新人教版八年级数学上册第十一章三角形单元测试题含答案

合集下载

人教版八年级数学上册第十一章三角形单元测试卷-(含答案)

人教版八年级数学上册第十一章三角形单元测试卷-(含答案)

人教版八年级数学上册第十一章三角形单元测试卷一、单选题(共30分,每小题3分)1.能用三角形的稳定性解释的生活现象是()A.B.C.D.2.如图,BE、CF都是ABC的角平分线,且115BDC∠=︒,则A∠=()A.45°B.50°C.65°D.70°3.如果一个多边形的每一个外角都是90︒,那么这个多边形的内角和是()A.180︒B.360︒C.540︒D.720︒4.若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.135.一个多边形截去一个角后,得到的多边形的内角和为1980,那么原来的多边形的边数为().A.12或13取14B.13或14C.12或13D.13或14或15 6.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60︒C.直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半7.下列各组线段,能构成三角形的是( )A .1,3,5cm cm cmB .2,4,6cm cm cmC .4,4,1cm cm cmD .8,8,20cm cm cm8.在三角形的①三条中线;①三条角平分线;①三条高中,一定相交于一点的是( )A .①①①B .①C .①D .①① 9.如图,在①ABC 中,D 是BC 延长线上一点,①B =40°,①ACD =120°,则①A 等于A .60°B .70°C .80°D .90° 10.如图在△ABC 中,BO ,CO 分别平分①ABC ,①ACB ,交于O ,CE 为外角①ACD 的平分线,BO 的延长线交CE 于点E ,记①BAC =①1,①BEC =①2,则以下结论①①1=2①2,①①BOC =3①2,①①BOC =90°+①1,①①BOC =90°+①2正确的是( )A .①①①B .①①①C .①①D .①①①二、填空题(共24分,每小题3分) 11.若一个多边形的内角和是 1980°,则这个多边形的边数为________. 12.等腰三角形一边长为5,另一边长为7,则周长为__________.13.如图,①BCD =145°,则①A +①B +①D 的度数为_____.14.一个多边形的每一个外角都等于60°,则这个多边形的内角和为_____度. 15.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点可以连___________条对角线.16.小华从点A 出发向前走10m ,向右转36︒然后继续向前走10m ,再向右转36︒,他以样的方法继续走下去,当他走回到点A 时共走_________米.17.如图,在①ABC 中,①CAD =①CDA ,①CAB −①ABC =30°,则①BAD =________︒.18.如图,在ABC 中,12∠=∠,34∠=∠,80A ∠=︒,则x =______.三、解答题(共66分) 19.如图,ABCD 是四根木条钉成的四边形,为了使它不变形,小明加了根木条AE ,小明的做法正确吗?说说你的理由.(共6分)20.如图①A =20°,①B =45°,①C =40°,求①DFE 的度数.(共6分)21.已知,如图,在ABC ∆中,AD 、AE 分别是ABC ∆的高和角平分线,若30ABC ∠=,60ACB ∠=(共8分)(1)求DAE ∠的度数;(2)写出DAE ∠与C B ∠-∠的数量关系 ,并证明你的结论22.若一个多边形的内角和比外角和多540°,求这个多边形的边数.(共8分)23.如图:(共8分)(1)画出△ABC 的BC 边上的高线AD ;(2)画出△ABC 的角平分线CE .24.已知在△ABC 中,∠A :∠B :∠C =2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.(共10分)25.如图,已知:点P 是ABC ∆内一点.(共10分)(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.26.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求①CAD的度数.(共10分)答案第1页,共1页 参考答案:1.C2.B3.B4.C5.A6.B7.C8.D9.C10.C 11.1312.17或1913.145°14.72015.616.10017.1518.13020.小明的做法正确,21.105°22.(1)15°;(2)()12DAE C B ∠=∠-∠, 23.724.略25.∠A =40°,∠CDB =80°.26.(1)略;(2)110°27.①CAD =36°.。

