使用双透镜做的LED准直_图文(精)
高斯光束聚焦和准直ppt课件
l
F
l F F 2 l F 2 f
2
F
l F F 2
l
F
2
02
'02
F
02 F 2
l 2
f
2
02 F 2
F
l 2
02
2
五、高斯束的自再现变换与稳定球面腔
12
1、意义-获得腔稳定条件
02
2
q0= if f = w02/
qc lc l l q0
10
F
1 2
l 1
02 l
2
或 Rl 2F
物高斯束在透镜表表面上的等相面的曲率半径
四、球面反射镜对高斯光束的自再现变换
l f
(3) 取 l 0 ,并设法满足条件 f F 。
二、高斯光束的准直
1、核心问题:减小发散角,提高方向性。
01
e2
lim
z
2 z
z
2
0
途径:提高光束束腰半径
'02
F
02F 2
l
2
02
2
选择 0 F、l 取值
R 2B D A
B
4 1 A D2
4
公式讨论(见书上)
要存在真实的高斯模,必须ω为实数。则:
A
D
2
1
2
基于大功率led准直透镜的研究设计
基于大功率LED准直透镜的研究设计常见的大功率LED二次透镜的剖面一般具有如下结构:其作用是通过曲面1的折射和曲面2的全反射改变LED发出的光线方向以实现配光的重新分布。
本文主要通过理论计算分析适用于准直透镜的曲面设计。
以下将曲面1和曲面2,分开讨论,讨论前需假设他们具有一个共同的分界角A,这样从LED发出的光线必然能被曲面1折射或曲面2全反射。
第一部分:首先讨论中间的准直透镜部分:如下图所示,取透镜中心为Y轴,径向为决定TIR 透镜的中心准直透镜的参数主要为:r n A max,所以可以把这三个参数当做已知参数,进而推导出y 与x 的关系,然后拟合成非球面曲线,那么就可以得到中心准直透镜的非球面系数。
具体推导如下:(a) 先求出Pn+1点所在光线方程:由坐标图,我们可以知道,Pn+1点所在光线所在的直线的斜率为1k ,其中1cot k A =,那么其光线方程为1cot y A x =⋅ (1)(b) 再求Pn 点所在切线方程:设Pn 点所在切线切线的斜率2k ,且为过点Pn (Xn ,Yn),因此应该具有如下形式: Yn Xn x k y +-⋅=)(22由于角D 与角C 的和为90°,那么Pn 所在切线斜率2cot tan k D C ==, 这样只需求出C 既可。
由折射定律sin sin B n C =,则角arcsin(sin )B n C =⋅ 于是问题转换为求角度B 。
这可以通过光线的斜率1k 和Pn 所在法线的斜率231k k -=求出。
由两直线夹角公式:111cot 132tan tan 1cot 113112tan k A k k k C B k A k k k C ++-===+⋅-- 于是有:1cot tan tan[arcsin(sin )]cot 1tan A C n C A C+⋅=- 经过进一步的计算,便可以解得:212121212)1(*1k k n k k n k -+-+=于是得Pn 点所在切线方程:Yn Xn x k y +-⋅=)(22 (2)可以近似认为Pn 的邻点Pn+1也在该切线上。
第3节_凸透镜成像的规律_课件(共26张PPT)2024-2025学年人教版八年级物理上册.ppt
物距/cm
虚实
像高/cm
正倒
像距/cm
参照距离,描述物距和像距以 32 30
实像 实像
2.1 2.3
倒立
13.5
倒立
14.2
及相应的成像特点。
u>282f
26
实实实像像像
缩2.小5
2.6
倒倒倒立立立
2f>14υ.5>f
15
24
实像
3
倒立
15.3
22
实像
3.4
倒立
16
一倍焦距分虚实,
u=202f
18
实实像像
物距
u>2f u=2f 2f>u>f u=f u<f
虚实 实像 实像 实像
虚像
像的性质 大小 缩小 等大 放大 不成像 放大
正倒 倒立 倒立 倒立
正立
像距
2f>υ>f υ=2f υ>2f
当凸透镜成实像时,物体离凸透镜越近,所成的像离凸透镜越远, 像越大。
当凸透镜成实像时,物体离凸透镜越 近,所成的像离凸透镜越远,像越大。
倒立
27
倒立
35.3
立的像?在什么条件下成倒立的像?正立的 10
像和倒立的像的分界点在哪里?
