静电场(5) 泊松方程和拉普拉斯方程

合集下载

第3章 边值问题及静电场的求解

第3章 边值问题及静电场的求解

r r

Q Q
const.
若镜像位置满足
OQ ~ P OPQ

r r

R0 a
const .
由三角形相似,
b R0 R0 a

2 R0 b a Q R0 Q a
导体球外部空间的电势为
Q R 0Q 4 0 r ar 1 4 0 1 Q R a 2 Ra cos
sin d
(sin
sin
0
该方程的解有两种情况

1 d
2
d
2
m
2
的解
0,
当电位与方位角无关时,
2 即: m 0
( ) A

1 d R dr
(r
2
2
dR dr
) n ( n 1) 的解
1
(1) n 0 时, R ( r ) A0 B 0 r
n
|S f 2 ( S )
称为第二类边界条件或“诺伊曼”条件。 这类问题称为第 二类边值问题。 (3)已知场域边界面S上各点电位和电位法向导数的线性 组合值, 即给定
( N ) |S f 3 ( S )
称为第三类边界条件或“混合边界条件”。 这类问题称为 第三类边值问题。
P
Q Q 4 0 r r 1
考察空间:导体球外部空间。 镜像电荷:用位于对称轴上的等效代
替导体球面上的感应电荷。
球面上任意点P 的电势
Q Q ( P) 0 4 0 r r 1

r r

Q Q
镜像电荷不应随P 变化,

静电场泊松方程

静电场泊松方程

静电场泊松方程介绍静电场泊松方程是描述静电场分布的重要方程,它通过求解泊松方程来确定电势分布。

静电场泊松方程是物理学与工程学中的一项基础知识,它在电磁学、电子学、电容器设计等领域起着重要作用。

在本文中,我们将对静电场泊松方程进行全面、详细、完整且深入地探讨。

首先,我们将介绍静电场的基本概念,然后详细讨论泊松方程的定义和推导过程,最后讨论静电场泊松方程在实际应用中的重要性和应用案例。

静电场的基本概念静电场是指在没有电流流动的情况下,由电荷所产生的电场。

在静电场中,电荷的分布决定了电场的形状和强度。

根据电荷的正负性质,电场可以分为正电场和负电场。

在静电场中,电荷与电场之间存在以下关系:1.电荷受到电场力的作用,力的大小和方向由电场和电荷的性质决定。

正电荷受到正电场的斥力,负电荷受到正电场的引力。

2.电场的强度与电荷的比例成正比,与电荷与距离的平方成反比。

电场强度可表示为:E=kq,其中E为电场强度,k为库仑常数,q为电荷量,r为距离。

r23.电场是矢量量,具有方向和大小。

泊松方程的定义与推导泊松方程是描述电势分布的重要方程,它与电场之间存在以下关系:1.电场具有旋度为零的特点,也即电场是一个保守场。

电场可以表示为负梯度电位的形式:E=−∇V,其中E为电场,V为电势。

2.电场的散度等于电荷密度除以介电常数:∇⋅E=ρ,其中ρ为电荷密度,ε为ε介电常数。

基于以上两个关系,我们可以推导出泊松方程:∇⋅(−∇V)=−∇2V=ρε其中,∇2为拉普拉斯算子。

根据泊松方程,我们可以通过求解电荷分布和边界条件来确定静电场中的电势分布。

泊松方程的解与应用案例求解泊松方程是一个重要的数学问题,在实际应用中有广泛的应用。

以下是一些泊松方程的解与应用案例:1. 平行板电容器在平行板电容器中,两块平行金属板之间存在恒定电场。

通过求解泊松方程,可以确定电势分布和电场强度分布。

这对于电容器的设计和制造非常重要。

2. 圆柱电容器圆柱电容器是一种常见的电容器结构,它在电子设备中得到广泛应用。

高数泊松方程

高数泊松方程

高数泊松方程
泊松方程(Poisson's equation)是一个在物理学和数学中常见的偏微分方程,它描述了静电场、引力场或热传导等物理现象。

在二维或三维空间中,泊松方程可以表示为:
Δf = ρ
其中,Δ 是拉普拉斯算子(Laplacian operator),f 是某个标量场(如电势、温度等),ρ 是该场的源(如电荷密度、热源等)。