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。

【精品】人教版八年级数学上册第11章三角形单元检测题(有答案)【3套】试题

【精品】人教版八年级数学上册第11章三角形单元检测题(有答案)【3套】试题

人教版八年级数学上册第11章三角形单元检测题(有答案)一.选择题(共10小题,每小题3分,满分30分)1.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形2.若线段AM、AN分别是△ABC中BC边上的高线和中线,则()A.AM>AN B.AM>AN或AM=ANC.AM<AN D.AM<AN或AM=AN3.下列图形具有稳定性的是()A.B.C.D.4.下列各组数可能是一个三角形的边长的是()A.4,4,9 B.2,6,8 C.3,4,5 D.1,2,3 5.如图,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为()A.50°B.98°C.75°D.80°6.在△ABC中,∠A==∠C,则这个三角形是()A.锐角三角形B.等腰三角形C.钝角三角形D.含30°角的直角三角形7.在△ABC中,若满足下列条件,则一定不是直角三角形的是()A.∠A=∠B+∠CB.∠A=∠C﹣∠BC.一个外角等于与它相邻的内角D.∠A:∠B:∠C=1:3:58.如图所示,在△ABC中,∠C=90°,则∠B为()A.15°B.30°C.50°D.60°9.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.810.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A ﹣∠F=()A.60°B.46°C.26°D.45°二.填空题(共8小题,每小题3分,满分24分)11.三角形的三边之比是3:4:5,周长是36cm,则最长边比最短边长.12.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是.13.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为.15.如图,在△ABC中,∠B=60°,∠BAC与∠BCA的三等分线分别交于点D、E两点,则∠ADC的度数是.16.如图,CE平分∠ACD,∠A=40°,∠B=30°,∠D=104°,则∠BEC=.17.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠2=70°,∠1=.18.如果一个多边形的边数增加1,它的内角和就增加十分之一,那么这个多边形的边数,三.解答题(共8小题,满分66分)19.(6分)“五一”黄金周,小梦一家计划从家B出发,到景点C旅游,由于BC之间是条湖,无法通过,如图所示只有B﹣A﹣C和B﹣P﹣C两条路线,哪一条比较近?为什么?(提示:延长BP交AC于点D)20.(6分)若三角形的三边长分别是2,x,10,且x是不等式的正偶数解,试求第三边的长x.21.(6分)如图,已知,在△ABC中,∠C=∠ABC,BE⊥AC,∠DBE=60°,求∠C 的度数.22.(6分)如图∠A=∠B,∠C=α,DE⊥AC于点E,FD⊥AB于点D.(1)若∠EDA=25°,则∠EDF=°;(2)若∠A=65°,则∠EDF=°;(3)若α=50°,则∠EDF=°;(4)若∠EDF=65°,则α=°;(5)∠EDF与α的关系为.23.(8分)如图,在四边形ABCD中,∠B=50°,∠C=110°,∠D=90°,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.24.(10分)如图,已知六边形ABCDEF的每个内角都相等,连接AD.(1)若∠1=48°,求∠2的度数;(2)求证:AB∥DE.25.(12分)已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM 平分∠ABC,E为射线BM上一点.如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACB,求∠BEC的度数.26.(12分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM 平分∠AEF交CD于点M,且∠FEM=∠FME.(1)直线AB与直线CD是否平行,说明你的理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD 于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=60°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案一.选择题1.解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.故选:C.2.解:如图,∵AM⊥BC,∴根据垂线段最短可知:AM≤AN,故选:D.3.解:∵三角形具有稳定性,∴A选项符合题意而B,C,D选项不合题意.故选:A.4.解:A、因为4+4<9,所以本组数不能构成三角形.故本选项错误;B、因为2+6=8,所以本组数不能构成三角形.故本选项错误;C、因为3+4>5,所以本组数可以构成三角形.故本选项正确;D、因为1+2=3,所以本组数不能构成三角形.故本选项错误;故选:C.5.解:∵∠A=65°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,∵∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°﹣82°=98°.故选:B.6.