8
虚像
放大
正立
6
虚像
放大
正立
4
虚像
放大
正立
分析数据,归纳结论
发光物体高度 h=4.5 cm,凸透镜的焦距 f=10 cm。
根据记录的数据,思考下列问题:
物距/cm
虚实
像高/cm
正倒
像距/cm
32
实像
2.1
倒立
此时可能成的是虚像。
基于自由曲面的LED准直透镜设计
基于自由曲面的LED准直透镜设计张巧淞;徐春云;程灏波;TAM Hon Yuen【摘要】本文基于准直光束照明的自由曲面透镜设计方法,设计了一种以单颗LED 为光源的准直透镜,其可应用于投影仪的照明系统.根据几何光学原理构造自由曲面,该方法无需求解复杂的偏微分方程,计算简单.准直透镜由内自由曲面折射面、球面、抛物面全反射曲面以及平面组成,利用Matlab编程求出自由曲面轮廓曲线的离散数据点,导入Solidworks中进行曲线拟合,建立透镜的实体模型.为探讨LED光源尺寸对准直透镜光斑影像的影响,在Tracepro中对透镜进行非序列光线追迹,模拟结果表明:当光源半径不大于1 mm时,其光学效率达到86.26%以上,视场半角达到3.3度以内.【期刊名称】《影像科学与光化学》【年(卷),期】2016(034)001【总页数】7页(P36-42)【关键词】LED;准直;二次光学设计;自由曲面【作者】张巧淞;徐春云;程灏波;TAM Hon Yuen【作者单位】北京理工大学光电学院光机电工程联合研究中心,北京100081;北京理工大学深圳研究院,广东深圳518057;北京理工大学光电学院光机电工程联合研究中心,北京100081;北京理工大学深圳研究院,广东深圳518057;北京理工大学光电学院光机电工程联合研究中心,北京100081;北京理工大学深圳研究院,广东深圳518057;香港城市大学机械与生物医学工程系,香港999077;香港城市大学机械与生物医学工程系,香港999077【正文语种】中文影像信息学是一个从图像挖掘信息和提炼知识的过程,是一种边缘科学,是人类通过影像来认识和解释世界的重要手段。
随着影像信息学的发展,使人们能够更加充分的利用大量未被利用的影像信息。
能源是人类赖以生存的基础。
现今,地球上的许多能源都已告竭,因此发展“绿色能源”成为当今世界的主流[1]。
LED是一种可将电能转变为光能的半导体发光器件,属于固态光源,被全球公认为新一代的环保高科技光源。
一种用LED光源的准直系统设计[技巧]
一种用LED光源的准直系统设计1 引言半导体发光二级管(LED)光源具有体积小、效率高、响应快、易调光、色域范围宽、无汞污染、使用寿命长等特点,是一种节能环保的新型光源。
随着LED技术的不断完善,特别是光效的不断提高,在投影显示、背光光源、城市照明等领域有着广泛的应用前景。
然而,由于LED的空间光强近似Lambertian型分布,使其在被照面上所形成的照度随出射角的增大而迅速衰减,很难满足远距离照明如手电、港口或码头用信号投射灯的实际需要,为了使光束平行出射以提高光能利用率,光学设计人员尝试通过各种途径来设计反射器、折射器或折反射器来改善光线在目标面的布局,以符合实际情况的需要。
目前,LED二次光学设计主要有两种方法:直接经验法和求解方程法。
直接经验法主要通过CAE三维机械建模软件绘制出光学元件的结构,并将此结构导入到光学仿真软件中如Tracepro中,并对此结构赋予某种光学属性,最后通过蒙特卡罗非序列光线追迹来判断照明面上的照度分布及整个系统的光强分布。
由于这种设计的随意性很强,相关设计者往往需要多次修改光学元件的结构,多次模拟来完成设计,此类方法并不需要太多的理论计算,设计的关键往往取决于设计者的个人经验。
方程求解法基于光源的发光特性和所需实现的照明要求而构建方程组,其未知数即为所求自由曲面上个点的坐标,在给定初始条件后,通过求解方程组的解析解或数值解,即可得到自由曲面的面型数据并可实现所需照明要求。
此种方法免去了反复试验所需的时间,提高了设计效率,但对设计人员的光学构建能力和数学功底的要求比较高。
本文针对旋转对称折射器,根据LED光源特性和目标面的光强分布要求,依据snell 定律和非成像光学中的光学扩展量要求,设计了一种较为简便的自由曲面折射器,实现了系统的长距离均匀照明。
2 设计原理建立如图1所示的坐标系。
设LED光源位于坐标系的原点,透镜前表面为平面,后表面为为曲面,即为需要设计的自由曲面。
LED光源的透镜设计方法
LED光源的透镜设计方法光学元件是很精密的元件,制作成本较高,如果能减少元件的厚度,甚至做成片状透镜,则不但可以减少光学元件的尺寸,从而缩小灯具或其他设备的大小,还可以节省材料,降低成本。
由于厚度减少,光吸收也减少,灯具或仪器效率也会随之提高,因此做成高质量的薄片形的光学零件一直是光学设计追求的目标之一。
菲涅尔(Fresnel)透镜是一种片状的薄形透镜,它一直以其轻、薄、价格低廉优势而在一些方面得到应用。
但市场上的菲涅尔透镜多为等差半径的同心圆结构,其制作缺乏精确的光学设计过程,导致成像质量不是很高,有的甚至只是简单的波纹结构,其光学质量就更差了。
即使是较好的菲涅尔透镜,也是通常将普通透镜分为小段后,近似为折线,并经过不同距离的简单平移而形成,这些设计方法上的缺陷造成了菲涅尔透镜的低质量。
LED体积很小,但市场上销售的LED用杯状透镜大都厚度在10mm以上,这成为LED 在某些场合应用的致命问题,虽然可以用菲涅尔透镜来减薄透镜的厚度和减少光吸收,但如何进行精确的光学设计却很少见到文献报道。
本文介绍的是能获得精确的超薄锯齿形透镜的设计方法,其光学质量好,光线利用率较高。
因为一般的菲涅尔透镜在理论上就存在浪费,即透过透镜的光线理论上就有一部分不能到达设计的目的地,本方法得到的透镜对点光源来说理论上不存在浪费。