在高等数学中,泊松方程通常用于求解具有特定边界条件的偏微分方程。

例如,在静电学中,给定电荷分布ρ,我们可以使用泊松方程来求解电势 f 的分布。

为了求解泊松方程,我们可以使用分离变量法、有限差分法、有限元法或谱方法等数值方法。

这些方法可以帮助我们找到满足方程和边界条件的近似解。

需要注意的是,泊松方程是一个椭圆型偏微分方程,这意味着它的解在整个定义域内都是光滑的。

此外,泊松方程在物理学和工程学中有着广泛的应用,如电磁学、流体力学、热力学等领域。

静电场(5) 泊松方程和拉普拉斯方程

静电场(5) 泊松方程和拉普拉斯方程

0
Dd S
S
q
微分形式:
E
0
或(E )
7
介质方程:
D
D 0rE E
在各向同性、均匀、线性的媒质中, 由静电场的基本方程可以得出结论: 静电场是一个有通量源(静止电荷)
而没有旋涡源的矢量场。
8
根据矢量场理论,要确定一个矢量场, 必须同时给顶它的散度和旋度。 所以静电场的基本方程中包含了:
E ()
(在均匀、线性、各向同性的电介质中,为常数。)
2
(电位的泊松方程)
12
2、拉普拉斯方程
对于场中没有电荷分布(=0)的区域内:
2
(电位的泊松方程)
0 2
(电位的拉普拉斯方程)
拉普拉斯方程是泊松方程的特例。
13
2是拉普拉斯算符:二阶微分算符
直角坐标系:
r
1
r2 sin
sin
1
r 2 sin 2
2 2
15
两类问题 可以用泊松方程或拉普拉斯方程解决
1、已知:有限区域内的电荷分布, 求:电位和场强
(场域内电介质是均匀、线性和各向同性。)
求电位:
(x, y, z) 1 (x', y', z') dV '
4 V '
r
求场强:
E
1
r 2 sin
sin
1
r 2 sin 2
2 2
1 r2
r
r 2
r
0
r 2 0
18
r r
r 2 0
r r
一次积分
r2
r
C1
C1 r r 2

物理化学泊松方程

物理化学泊松方程

物理化学泊松方程泊松方程是物理化学中一种重要的偏微分方程,描述了电势场中的电荷分布和电势之间的关系。

它是电场的基本方程之一,也是研究电子结构、电解质溶液等领域的基础。

我们来了解一下泊松方程的基本形式。

在三维空间中,泊松方程可以表示为:▽²Φ = -ρ/ε₀其中,▽²Φ表示拉普拉斯算子作用于电势Φ得到的结果,ρ是电荷密度,ε₀是真空介电常数。

这个方程建立了电势分布和电荷分布之间的关系,通过求解该方程,我们可以得到电势场的分布情况。

泊松方程的物理意义可以从两个方面理解。

首先,它描述了电势场中的电荷分布情况。

当电荷密度ρ为零时,泊松方程退化为拉普拉斯方程,描述了无电荷的电势场分布情况。

其次,泊松方程还可以用于求解电势场中的电荷分布。

通过已知的电势分布,可以反推出电荷分布情况,这在研究电子结构、电解质溶液等问题时非常有用。

泊松方程在物理化学中的应用非常广泛。

例如,在固体物理中,泊松方程被用来研究电子在晶格中的运动和能带结构;在电解质溶液中,泊松方程被用来研究电位分布和电解质浓度之间的关系。

此外,泊松方程还可以应用于电容器、半导体、生物电势等领域。

为了求解泊松方程,我们需要给定边界条件。

边界条件可以是电势值的固定值,也可以是电势梯度的固定值。

根据边界条件的不同,可以得到不同形式的泊松方程解。

对于一些复杂的情况,如非线性泊松方程、含时泊松方程等,求解起来可能更加困难,需要借助数值计算方法或近似方法。

泊松方程是物理化学中一种重要的方程,描述了电势场中的电荷分布和电势之间的关系。

通过求解泊松方程,可以得到电势场的分布情况,从而揭示了电势和电荷分布之间的联系。

泊松方程在固体物理、电解质溶液等领域有广泛的应用,对于理解和解决实际问题具有重要意义。

泊松方程和拉普拉斯方程

泊松方程和拉普拉斯方程

泊松方程和拉‎普拉斯方程势函数的一种‎二阶偏微分方‎程。

广泛应用于电‎学、磁学、力学、热学等多种热‎场的研究与计‎算。

简史1777年,拉格朗日研究‎万有引力作用‎下的物体运动‎时指出:在引力体系中‎,每一质点,并且把这些商‎加在一起,其总和即P点‎的质‎量m k除以它‎们到任意观察‎点P的距离r‎k的势函数,势函数对空间‎坐标的偏导数‎正比于在 P点的质点所‎受总引力的相‎应分力。