解:∵∠A==∠C,∴∠B=2∠A,∠C=3∠A,又∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得:∠A=30°,∴∠C=3∠A=3×30°=90°,故选:D.7.解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故本选项不符合题意.B、∵∠A=∠C﹣∠B,∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故本选项不符合题意.C、∵一个外角等于与它相邻的内角,又这两个角互补,∴相邻的内角是90°,∴三角形是直角三角形,故本选项不符合题意.D、∵∠A:∠B:∠C=1:3:5,∴∠A=20°,∠B=60°,∠C=100°,∴△ABC是钝角三角形,故本选项符合题意,故选:D.8.解:如图所示,在△ABC中,∠C=90°,则x+2x=90°.x=30°.所以2x=60°,即∠B为60°.故选:D.9.解:如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D.10.解:如图:∵∠1=∠APB﹣∠A=126°﹣∠A,∠2=180°﹣∠AQF﹣∠F=180°﹣100°﹣∠F =80°﹣∠F;∵∠1=∠2,∴126°﹣∠A=80°﹣∠F;∴∠A﹣∠F=46°.故选:B.二.填空题11.解:由题意,设三边分别为3xcm,4xcm,5xcm,则3x+4x+5x=36,解得x=3,三边分别为9cm,12cm,15cm.故最长的边长比最短的边长长6cm.故答案是:6cm.12.解:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为11,AB=5,BC=3,∴△BCD的周长是11﹣(5﹣3)=9,故答案为9.13.解:这种方法应用的数学知识是:三角形的稳定性,故答案为:三角形具有稳定性.14.解:∵△ABC的周长为18,其中一条边长为4,这个三角形的最大边长为x,∴第三边的长为:18﹣4﹣x=14﹣x,∴x>4且x>14﹣x,∴x>7,根据三角形的三边关系,得:x<14﹣x+4,解得:x<9;∴7<x<9,故答案为:7<x<9.15.解:∵在△ABC中,∠B=60°,∴∠BAC+∠BCA=180°﹣∠B=120°.∵∠BAC与∠BCA的三等分线分别交于点D、E两点,∴∠DAC=∠BAC,∠DCA=∠BCA,∴∠DAC+∠DCA=(∠BAC+∠BCA)=80°,∴∠ADC=180°﹣(∠DAC+∠DCA)=180°﹣80°=100°.故答案为:100°.16.解:延长CD交AB于F,∠BDC是△BDF的一个外角,则∠BFD=∠BDC﹣∠B=104°﹣30°=74°,同理,∠ACF=∠BFD﹣∠A=74°﹣40°=34°,∵CE平分∠ACD,∴∠ECA=∠ACF=17°,∴∠BEC=∠A+∠ECA=40°+17°=57°,故答案为:57°.17.解:∵a∥b,∴∠3=∠2=70°,∴∠1=180°﹣90°﹣70°=20°,故答案为:20°.18.解:设多边形的边数是n,根据题意得:180(n+1﹣2)=180(n﹣2)(1+),解得:n=12.故答案是:12.三.解答题19.解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.20.解:原不等式可化为5(x+1)>20﹣4(1﹣x),解得x<11,∵x是它的正整数解,∴根据三角形第三边的取值范围,得8<x<12,∵x是正偶数,∴x=10.∴第三边的长为10.21.解:∵BE⊥AC,∴∠AEB=90°,∵∠DBE=60°,∴∠A=90°﹣60°=30°,∴∠C=∠ABC=(180°﹣30°)=75°.22.解:(1)∵DF⊥AB,∴∠ADF=90°,∴∠EDF=90°﹣∠EDA=65°.(2)∵DE⊥AC,∴∠AED=90°,∴∠ADE=90°﹣65°=25°,∴∠EDF=65°.(3)∵α=50°,∴∠A=∠B=(180°﹣50°)=65°,∴∠DEF=65°.(4)∵∠EDF=65°,∴∠ADE=90°﹣65°=25°,∴∠A=∠B=65°,∴α=180°﹣130°=50°(5)∵∠A=∠B,∠C=α∴∠A=∠B=(180°﹣α)=90°﹣α,∵DE⊥AC于点E,FD⊥AB于点D,∴∠AED=∠FDB=90°∴∠EDA=∠BFD=90°﹣(90°﹣α)=α,∴∠EDF=90°﹣∠EDA=90°﹣α.故答案为(1)65°;(2)25°;(3)65°;(4)50°;(5)90°﹣0.5a;23.解:∵AE⊥BC,∴∠AEC=∠AEB=90°,∵∠B=50°,∴∠BAE=180°﹣90°﹣50°=40°,∵∠C=110°,∠D=90°,∴∠DAE=360°﹣∠D﹣∠C﹣∠AEC=70°,∴∠DAB=∠BAE+∠DAE=40°+70°=110°,∵AF平分∠DAB,∴∠FAB=∠DAB=110°=55°,∴∠EAF=∠FAB﹣∠BAE=55°﹣40°=15°.24.解:(1)∵六边形ABCDEF的各内角相等,∴一个内角的大小为,∴∠E=∠F=∠BAF=120°.∵∠FAB=120°,∠1=48°,∴∠FAD=∠FAB﹣∠DAB=120°﹣48°=72°.∵∠2+∠FAD+∠F+∠E=360°,∠F=∠E=120°,∴∠ADE=360°﹣∠FAD﹣∠F﹣∠E=360°﹣72°﹣120°﹣120°=48°.(2)证明:∵∠1=120°﹣∠DAF,∠2=360°﹣120°﹣120°﹣∠DAF=120°﹣∠DAF,∴∠1=∠2,∴AB∥DE.25.解:①如图1,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②如图2,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=∠ABC=40°,∠ECB=∠ACB=20°,∴∠BEC=180°﹣∠ECB﹣∠CBE=180°﹣20°﹣40°=120°.26.解:(1)结论:AB∥CD.