此外,各个小锯齿之间的距离也可根据需要而不同,而且在同一透镜中不同位置的锯齿间距也可变化,从而使这种方法设计的锯齿形透镜有更广泛的适应性,即它可以适应不同的使用条件和不同的加工条件的需求。
这种锯齿形透镜适用LED为光源的二次光学透镜。
对于LED这种尺寸很小的光源,具有小而薄的光学透镜是非常有意义的。
一、设计原理单个透镜一般是一个表面形状为曲面的透明材料,其作用是改变光线的方向,形成所需的光强空间分布。
其缺点是往往比较厚,因此体积大成本高,而且吸收也就大,特别是曲率大的透镜更是如此。
为简单计,举一个平凸透镜的例子,原始的平凹透镜见图1(a),相应地传统的菲涅尔透镜见图1(b),为了说明原理,图中齿距画得比较大。
一种基于自由曲面的LED准直透镜设计
一种基于自由曲面的LED准直透镜设计周镇;苏成悦;付倩;张春华【摘要】A design algorithm that can realize the collimating beam of light was proposed based on free-form surface lens,and an illumination optical system for a single LED source was designed based on the algorithm. The equations of the points on the profile curve about the back surface of the lens were established . By using the iterative method and Matlab programming, a number of discrete points of the free-form profile curve were calculated and fitted to optical entity with the SolidWorks software. Then the optical entity was imported into TracePro software for non-sequential ray tracing. The simulation results show that the optical system can a-chieve uniform illumination and collimate beam.%提出一种能实现准直光束照明的自由曲面透镜设计算法,并基于此算法设计一种以单颗LED为光源的准直透镜.通过建立透镜后表面轮廓曲线上的点所满足的方程,利用迭代方法并结合Matlab编程求出自由曲面轮廓曲线的离散数据点,将数据点导入SolidWorks中进行曲线拟合并建模,进而得到透镜的实体模型.在TracePro中对该透镜进行非序列光线追迹,模拟结果表明:该光学系统能够实现均匀照明,并对最终光线可实现准直出射.【期刊名称】《应用光学》【年(卷),期】2012(033)006【总页数】5页(P1058-1062)【关键词】LED;二次光学;自由曲面;准直透镜;非序列光线【作者】周镇;苏成悦;付倩;张春华【作者单位】广东工业大学物理与光电工程学院,广东广州510006;广东工业大学物理与光电工程学院,广东广州510006;广东工业大学物理与光电工程学院,广东广州510006;广东工业大学物理与光电工程学院,广东广州510006【正文语种】中文【中图分类】TN312.8引言LED为半导体固体光源,具有体积小、质量轻、耗能少、寿命长、响应时间短以及抗震性能好等优点,尤其是其抗震动能力,可以经受住各种剧烈的抖动和碰撞,这一特性使得LED手电特别适用于军队、警察、保安、户外探险等特种照明使用场合[1]。
自由曲面LED准直透镜设计
自由曲面LED准直透镜设计作者:杜国红吴一新陈亮杜罡刘杨石岩来源:《山东工业技术》2016年第05期摘要:LED作为下一代的主流光源拥有各种传统光源无可替代的优势。
但是由于独特的发光机理,在使用LED光源时需要为其重新进行光学设计来满足实际的照明需求,而准直照明是其中的重要部分。
LED准直透镜对光线准直度有着重要的影响,合理的透镜结构有利于提升LED照明光源的二次配光。
本文将自由曲面作为准直透镜设计选择的表面结构,综合其各个方面的优点,非常适合LED准直透镜设计。
关键词:自由曲面;光学设计;LED;准直透镜DOI:10.16640/ki.37-1222/t.2016.05.2540 引言LED作为第四代照明光源,拥有诸多的优点,被应用在许多领域。
LED光源具有体积小、效率高、响应快、易调光、色域范围宽、无汞污染、使用寿命长等特点,是一种节能环保的新型光源[1-2]。
LED透镜与LED光源一起构成完整的光学系统,透镜使用的目的是为了能够增强光的使用效率和发光效率。
因此在不同条件下,使用与之相匹配的透镜,将可以改变LED照明系统的光场分布。
LED准直透镜对光线准直度有着重要的影响,合理的透镜结构有利于提升LED照明光源的二次配光。
不同结构的LED准直光学透镜,各有特点,对LED光源的准直效果也不相同。
自由曲面作为准直透镜设计选择的表面结构,综合其各个方面的优点,非常适合LED准直透镜设计。
本文考虑了LED的发光特性,介绍了用于LED准直自由曲面透镜设计方法,并介绍了一个设计实例。
1 自由曲面与LED准直透镜自由曲面是最复杂而又经常使用的曲面,在许多领域中很多零件的外形均为自由曲面,如:飞机机翼、汽车外形、模具工件表面等[3]。
自由曲面的求解方法主要有:剪裁法、划分网格法和SMS法。
[4]剪裁法的基本思路是利用目标面的照度分布以及光源特性等数据列出一个关于光学面形的非线性偏微分方程组,通过求解微分方程组,得到相应的光学表面。