1782年,P.S.M.拉普拉斯证明‎:引力场的势函‎数满足偏微分‎方程:,叫做势方程,后来通称拉普‎拉斯方程。

1813年,S.-D.泊松撰文指出‎,如果观察点P‎在充满引力物‎质的区域内部‎,则拉普拉斯方‎程应修改为,叫做泊松方程‎,式中ρ为引力‎物质的密度。

文中要求重视‎势函数 V在电学理论‎中的应用,并指出导体表‎面为等热面。

静电场的泊松‎方程和拉普拉‎斯方程若空间分区充‎满各向同性、线性、均匀的媒质,则从静电场强‎与电势梯度的‎关系E=-墷V和高斯定‎理微分式,即可导出静电‎场的泊松方程‎:,式中ρ为自由‎电荷密度,纯数εr为各分区‎媒质的相对介‎电常数,真空介电常数‎ε=8.854o×10-12法/米。

在没有自由电‎荷的区域里,ρ=0,泊松方程就简‎化为拉普拉斯‎方程。

在各分区的公‎共界面上,V满足边值关‎系,,式中i,j指分界面两‎边的不同分区‎,ζ为界面上的自‎由电荷密度,n表示边界面‎上的内法线方‎向。

边界条件和解‎的唯一性为了在给定区‎域内确定满足‎泊松方程以及‎边值关系的解‎,还需给定求解‎区域边界上的‎物理情况,此情况叫做边‎界条件。

有两类基本的‎边界条件:给定边界面上‎各点的电势,叫做狄利克雷‎边界条件;给定边界面上‎各点的自由电‎荷,叫做诺埃曼边‎界条件。

边界几何形状‎较简单区域的‎静电场可求得‎解析解,许多情形下它‎们是无穷级数‎,稍复杂的须用‎计算机求数值‎解,或用图解法作‎等势面或力线‎的场图。

静电场的Laplace方程和Poisson方程(精)

静电场的Laplace方程和Poisson方程(精)

边界条件当然不限于以上三类,还可以有各式各样的边界 条件,甚至是非线性边界条件。
除了初始条件和边界条件,有一些物理问题还需要附加一 些其他才能确定其解。如教材中所介绍的衔接条件和自然边界 条件等。
(P159)
(定解问题所需边界条件的数目?)
三类定解问题
定解问题有微分方程(泛定方程)和定解条件组成. 定解条件主要是由初始条件和边界条件组成.根据定解 条件的情况,可以把定解问题分成三类:
二阶线性偏微分方程
把函数 u 的所有自变量(包含空间坐标和时间)依次记作
x1 , x2 ,
, xn ,二阶偏微分方程如果可以写成如下形式:
a u
i, j
n
ij xi x jFra bibliotek biuxi cu f 0
i
n
如果 aij , bi , c, 是线性的.如果 齐次的.
f
只是 1
x , x2 ,
, xn 的函数,则该方程
f 0 ,则称该方程是齐次的;否则称为非
(1)方程的阶 偏微分方程中未知函数偏导数的最高阶数称 为方程的阶. (2)方程的次数 偏微分方程中最高阶偏导数的幂次数称为偏 微分方程的次数. (3)线性方程 一个偏微分方程对未知函数和未知函数的所有 (组合)偏导数的幂次数都是一次的,就称为线性方程,高 于一次以上的方程称为非线性方程. (4)准线性方程 一个偏微分方程,如果仅对方程中所有最 高阶偏导数是线性的,则称方程为准线性方程. (5)自由项 在偏微分方程中,不含有未知函数及其偏导数的 项称为自由项.
t ,
u x x, t | x l t k
1
又如杆的纵振动问题,若一端受有外力,且单位面积上所受的力 为