理由:如图1中,∵EM平分∠AEF交CD于点M,∴∠AEM=∠MEF,∵∠FEM=∠FME.∴∠AEM=∠FME,∴AB∥CD.(2)①如图2中,∵AB∥CD,∴∠BEG=∠EGH=β=60°,∴∠AEG=120°,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=60°,∵HN⊥EM,∴∠HNE=90°,∴∠EHN=90°﹣∠HEN=30°.②猜想:α=β.理由:∵AB∥CD,∴∠BEG=∠EGH=β,∴∠AEG=180°﹣β,∵∠AEM=∠EMF,∠HEF=∠HEG,∴∠HEN=∠MEF+∠HEF=∠AEG=90°﹣β,∵HN⊥EM,∴∠HNE=90°,∴α=∠EHN=90°﹣∠HEN=β.人教版八年级上册第十一章三角形单元测试(3)一、选择题(每题3分,共30分)1.如图,∠1的大小等于()A.40°B.50°C.60°D.70°(第1题)(第4题)2.下列长度的三条线段,能组成三角形的是()A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.在△ABC中,能说明△ABC是直角三角形的是()A.∠A:∠B :∠C=1 :2 :2 B.∠A :∠B :∠C=3 :4 :5 C.∠A :∠B :∠C=1 :2 :3 D.∠A :∠B :∠C=2 :3 :4 4.如图,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40°B.60°C.80°D.120°5.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52°B.62°C.64°D.72°(第6题) (第7题)(第9题) (第10题)7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是()A.8 B.7 C.6 D.59.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.180°C.255°D.145°10.如图,∠A,∠B,∠C,∠D,∠E五个角的和等于()A.90°B.180°C.360°D.540°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了___________________________________________________.12.正十边形每个外角的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.将一副三角尺按如图所示放置,则∠1=________.(第14题)(第16题)(第18题)15.一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.16.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.若一个“半角三角形”的“半角”为20°,则这个“半角三角形”最大内角的度数为________. 18.已知△ABC ,有下列说法:(1)如图①,若P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ; (2)如图②,若P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A . 其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.如图,一艘轮船在A 处看见巡逻艇C 在其北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇C 在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.(第19题)20.如图,BD ,CE 是△ABC 的两条高,它们交于O 点. (1)∠1和∠2的大小关系如何?并说明理由. (2)若∠A =50°,∠ABC =70°,求∠3和∠4的度数.(第20题)21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD,CE相交于点P,∠BAC=66°,∠BCE=40°.求∠ADC和∠APC的度数.(第21题)22.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证AF∥CD.(第22题)23.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,则∠ABX+∠ACX的大小是否变化?请说明理由.(第23题)24.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C均不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是________.②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第24题)答案一、1.D 2.A 3.C 4.B 5.B 6.B7.C8.B9.C10.B二、11.三角形具有稳定性12.36°13.514.105°15.1 800°16.617.120°18.2三、19.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.20.解:(1)∠1=∠2.理由如下:∵BD,CE是△ABC的两条高,∴∠AEC=∠ADB=90°.∵∠A+∠1+∠ADB=180°,∠2+∠A+∠AEC=180°,∴∠1=∠2.(2)∵∠A=50°,∠ABC=70°,∠A+∠ABC+∠ACB=180°,∴∠ACB=60°.∵在△AEC中,∠A+∠AEC+∠2=180°,∴∠2=40°.