快速实现矩形准直光束的高集光效率LED透镜设计
快速实现矩形准直光束的高集光效率LED透镜设计刘典宏;张晓晖;张爽【摘要】为了实现LED矩形准直光束,提出一种快速构建高集光效率LED透镜的设计方法.基于分步法、边缘光线定理和几何光学定律,分步设计两个自由曲面轮廓线,快速获取两个自由曲面并构建透镜.结果表明:当LED距透镜内曲面尺寸与LED 尺寸的比值为6时,系统的半峰全宽为2.3° ×1.15°,集光效率为82.6%,可以有效地实现矩形准直光束.随着比值的增大,透镜的尺寸变大,但是半峰全宽变小,透镜集光效率变高.根据设计参数加工了透镜并对仿真结果进行了实验验证.该方法为实现LED 矩形准直光束提供了一种有效途径.%In order to realize LED rectangular collimated beam, a fast design method for LED lens with high optical collection efficiency was presented. Two free-form surface contours were designed based on step-by-step method, edge ray theory and geometrical optics law. Based on them, two free-form surfaces were obtained quickly and the lens was constructed. When the ratio of the length be-tween lens inner surface and LED to the LED size is 6, the full width at half maximum (FWHM) of the system is 2 . 3 ° × 1 . 15 ° , and the light collection efficiency is about 82 . 6%, which can effective-ly realize rectangular collimated beam. As the ratio increases, the size of the lens becomes larger, the FWHM becomes smaller, and the collection efficiency of the lens becomes higher. According to the design parameters, a lens was manufactured and the simulation results were experimentally veri-fied. This method provides an effective way to realize the rectangle collimated beam of LED.【期刊名称】《发光学报》【年(卷),期】2017(038)007【总页数】7页(P960-966)【关键词】矩形准直光束;高集光效率;分步法;自由曲面;LED【作者】刘典宏;张晓晖;张爽【作者单位】海军工程大学兵器工程系,湖北武汉 430033;海军工程大学兵器工程系,湖北武汉 430033;海军工程大学兵器工程系,湖北武汉 430033【正文语种】中文【中图分类】O439LED作为一种新型的节能光源[1-3],相比传统光源,具有体积小、功耗小、光效高和寿命长等特点。
用ZEMAX设计简易LED准直镜[1]
用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。
用ZEMAX设计简易LED准直镜
用ZEMAX设计简易LED准直镜一. 初始解的构建1. 为了简单采用此透镜由三部分构成:A. 全反射部分,B. 折射部分,C.切除部分(这一部分在设计时也可以不考虑,可以在设计完成后再加入)图中光束分两个部分, 一部分为折射部分,另一部分为全反射部分, 可以看出,折射部分光束为三段,全反射部分光束分为四段,由于是平行光出射, 所以在优化时只要考虑第三段就可以了.初始数据:1) 几何体部分TIR部分是一个非球面透镜,中间部分是一个标准透镜(有曲率和圆锥系数),切除部分是一个圆柱体;注意中间的透镜部分的材料为空气,因为它相当于也是被切除掉的.2) 光源部分我们用SOURCE RAY做为光源, 这样可以NSRA来进行优化; 光源的生成与操作数的建立按如下的MACRO可以自动生成:steps=90incr=90/steps #max angle is 90 degreepi = 4*ATAN(1)dr = pi/180startobj=4For i,0,steps,1angle = i*incroo=i+startobjInsertObject 1,ooSetNSCProperty 1,oo,0,0,"NSC_SRAY" # surface,object,code,face,value SetNSCProperty 1,oo,3,0,2 # source inside of object 2 SetNSCPosition 1,oo,4,angleSetNSCParameter 1,oo,1,1 #layout raysSetNSCParameter 1,oo,2,1 #analysis raystar = 0opr = i+1InsertMFO oprsetoperand opr, 11, "NSRA"setoperand opr, 3, oo # src#setoperand opr, 6, 3 # seg#setoperand opr, 9, 1 # weightsetoperand opr, 7, 5 # y coordinatesetoperand opr, 8, tar # tarNextupdate我们每隔一度产生一条光线,最终的结果如下, 从图中可以看出,光线都不是平行的. 