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

泊松方程

泊松方程

泊松方程是在数学中的静电学,机械工程学和理论物理学中常见的偏微分方程。

它以法国数学家,几何学家和物理学家Poisson的名字命名。

泊松首先获得没有重力源的泊松方程△Φ= 0(即拉普拉斯方程);考虑重力场时,△Φ= f(f为重力场的质量分布)。

后来,它扩展到了电场,磁场和热场分布。

该方程通常用格林函数法求解,但也可以用分离变量法和特征线法求解。

泊松方程为△φ=f
在这里△代表的是拉普拉斯算符(也就是哈密顿算符▽的平方),而f 和φ 可以是在流形上的实数或复数值的方程。

当流形属于欧几里得空间,而拉普拉斯算子通常表示为,
因此泊松方程通常写成
在三维直角坐标系,可以写成
如果没有f,这个方程就会变成拉普拉斯方程△φ=0.
泊松方程可以用格林函数来求解;如何利用格林函数来解泊松方程可以参考screened Poisson equation[1] 。

现在有很多种数值解。

像是松弛法,不断回圈的代数法,就是一个例子。

数学上,泊松方程属于椭圆型方程(不含时线性方程)。

折叠编辑本段静电场的泊松方程
泊松方程是描述静电势函数V与其源(电荷)之间的关系的微分方程。

▽^2V=-ρ/ε
其中,ρ为体电荷密度(ρ=▽·D,D为电位移矢量。

),ε为介电常
数绝对值εr*εo。

电位的泊松方程和衔接条件

电位的泊松方程和衔接条件
电位的泊松方程 和衔接条件
回顾
体电荷分布 面电荷分布 线电荷分布
(x, y, z) 1 (x, y, z) dV C
4π0 V
R
(x, y, z) 1 (x, y, z) dS C
4π0 S
R
(x, y, z) 1 (x, y, z) dL C
4π0 L
R
E
E
本节的研究目的
在没有电荷分布的场域中, 0
2 0
电位满足拉普拉斯方程
二、电位的衔接条件
因为,Dn En
E en
en
n

D2n
D1n
,得
1
1
n
2
2
n
1 2
1
1
n
2
2
n
分界面两侧电位的衔接条件
题7. 如图所示平板空气电容器(板的尺度大于板间距离)中,
有体密度为 的电荷均匀分布,已知两板间电压值为 U0 。
电位满足的微分方程 电位在分界面上的衔接条件
本节的研究内容
一、电位的泊松方程和拉普拉斯方程 二、电位的衔接条件
一、电位的泊松方程和拉普拉斯方程
根据静电场基本方程的微分形式和物性方程,可得
D ( E) E E
均匀介质中 0
E
() 2
2
电位满足泊松方程
3 3 n34
4
4 n34
34
区域内边界
,电位函数为
2
2
2x
0
x2 Bx C
2 0
根据题意可知
x x
0 d
0
U0
x 0 x d
d
O U0
x
0C

电磁场与电磁波第四章静态场分析

电磁场与电磁波第四章静态场分析

|yb U0
U0n 1Dnsin(na x)sh(na b)
Dn
4U0
(2n 1) sh
nb
a
(x,y) n 1(2n1 4 )U s 0hnbsin(n a x)sh(n a y)
➢镜像法只使用于一些比较特殊的边界; ➢镜像法的理论依据是唯一性定理;
➢镜像电荷的选取原则: A、镜像电荷必须位于待求区域之外; B、镜像电荷不能改变原边界条件。
1.点电荷对无限大接地导体平面的镜像
例:设无限大接地导体平面上方d处 r1 p 有一点电荷q,求上半空间电位。
r2
镜像电荷有多大?放在什么地方?
|x0
0
|xa 0
(x ,y)|x 0f(0 )g (y) 0
(x ,y)|x af(a )g (y) 0
g(y) 0
g(y) 0
f (0) 0
f (a) 0
A2 0
A2 0
A1sin(kxa)0
kx
n,(n1,2...)
a
注意:不能得到A1=0
双曲函数
n
f (x)A1sin( a x)
应用对偶原理,可由一类问题的解,经过对偶 量的替换,得到另一类问题的解;或者将单一 问题按对偶原理分为两部分,这样工作量可以 减半。
应用对偶原理,不仅要求方程具有对偶性,而 且要求边界条件也具有对偶性。
在有源的情况下,对偶性依然存在,
2.叠加原理
若 和 1 分 别2 满足拉普拉斯方程,则 和 1 的线 2 性组合:
v
E
D v E vV
()V 2 V ——泊松方程
无源区域
0
2 0
——拉普拉斯方程
2. 恒定电场的拉普拉斯方程