∴∠3=∠ACB-∠2=20°.∵在四边形AE O D中,∠A+∠AE O+∠4+∠AD O=360°,∠A=50°,∠AE O=∠AD O=90°,∴∠4=130°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°.∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠A P C=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°.∴∠AFC=180°-120°=60°.∴∠AFC=∠FCD.∴AF∥CD.23.解:(1)150°;90°;60°(2)∠ABX+∠ACX的大小不变.理由:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=30°,∴∠ABC+∠ACB=180°-30°=150°.∵∠YXZ=90°,∴∠X BC+∠X CB=90°.∴∠AB X+∠AC X=(∠ABC-∠X BC)+(∠ACB-∠X CB)=(∠ABC+∠ACB)-(∠X BC+∠X CB)=150°-90°=60°.∴∠AB X+∠AC X的大小不变.24.解:(1)①20°②120;60(2)存在.①当点D在线段O B上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,易知∠ABE=110°,又三角形的内角和为180°,∴只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.人教版八年级上册第十一章三角形单元测试(2)一、选择题(每题3分,共30分)1.三角形的三条高所在的直线相交于一点,这个交点的位置在()(A)三角形内(B)三角形外(C)三角形边上(D)要根据三角形的形状才能定2.下列长度的各组线段中,能组成三角形的是()(A)1、2、3(B)1、4、2(C)2、3、4(D)6、2、33.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°4.一个多边形只有27条对角线,则这个多边形的边数为()(A)8(B)9(C)10(D)115.若正多边形的内角和是540°,则该正多边形的一个外角为()A.45°B.60°C.72°D.90°6.已知一个多边形的内角和为540°,则这个多边形为A.三角形 B.四边形 C.五边形 D.六边形7.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°8.一个三角形的两边的长分别为3和8,第三边的长为奇数,则第三边的长为()(A) ①5或7 (B) 7 (C) 9 (D) 7或99.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10 B.11 C.12 D.1310.如图,AB∥CD,AD,BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是( )(A) 31° (B) 35° (C) 41° (D) 76°二、填空题(每题3分,共30分)11.如果三条线段a、b、c,可组成三角形,且a=3,b=5,c是偶数,则c的值为.第10题12.△ABC中,已知∠A=800,∠B=700,则∠C= .13.有四条线段,长分别为3cm、5cm、7cm、9cm,如果用这些线段组成三角形,可以组成个三角形.14.如果一个三角形的三个内角的度数比为1∶2∶3,则这个三角形是三角形.15.一个直角三角形两锐角的平分线所夹的钝角为.16.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.17.一个多边形的每一个外角都等于360,则该多边形的内角和等于18.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.19.如图2,将一副直角三角板叠在一起,使直角顶点重合于点O ,则 ∠AOB+∠DOC= .20.如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10则在第nn 的代数式表示).三、解答题(共60分) 21.(本题6分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?22.(本题6分)正在修建的中山路有一形状如图13所示的三角形空地需要绿化,拟从点A出发,将ABC △分成面积相等的四个三角形,以便种上不同的花草,请你帮助规划出图案.23.(本题7分)一个多边形的内角和比外角和多360度,这是几边形? 24.(本题7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O BAC =50°,∠C =70°.求∠DAC 和∠BOA 的度数.DABCPIO图1 第20题图 图3 第21题图 DE AB C图1325.(本题8分)如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.26.(本题8分)分别测量如图所示的△ABC 和△DEF 的内角 (1)你发现了什么?(2)你有何猜想? (3)通过什么途径说明你的猜想?27.(本题9分)如图,△ABC 中,∠C=90°,∠A=30°. (1)作图:作AB 边上的高CD ,垂足为D ; (2)求∠ACD ,∠BCD ,∠B 的度数;(3)用刻度尺测量BC 和AB ,CD 和AC ,DB 和BC ,将三组线段分别相除(即将BC •的长度除以AB 的长度,CD 的长度除以AC 的长度,DB 的长度除以BC 的长度),你发现了什么规律?28.(本题9分)一块三角形优良品种试验田,现引进四种不同的种子进行对比试验,需要将这块地分成面积相等的四块,请你设计出两种划分方案供选择,画图说明。