这里注意要调整参数保证所有光线都大概的按预期的方向会聚!!二. 优化经过上面的准备工作,这时我们就可以优化了, 当然那几个物体的相对位置需要用PICKUP来约束, 这里不就详细说明了.初步优化的结果如下:可以再调整一下透镜的口径, 再优化一次. 可以看出, 透镜的口径是在增加的, 并且其底部是一直往左移的. 最终会达到一个比较平衡的状态;到这里优化工作就已经完成了. 我们可以对这三个部分进行一个布尔操作得到我们想要的透镜!三. 最终模型的建立和模拟1) 布尔操作后的结果2) 模拟,将所有的SOURCE RAY都删除, 我们用SOURCE RECTANGLE来代替LED, 大小取1*1, COSINE EXPONENT 取1.0来做为朗伯发光体, 把DECTOR 设置到1010MM 处, 模拟1M处的光斑, DETECTOR的大小设为500*5003) 模拟结果:A. 光斑B. 发散角以上是一个简单的准直镜的构建. 采用ZEAMX的优化算法结果特定的建模完成该设计, 当然还可能存在诸多不足之处,但此思路可供参考. 也可以设计相似的透镜或变型.。
基于TIR结构LED准直透镜的设计与实现
基于TIR结构LED准直透镜的设计与实现王未未【摘要】介绍了一种LED自由曲面准直透镜的设计方法, 并运用该方法设计了一款基于全内反射,结构的准直透镜. 对初始结构不断进行逼近, 最终得到准直透镜的模型. 透镜外径为35 mm, 总高为21.5 mm. 透镜匹配Cree公司XPE光源进行计算机模拟, 效率高达84.8%, K值高达125.8 cd/lm. 模拟应用于35 W的探照灯时, 在100 m远处形成一个直径为8 m的圆形光斑, 光斑中心照度高达60 lux. 透镜实际样品被制作出后, 经过测试, 实际透镜的光束角为3.2 °. 此款透镜被用于实际探照灯灯具中.%A design method for collimating LED lens with free surface is introduced and a practical collimating lens with the method based on TIR (Total Internal Reflection ) is designed by approximating for the final 3D model successfully .The maximum diameter of the lens is 1 mm with a height of 2 puter simulation with the lens matched with CREE -XPE shows an efficiency of 84.8% and a K value of 125.8 cd/lm.With the lens applied to 35 W searchlight , a spot of a diameter of 8 m results with the spot center illumination up to 60 lux 100 m away 3.2 °.Tests on the fabricated collimation lens show a beam angle of .The lens is used in the actual searchlights .【期刊名称】《电子科技》【年(卷),期】2016(029)001【总页数】4页(P5-8)【关键词】TIR准直透镜;光学设计;自由曲面;TracePro【作者】王未未【作者单位】江苏大学机械工程学院,江苏镇江 212013【正文语种】中文【中图分类】TN312+.8AbstractA design method for collimating LED lens with free surface is introduced a nd a practical collimating lens with the method based on TIR (Total Interna l Reflection) is designed by approximating for the final 3D model successfu lly.The maximum diameter of the lens is 1 mm with a height of 2 puter simulation with the lens matched with CREE -XPE shows an efficiency of 84.8% and a K value of 125.8 cd/lm.With the len s applied to 35 W searchlight,a spot of a diameter of 8 m results with the s pot center illumination up to 60 lux 100 m away 3.2°.Tests on the fabricate d collimation lens show a beam angle of.The lens is used in the actual sear chlights.Keywords TIR collimating lens;optical design;freeform surface;TracePro 近年来,由于发光二极管(Light Emitting Diode,LED)在光效、寿命、便携性、反应速度等各方面性能远胜于传统光源,全球各国在LED应用的研究和发展上投入了大量的财政和人力[1],LED得到了广泛应用。