静电场微分方程及唯一性定理

静电场微分方程及唯一性定理

2 0
泊松方程和拉普拉斯方程统称为微分方程。 二、泊松方程与拉普拉斯方程适用条件 只适用于各向同性、线性的均匀媒质。(?)
§2.8.2
唯一性定理(Uniquness Theorem)
一、定理内容
在静电场中,满足给定边界条件的微分方程(泊松方程或
拉普拉斯方程)的解是唯一的,称之为静电场的唯一性定理。
2 2 2 式中: ( ex ey ez ) ( ex ey ez ) 2 2 2 2 x y z x y z x y z
2
泊松方程(针对场源点)
拉普拉斯方程(针对场点,ρ=0)
《电磁场理论》
主讲教师:李志刚 辽宁科技大学电信学院通信系 2012年05月
§2.8 静电场边值问题 唯一性定理
§2.8.1 泊松方程与拉普拉斯方程 一、静电场微分方程
D
E E E
E
E 0
常数
二、物理角度理解
场源相同、场分布相同,则场一定相同。
三、数学角度理解
方程相同、边界条件相同,则解一定相同。
四、唯一性定理的作用
1、确定何为相同场的判定条件;
2、可以采用等效方法进行问题的求解,只要保证满足唯一
性定理的条件,则解法不同,但解却一

静电场的详细计算

静电场的详细计算

静电场定义由静止电荷(相对于观察者静止的电荷)激发的电场。

静电场性质根据静电场的高斯定理:静电场的电场线起于正电荷或无穷远,终止于负电荷或无穷远,故静电场是有源场.从安培环路定理来说它是一个无旋场.根据环量定理,静电场中环量恒等于零,表明静电场中沿任意闭合路径移动电荷,电场力所做的功都为零,因此静电场是保守场.根据库仑定律,两个点电荷之间的作用力跟它们的电荷量的乘积成正比,和它们距离的平方成反比,作用力的方向在它们的连线上,即F=(k·q1q2)/r²;,其中q1、q2为两电荷的电荷量(不计正负性)、k为静电力常量,约为9.0e+09(牛顿·米²)/(库伦²;),r为两电荷中心点连线的距离。

注意,点电荷是不考虑其尺寸、形状和电荷分布情况的带电体。

是实际带电体的理想化模型。

当带电体的距离比它们的大小大得多时,带电体的形状和大小可以忽略不计的点电荷。

静电场的泊松方程由于静电场是无旋场,故可用标量电位φ表征静电场(见电位)。

电位与电场强度的关系是式中Q点为电位参考点,可选在无穷远处;P点为观察点。

上式的微分形式为电场强度等于电位的负梯度,即E=-墷φ在ε为常数的区域,式中墷·墷可记作墷2,在直角坐标中分别为一阶与二阶微分算符。

这样,可得电位φ所满足的微分方程称为泊松方程。

如果观察点处自由电荷密度ρ为0,则墷2φ=0称为拉普拉斯方程。

泊松方程和拉普拉斯方程描述了静电场空间分布的规律性。

可以证明,当已知ρ、ε及边界条件时,泊松方程或拉普拉斯方程的解是惟一的,可以设法求解电位φ,再求出场中各处的E。

静电场知识点一、库仑定律①元电荷:元电荷是指最小的电荷量,用e表示,大小为②库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。

表达式:,其中静电力常量二、电场①电场的产生:电荷的周围存在着电场,产生电场的电荷叫做源电荷。

NO.9-10 第二章 静电场--泊松方程和拉普拉斯方程教学内容

NO.9-10  第二章  静电场--泊松方程和拉普拉斯方程教学内容
第二章 静 电 场
静电场计算中的两类问题
——已知场空间分布,求源电荷分布
• 利用高斯定理的微分形式 D 0 D E
——已知源电荷分布,求空间场分布
•利用高斯定理的积分形式 (当电场分布具有某种空间对称性)
D
s
ds
q0
• 应用场强叠加原理
电荷分布在有限区域内,场区域为无限大,
且其中的介质是均匀线性和各向同性的。
E 0
本构关系: D E 线形、各向同性媒质
第二章 静 电 场
2.5.2 泊松方程和拉普拉斯方程 D
D E E E E 2
D E
E
当 场中无电荷分布
(即 0)的区域:
2
电位 满足的泊松方程
2 0
拉普拉斯方程
2 拉普拉斯算子
边界条件是: ;
①r=a, φ1=φ2; ;
②r=a,
0
1
r
0
2
r
;
③r→∞, φ2=0(以无限远处为参考点); ;
④r=0, Er=0)。
1
r
0
(因为电荷分布球对称,
球心处场强E1=0,