人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)

人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
解:如图,取CG的中点H,连接EH,
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

人教版初中数学八年级上册第十一单元《三角形》综合测试卷(解析版)

⼈教版初中数学八年级上册第⼗⼀单元《三⾓形》综合测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2023八上·双鸭⼭期中)下列各图中,正确画出△ABC中AC边上的⾼的是( )A.B.C.D.2.(3分)(2023七上·沭阳⽉考)⼀块矩形草坪的⻓比宽多10米,它的周⻓是132米,求宽x所列的⽅程是( )A.x+10=132B.2x+10=132C.22x+10=132D.2x−10=132 3.(3分)(2020七上·庆云⽉考)代数式|x−2|+3的最⼩值是( )A.0B.2C.3D.54.(3分)(2020八上·余⼲⽉考)在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC为( )A.等腰三⾓形B.锐⾓三⾓形C.直⾓三⾓形D.钝⾓三⾓形5.(3分)(2023七下·承德期末)下列四个选项中,∠1与∠2互为邻补⾓的是( )A.B.C.D.6.(3分)(2024八上·合江期末)根据图中的数据,可得∠B的度数为( )A .40°B .50°C .60°D .70°7.(3分)(2022七上·晋州期中)已知射线OC 在∠AOB 的内部,下列4个表述中:①∠AOC =12∠AOB ;②∠AOC =∠BOC ;③∠AOB =2∠BOC ;④∠AOC +∠BOC =∠AOB ,能表⽰射线OC 是∠AOB 的⾓平分线的有( )A .1个B .2个C .3个D .4个8.(3分)(2022八上·港南期中)下列图形具有稳定性的是( )A .B .C .D .9.(3分)(2021九下·曹县期中)如图,在平⾯直⾓坐标系中,点 A 1 , A 2 , A 3 ,…, A n 在 x 轴上,点 B 1 , B 2 ,…, B n 在直线 y 上,若点 A 1 的坐标为 (1,0) ,且 △A 1B 1A 2 , △A 2B 2A 3 ,…, △A n B n A n +1 都是等边三⾓形,从左到右的⼩三⾓形(阴影部分)的⾯积分别记为 S 1 , S 2 ,.., S n ,则 S n 可表⽰为( )A .22B .22n −C .22n −D .22n −10.(3分)(2021八上·诸暨⽉考)如图,BF 是∠ABD 的平分线,CE 是∠ACD 的平分线,BF 与CE 交于G ,若∠BDC =130°,∠BGC =100°,则∠A 的度数为( )A .60°B .70°C .80°D .90°⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)过⼗边形的⼀个顶点可作对⾓线的条数为m,则m的值为 .12.(3分)(2024七下·⽞武期中)如图1,点D在△ABC边BC上,我们知道若BDCD=ab,则S△ABDS△ACD=ab;反之亦然.如图2,BE是△ABC的中线,点F在边AB上,BE、CF相交于点O,若AFBF =m,则OEOB=  .13.(3分)(2024七下·⻄安期中)已知三⾓形两边的⻓分别为1cm,5cm,第三边⻓为整数,则第三边的⻓为 .14.(3分)(2024七下·淮阴期中)如图,在△ABC中,点D是边BC的中点,点E是AC边上⼀点,AD和BE交于点O,CE=14AC,△ABC的⾯积是2024,若把△ABO的⾯积记为S1,把四边形CDOE的⾯积记为S 2,则S1−S2的值为 .15.(3分)(2018八上·武汉⽉考)图中x的值为 .三、解答题(共7题,共65分)(共7题;共65分)16.(10分)(2018八上·潘集期中)某零件如图所⽰,按规定∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=146°,就断定这个零件不合格,你能说出其中的道理吗?17.(5分)(2023八上·鹿寨期中)已知⼀个多边形中,每个内⾓都相等,并且每个外⾓等于与它相,求这个多边形的边数及内⾓和.邻的内⾓的1818.(5分)(2023八上·城厢开学考)已知:△ABC中,图①中∠B、∠C的平分线相交于M,图②中∠B、∠C的外⾓平分线相交于N,(1)(1分)若∠A=80°,∠BMC= °,∠BNC= ° .(2)(1分)若∠A=β,试⽤β表⽰∠BMC和∠BNC19.(11分)(2016八上·肇庆期末)⼀个零件的形状如图所⽰,按规定∠A=90º,∠C=25º,∠B=25º,检验员已量得∠BDC=150º,请问:这个零件合格吗?说明理由。