LED准直照明的自由曲面透镜设计
LED准直照明的自由曲面透镜设计Jin-Jia Chen, Te-Yuan Wang, Kuang-Lung Huang, Te-Shu Liu, Ming-Da Tsai, and Chin-Tang Lin1、电气工程学院国立彰化师范大学系,士达路,彰化50074,台湾2、光电与能源工程,明道大学,369文华路,Peetow,彰化52345,台湾* jjchen@.tw摘要:我们提出一个简单的镜头自由曲面设计方法应用到LED照明的准直。
该方法是从基本的几何光学分析及施工方法得出。
通过使用这种方法,一个高度准直透镜与为 1.0mm ×1.0毫米LED芯片的尺寸和86.5%下的±5度的视角的光学模拟的效率构成。
为了验证该透镜的实用性能,准直透镜的原型也制成,并且90.3%具有4.75度的射束角的光学效率被测量。
©2012美国光学学会OCIS代码:(220.2740)几何光学设计; (220.4298)非成像光学系统; (220.2945)照明设计; (230.3670)发光二极管。
参考文献1.H. Ries and J. Muschaweck, “Tailored freeform optical surfaces,”J. Opt. Soc. Am. A 19(3), 590–595 (2002).2.P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff,“Simultaneous multiple surface optical design method in three dimensions,”Opt. Eng. 43(7), 1489–1502 (2004).3.Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,”Opt. Express 16(17),12958–12966 (2008).4.L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications,”Appl. Opt. 48(29), 5520–5527 (2009).5.F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation usingsource-target maps,”Opt. Express 18(5), 5295–5304 (2010).6.W. Zhang, Q. Liu, H. Gao, and F. Yu, “Free-form reflector optimization for general lighting,”Opt. Eng. 49(6), 063003 (2010).7.G. Wang, L. Wang, L. Li, D. Wang, and Y. Zhang, “Secondary optical lens designed in themethod of source-target mapping,”Appl. Opt. 50(21), 4031–4036 (2011).8.V. Medvedev and W. A. Parkyn, Jr., “Screen illumination apparatus and method,”US Patent6166860 (2000).9.D. Weigert and D. Chin, “Spotlight with an adjustable angle of radiation and with an aspherical front lens,”US Patent 6499862 B1 (2002).10.A. Domhardt, S. Weingaertner, U. Rohlfing, and U. Lemmer, “TIR Optics fornon-rotationallysymmetric illumination Design,”Proc. SPIE 7103, 710304, 710304-11 (2008).11.J.-J. Chen and C.-T. Lin, “Freeform surface design for a light-emitting diode–basedcollimating lens,”Opt. Eng. 49(9), 093001 (2010).12.D. Vázquez-Moliní, M. González-Montes, A. Álvarez, and E. Bernabéu, “High-efficiencylight-emitting diode collimator,”Opt. Eng. 49(12), 123001 (2010).13. J. Chaves, Introduction to Nonimaging Optics (CRC Press, Boca Raton, 2008), Chap. 8.14. L. Piegl and W. Tiller, The NURBS Book (Springer-Verlag, Berlin, 1997).1.简介在最近几年,由于LED光源的一般的照明应用中,例如LED灯泡,射灯,路灯,汽车大灯,等,许多灯制造商和设计者已经提出了各种LED发光技术的迅速增长。