由上述条件, 确定通解中的常数:
A 0, D 0,C va3 , B va2
30
20
第二章 静 电 场 例 2 如图所示三个区域, 它们的介电常数均为ε0, 区域2中的 厚度为d(m), 其中充满体电荷密度为ρv(C/m3)的均匀体电荷, 分界 面为无限大。试分别求解①、②、③区域的位函数与电场强度。
dy
E1
vd 2 0

(V / m)
d y 2
E2
v y 0

第二章静电场_第一部分

第二章静电场_第一部分

6
2. 静电场的散度方程和旋度方程
一.积分形式的静电场两个基本方程 1.高斯定理
uuur
uur r ∫ D0 • ds = ∑ q
表明 D 在闭合面S上通量特性,q为闭合面S包围的电 荷。 2.静电系统的守恒定理
0

ur r E •dl = 0
ur 表明 E 在闭合回路上的环流量特性,电场具有守恒性。
2.3 泊松方程、拉普拉斯方程
1.泊松方程
推导
ρ ∇ ϕ= − ε0
2
泊松方程
uur u r u r ∴ ∇ • D 0 =∇ • (ε 0 E)=ε 0∇ • E =ε 0∇ • ( −∇ϕ ) = − ε 0∇ 2ϕ uur ∇ • D 0 = − ε 0∇ 2ϕ =ρ
)
此时电位函数
u ( z ) = ϕ ( z ) −ϕ ( z0)
σ ⎡ 2 2 2 2 ⎤ = + − + − + z a a z z z 0 ⎥ ⎣ ⎦ 2ε 0 ⎢
0

a→∞ u ( z) = 2ε 0
σ
(z
0
− z)
此时
ur E = −∇u ⎧ σ ur ez ⎪ ⎪ 2ε 0 =⎨ ur σ ⎪− ez ⎪ ⎩ 2ε 0 z>0 z<0
q2受到的电场力: F ( R, q1 , q2 ) 点电荷电场强度:
r R
q1
q2
r r q1 1 v E ( R, q1 ) = ⋅ 2 eR 4πε 0 R
u v v 1 1 R ⎛ ⎞ 利用: ∇ ⎜ ⎟ = −e R =− 3 2 R R ⎝R⎠
r r 1 q1 E ( R, q1 ) = − ∇( ) 4πε 0 R

泊松方程和拉普拉斯方程

泊松方程和拉普拉斯方程

直角坐标系:
柱坐标系:
1 1 (r ) 2 2 2 r r r r z 球坐标系:
2 2 2
1 2 1 1 2 2 (r ) 2 (sin ) 2 2 r r r r sin r sin 2
第二章
2.5
静电场的基本方程: 无旋:
c
2.5 泊松方程和拉普拉斯方程
E dl 0
s
线性、均匀、各向同性 电介质 积 分
有散
本构关系:
2018/11/16
D E 0 r E 0 E P
1
E 0 D
D ds q
第二章
2.5
间无电荷分布,则板间电场强度 均匀;
体电荷,由于体电荷只是 函数, 故电场强度也只是

0 x 而实际上板间充满密度为 d 的
0 x d
x
U0
x

d
0
x 的函数。
x
8
应用高斯通量定理求解。
作一柱形闭合面为S,底面积为 S ,下底在 左极板内,上底在 处,侧柱面与 ax 平行。 2018/11/16
q E dS 0 0 S
闭合面上、下底处 x 的电场强度为零, d 侧面的法向与电场 故 q0 d 强度的方向垂直。 0 d x s (0)S 0 Sdx s (d )S 0 0 d U 0 0 0 d 则 s (d ) d 3
0
q E dS 0 S
x x 1 0 a E ( x ) a dS ( 0 ) S Sdx S x x 0 s 0 d