人教版八年级数学上册《第11章三角形》单元测试题含答案

人教版八年级数学上册《第11章三角形》单元测试题含答案

第十一章三角形测试题一、选择题(每小题3分,共30分)1.三角形按边分类可分为( )A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2.如图1,图中三角形的个数是( )图1A.6 B.7 C.8 D.93.如图2,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中错误的是( )图2A.△AGC中,CF是AG边上的高B.△GBC中,CF是BG边上的高C.△ABC中,GC是BC边上的高D.△GBC中,GC是BC边上的高4.如图3,小明做了一个长方形框架,发现很容易变形,请你帮他选择一个最好的加固方案( )图3图45.如图5,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为( )图5A.118° B.119° C.120° D.121°6.如图6是六边形ABCDEF,则该图形的对角线的条数是( )图6A.6 B.9 C.12 D.187.如图7,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字型通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是( )图7A.75° B.80° C.85° D.90°8.如图8,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是( )图8A.x=y+z B.x=y-zC.x=z-y D.x+y+z=1809.如图9,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形(含三角形).若这两个多边形的内角和分别为M和N,则M+N不可能是( )图9A.360° B.540° C.720° D.630°10.某木材市场上木棒规格与对应价格如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m价格(元/根)101520253035小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场上购买一根木棒.则小明的爷爷至少带的钱数应为( )A.10元 B.15元 C.20元 D.25元请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是________.12.如图10,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为________cm.图1013.如图11,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是________.1114.有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为________.图1215.有一程序,如果机器人在平地上按如图13所示的步骤行走,那么机器人回到A点处行走的路程是________.图1316.如图14所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,D,E分别为垂足.若∠AFD=158°,则∠EDF=________°.图14三、解答题(共52分)17.(6分)如图15,佳佳和音音住在同一小区(A点),每天一块去学校(B点)上学.一天,佳佳要先去文具店(C点)买练习本再去学校,音音要先去书店(D点)买书再去学校.这天两人从家到学校谁走的路远?为什么?图1518.(6分)已知一个多边形的内角和与外角和之比为11∶2.(1)求这个多边形的内角和;(2)求这个多边形的边数.19.(6分)如图16,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB =60°,∠ADB=97°,求∠A和∠ACE的度数.图1620.(6分)如图17,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出橡皮筋长x的取值范围吗?图1721.