差数列的前n项和公式可以用于描述物理学中的周期性现象,例如声音的振 动、波动等。
物理学中的序列问题
等差数列的前n项和公式可以用于解决物理学中的序列问题,例如在研究粒子运 动、流体动力学等领域中,可以通过等差数列的前n项和公式来描述一系列物理 量的变化规律。
解答
由于该等差数列是偶数项,所以它的前10项和等于中间两 项之和(第5项和第6项)乘以10除以2,即$(3 - 3) times 10 / 2 = 0$。
习题三:等差数列前n项和的实际应用问题
01 总结词
02 详细描述
03 应用1
04 应用2
05 应用3
掌握等差数列前n项和在实 际问题中的应用
等差数列前n项和在实际问 题中有着广泛的应用,如 计算存款、贷款、工资等 问题。
总结词
详细描述
公式
示例
解答
理解等差数列前n项和的 概念
等差数列的前n项和是指 从第一项到第n项的所有 项的和,可以通过公式 或递推关系式来求解。
$S_n = frac{n}{2} times (2a_1 + (n-1)d)$,其中 $a_1$是首项,$d$是公 差,$n$是项数。
求等差数列$1, 3, 5, 7, ldots$的前5项和。
等差数列前n项和的公式推导
等差数列前n项和的公式可以通过数学归 纳法进行推导。
化简得:$S_{k+1} = frac{(k+1)}{2}(2a_1 + kd)$,所以当n=k+1时,公式也成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列的前n 项和·例题解析一、等差数列前n 项和公式推导:(1) Sn=a1+a2+......an-1+an 也可写成Sn=an+an-1+......a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1) =n(a1+an)所以Sn=[n (a1+an )]/2 (公式一)(2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得Sn=na1+ [n(n+1)d]/2(公式二)二、对于等差数列前n 项和公式的应用【例1】 等差数列前10项的和为140,其中,项数为 奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3说明 本题上边给出的解法是先求出基本元素a 1、d ,再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而直接去求,所列方程组化简后可得++相减即得+,a2a9d=28a4d=25a5d=3 6111⎧⎨⎩即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3若a m=b N,则有3n-1=5N-3即=+ n N 213 () N-若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以N=1,4,7,…,40 n=1,6,11,…,66∴两数列相同项的和为2+17+32+…+197=1393【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3 ∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d①前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数.【例5】 在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .解 S (m n)a (m n)(m n 1)d (m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212且S m =S n ,m ≠n∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d (m n)a (m n)(m n 1)=011112122d 即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212∴S m+n =0【例6】 已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .分析 n S =na d a n 11等差数列前项和+,含有两个未知数,n n ()-12d ,已知S 3和S 6的值,解方程组可得a 1与d ,再对数列的前若干项的正负性进行判断,则可求出T n 来.解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12 解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例7】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d=5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例8】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,= 【例9】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于 [ ]A 1B C D ....23199299200301分析 n S =n(a +a )n n 1n 该题是将与发生联系,可用等差数列的前项和公式把前项和的值与项的值进行联系.a b S T n n n n 1001002312=+解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b n n n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++ 解法二 利用数列{a n }为等差数列的充要条件:S n =an 2+bn∵S T n n n n =+231可设S n =2n 2k ,T n =n(3n +1)k∴∴××a b S S T T n k n k n n k n n kn n n n a b n n n n n n =--=--+---+=--=--=--=--1122100100221311311426221312100131001199299()()()[()] 说明 该解法涉及数列{a n }为等差数列的充要条件S n =an 2+bn ,由已知,将和写成什么?若写成,+,S T n n n n =+231S T S =2nk T =(3n 1)k n n n n k 是常数,就不对了.【例10】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S=(a+a)n2n1n·×=-=-+=--+()()633232632 322123218222n nn n n∵n∈N,∴当n=10或n=11时,S n取最大值165.【例11】求证:前n项和为4n2+3n的数列是等差数列.证设这个数列的第n项为a n,前n项和为S n.当n≥2时,a n=S n-S n-1∴a n=(4n2+3n)-[4(n-1)2+3(n-1)]=8n-1当n=1时,a1=S1=4+3=7由以上两种情况可知,对所有的自然数n,都有a n=8n -1又a n+1-a n=[8(n+1)-1]-(8n-1)=8∴这个数列是首项为7,公差为8的等差数列.说明这里使用了“a n=S n-S n-1”这一关系.使用这一关系时,要注意,它只在n≥2时成立.因为当n=1时,S n-1=S0,而S0是没有定义的.所以,解题时,要像上边解答一样,补上n=1时的情况.【例12】证明:数列{a n}的前n项之和S n=an2+bn(a、b为常数)是这个数列成为等差数列的充分必要条件.证⇒由S n =an 2+bn ,得当n ≥2时,a n =S n -S n-1=an 2+bn -a(n -1)2-b(n -1)=2na +b -aa 1=S 1=a +b∴对于任何n ∈N ,a n =2na +b -a且a n -a n-1=2na +(b -a)-2(n -1)a -b +a=2a(常数)∴{a n }是等差数列.⇐若{a n }是等差数列,则S na d =d n(a d)=d 2n 11=+··+-n n n n n n a d ()()()-++-1212221 若令,则-,即d d 22=a a =b 1 S n =an 2+bn综上所述,S n =an 2+bn 是{a n }成等差数列的充要条件. 说明 由本题的结果,进而可以得到下面的结论:前n 项和为S n =an 2+bn +c 的数列是等差数列的充分必要条件是c =0.事实上,设数列为{u n },则:充分性=+是等差数列.必要性是等差数列=+=. c =0S an b {u } {u }S an bn c 0n 2n n n n 2⇒⇒⇒⇒【例13】 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d按题意,则有S na d m S ma d n (m n)a d =n m n 1m 11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212即+-∴··a d =11m n S m n a m n m n d m n a m n d m n ++=++++-=+++-+12121211()()()()() =-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)Am Bm n An Bn m 22+=①+=②⎧⎨⎪⎩⎪①-②,得A(m 2-n 2)+B(m -n)=n -m∵m ≠n ∴ A(m +n)+B=-1故A(m +n)2+B(m +n)=-(m +n)即S m+n =-(m +n)说明 a 1,d 是等差数列的基本元素,通常是先求出基本元素,再解决其它问题,但本题关键在于求出了+=-,这种设而不a d 11m n +-12解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设S x =Ax 2+Bx .(x ∈N)【例14】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例15】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n最大,最大值S13=169解法二因为a1=25>0,d=-2<0,所以数列{a n}是递减等差数列,若使前项和最大,只需解≥≤,可解出.na0a0n nn+1⎧⎨⎩∵a1=25,S9=S17∴×+××+×,解得-9252d=1725d d=29817162∴a n=25+(n-1)(-2)=-2n+27∴-+≥-++≥≤≥∴2n2702(n1)270n13.5n12.5n=13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n项和公式可求得S13=169.解法三利用S9=S17寻找相邻项的关系.由题意S9=S17得a10+a11+a12+…+a17=0而a10+a17=a11+a16=a12+a15=a13+a14∴a13+a14=0,a13=-a14∴a13≥0,a14≤0∴S13=169最大.解法四根据等差数列前n项和的函数图像,确定取最大值时的n.∵{a n}是等差数列∴可设S n=An2+Bnv1.0 可编辑可修改二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。