静电场基本方程课件

静电场基本方程课件

答:(B)
14
3、 两 个 板 间 距 相 同 的 平 行 板 电 容 器, 如 图 所 示。 内 部 充 满 两 种 介 质, 介 电 常 数 如 图 中 所 标, 若 介 质 的 击 穿 场 强 都 一 样 时, 且 两 个 电 容 上 的U0都 以 同 一 比 例 逐 渐 增 大, 则 首 先 被击穿的介质是
A. 介 质 Ⅳ B. 介 质 Ⅰ C. 介 质 Ⅱ
答:(C )
ⅠⅡ
r 4 r 2 dd
22
U0
Ⅲ r 4 Ⅳ r 2
d
U0
15
§1.4 静电场边值问题
唯一性定理
19
§1.4.1 泊松方程和拉普拉斯方程
1、泊松方程、拉普拉斯方程的推导:
E 0
• D
D E
0 (均匀电介质)
E = -
E2
E1n P
E1t E1
E2n
△l1
△l2
场强的切向分量连续,与面电荷无关
7
3、折射定理:
设两种电介质1 、2均为线性、各向同性,分界面上无自由电荷
D2n – D1n = =0
E1t = E2t
D1 = 1 E1 D2 = 2 E2 1 E1cos 1= 2 E2cos 2
E1sin 1= E2sin 2
z
x )ey ( x
y
)ez
=0
可能为静电场。
4
例2 半径为a的球中充满密度为(r)的电荷,已知电场为
r 3 Ar 2
Er
(a
5
Aa4 ) / r 2
ra ra
求电荷密度 (r) 。(书P20例1-9)
解:
• D
0 •

静态场特性及方程

静态场特性及方程

4.2 静态场的特性及方程1.静态场的基本概念2.静态场的泊松方程和拉普拉斯方程静态场:是指电磁场中的源量和场量都不随时间发生变化的场。

0,0,0V D Bt t tρ∂∂∂===∂∂∂1. 静态场的基本概念静态场包括:静电场、恒定电场及恒定磁场。

静电场:由静止的且其电荷量不随时间变化的电荷产生的电场。

恒定电场:导电媒质中,由恒定电流产生的电场。

恒定磁场:由恒定电流或永久磁体产生的磁场。

c d d d 0d d d 0lSlV SVSH l J SE l D S VB S ρ⋅=⋅⋅=⋅=⋅=⎰⎰⎰⎰⎰⎰c 0V H J E D B ρ∇⨯=∇⨯=∇⋅=∇⋅=静态场中的电场和磁场是彼此独立存在的。

2.静态场的麦克斯韦方程组c d +)d d d d d d 0l Sl S V S VSDH l J S t BE l St D S VB S ρ∂⋅=⋅∂∂⋅=-⋅∂⋅=⋅=⎰⎰⎰⎰⎰⎰⎰(一般形式:静态场方程:(1) 静电场的泊松方程和拉普拉斯方程3. 泊松方程和拉普拉斯方程E φ=-∇VD E ερ∇⋅=∇⋅=()Vεφρ∇⋅-∇=2Vρφε∇=-20φ∇=静电场基本方程:d 0d d l V SVE l D S V ρ⋅=⋅=⎰⎰⎰VE D ρ∇⨯=∇⋅=D Eε=——静电场是有散(有源)无旋场,是保守场。

——泊松方程——拉普拉斯方程V ρ=无源区域E φ=-∇c 0J E σ∇⋅=∇⋅=()0σφ∇⋅-∇=2φ∇=恒定电场基本方程:c d 0d 0l SE l J S ⋅=⋅=⎰⎰00c E J ∇⨯=∇⋅=c J Eσ=——恒定电场具有无散、无旋场的特征,是保守场。

——拉普拉斯方程(2) 恒定电场的拉普拉斯方程(3) 恒定磁场的矢量泊松方程B A=∇⨯cB H J μμ∇⨯=∇⨯=cA J μ∇⨯∇⨯=2c()A A A J μ∇⨯∇⨯=∇∇⋅-∇=0A ∇⋅=洛仑兹规范:——矢量泊松方程2c A J μ∇=-cd d d 0lSSH l J SB S ⋅=⋅⋅=⎰⎰⎰c 0H J B ∇⨯=∇⋅=B Hμ=恒定磁场基本方程:——恒定磁场是无散有旋场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E d l 0(静电场的环流定理) C
静电场强的环路积分为零。
5
因此,电场强度 E可以用一个标量 函数——电位函数的负梯度表示。
E
同时,静电场又是一个有散场, 静止电荷是静电场的散度源。
6
因此,可以从静电场的性质总结出:
在各向同性、均匀、线性的媒质中
静电场的基本方程:
积分形式:
Edl C
ax
x
ay
y
az
z
2
ax
x
ay
y
az
z
ax
x
ay
y
az
z
2
x 2
2
y 2
2
z 2
14
拉普拉斯算符2在三种坐标系中的表示
➢直角坐标系:2
2
x2
2
y 2
2
z 2
➢圆柱坐标系:2
1 r
r
r
r
1 r2
2 2
2
z 2
➢球坐标系:
2
1 r2
r
r 2
一次积分
d
dx
1 2
0 x2 0d
C1
一次积分
边界条件: x 0,
0;
0 x3 6 0 d
C1x C2
C1
U0 d
0d 6 0
;
x d , U0 .
C2 0
21
0x3 6 0 d
U0 d
0d 6 0
x
E
0 x2 2 0 d
U0 d
0d 6 0
ax
22
填空题:
静电场电位所满足的微分方程是
E 0
或(E )
D
2
§2-5 泊松方程和拉普拉斯方程
一、静电场的基本方程 二、泊松方程和拉普拉斯方程
3
§2-5 泊松方程和拉普拉斯方程
一、静电场的基本方程 二、泊松方程和拉普拉斯方程
4
一、静电场的基本方程
前面已经得出: ➢静电场是无旋场
E 0 (静电场守恒性的微分形式)
➢静电场是守恒场
0
Dd S
S
q
微分形式:
E
0
或(E )
介质方程:
D
D 0rE
E
7
在各向同性、均匀、线性的媒质中, 由静电场的基本方程可以得出结论: 静电场是一个有通量源(静止电荷)
而没有旋涡源的矢量场。
8
根据矢量场理论,要确定一个矢量场, 必须同时给顶它的散度和旋度。 所以静电场的基本方程中包含了:
第二章 静电场
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6 §2.7 §2.8
库仑定律与电场强度 静电场的无旋性与电位函数 静电场中的导体与电介质 高斯通量定理 泊松方程和拉普拉斯方程 分界面上的边界条件 导体系统的电容 静电场能量和静电力
★ 电位的泊松方程
பைடு நூலகம்
2
★ 静电场的基本方程
1
r 2 sin
sin
1
r 2 sin 2
2 2
1 r2
r
r 2
r
0
r 2 0
r r
18
r 2 0
r r
一次积分
r2
r
C1
C1 r r 2
r
C1 r2
一次积分
C1 r
C2
边界条件: r a , U ; r , 0。
C1 aU; C2 0。
aU (a r ) r
19
例2-10 P66
两无限大平行板电极,板间距为d,电压
为U0,并充满密度为0x/d的体电荷。用 泊松方程的方法求板间的电场强度。
解:
2
0x 0d
x 0, 0
(0 x d)
x d, U0
0x d
2
2
x2
d 2
dx2
0x 0d20
d 2 0 x dx2 0d

2
原来就是泊松方程啊! ~~~~~~ORZ…………………
23
E ()
(在均匀、线性、各向同性的电介质中,为常数。)
2
(电位的泊松方程)
12
2、拉普拉斯方程
对于场中没有电荷分布(=0)的区域内:
2
(电位的泊松方程)
0 2
(电位的拉普拉斯方程)
拉普拉斯方程是泊松方程的特例。
13
2是拉普拉斯算符:二阶微分算符
直角坐标系:
一个旋度方程和 一个散度方程。
同时,场量的散度与该场的标量源密度有关, 旋度与该场的矢量源密度有关。
9
§2-5 泊松方程和拉普拉斯方程
一、静电场的基本方程 二、泊松方程和拉普拉斯方程
10
二、泊松方程和拉普拉斯方程 1、泊松方程 2、拉普拉斯方程
11
1、泊松方程
D E
E
(介质方程) (电场与电位的关系) D (E)
r
1
r2 sin
sin
1
r 2 sin 2
2 2
15
两类问题 可以用泊松方程或拉普拉斯方程解决
1、已知:有限区域内的电荷分布, 求:电位和场强
(场域内电介质是均匀、线性和各向同性。)
求电位:
(x, y, z) 1 (x', y', z') dV '
4 V '
r
求场强:
E
16
2、给定电场分布,即已知 D和E ,
求电荷的分布。
D 或
E
17
例2-9 P66 已知导体球的电位是U(设无穷远处的电位为0), 球的半径为a,求球外的电位函数。 解:球外的电位满足拉普拉斯方程(=0),且电场
具有球面对称性,因此= (r)。 球 坐 标 系,
2
1 r2
r
r 2
r
相关文档
最新文档