(6分)如图18,它是一个大型模板,设计要求BA与CD相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°,∠D=55°,就断定这块模板是合格的,这是为什么?图1822.(7分)已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c 均为整数,求△ABC的三边长.23.(7分)如图19,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)如图①,作∠BAC的平分线AD,分别交CB,BE于点D,F.求证:∠EFD=∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD,交CB的延长线于点D,反向延长AD 交BE的延长线于点F,则(1)中的结论是否仍然成立?为什么?图1924.(8分)已知:如图20,在四边形ABCD中,∠D=90°,∠ABC=∠BCD,点E在直线BC上,点F在直线CD上,且∠AEB=∠CEF.(1)如图20①,若AE平分∠BAD,求证:EF⊥AE;(2)如图20②,若AE平分四边形ABCD的外角,其余条件不变,则(1)中的结论是否仍然成立?并说明理由.图20答案1.D 2.C 3.C . 4.B . 5.C 6.B . 7.C 8.A . 9.D 10.C 11.15 12.19 13.190° 14.105° . 15.30米 16.68 .17.解:佳佳从家到学校走的路远. 理由:佳佳从家到学校走的路是AC +CD +BD ,音音从家到学校走的路是AD +BD.∵在△ACD 中,AC +CD >AD ,∴AC +CD +BD >AD +BD ,即佳佳从家到学校走的路远.18.解:(1)360°×112=1980°.即这个多边形的内角和为1980°.(2)设该多边形的边数为n,则(n-2)×180°=1980°,解得n=13.即这个多边形的边数为13.19.解:∵∠ADB=∠DBC+∠ACB,∴∠DBC=∠ADB-∠ACB=97°-60°=37°.∵BD是∠ABC的平分线,∴∠ABC=74°,∴∠A=180°-∠ABC-∠ACB=46°.∵CE是AB边上的高,∴∠AEC=90°,∴∠ACE=90°-∠A=44°.20.解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得橡皮筋长x的取值范围为3<x<19.21.解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∵∠C+∠ADC=85°+55°=140°,∴∠F=180°-140°=40°.∵∠C+∠ABC=85°+75°=160°,∴∠E=180°-160°=20°.符合设计要求,故这块模板是合格的.22.解:(1)依题意有b≥a,b≥c.∵a +c >b ,∴a +b +c ≤3b 且a +b +c >2b ,则2b <20≤3b ,解得203≤b <10. (2)∵203≤b <10,b 为整数, ∴b =7,8,9.∵b =3c ,且c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长分别为a =8,b =9,c =3.23.解:(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC 仍然成立.理由:∵AD 平分∠BAG ,∴∠BAD =∠GAD.∵∠FAE =∠GAD ,∴∠FAE =∠BAD.∵∠EFD =∠AEB -∠FAE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.24.解:(1)证明:∵∠BAE =180°-∠ABC -∠AEB ,∠EFC =180°-∠BCD -∠CEF ,且∠ABC =∠BCD ,∠AEB =∠CEF ,∴∠BAE =∠EFC.∵AE 平分∠BAD ,∴∠BAE=∠DAE,∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°,∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.(2)EF⊥AE仍成立.理由如下:如图.∵∠1=∠ABC-∠AEB,∠F=∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠1=∠F.∵AE平分四边形ABCD的外角,∴∠1=∠2,∴∠F=∠2.∵∠2+∠EAD=180°,∴∠F+∠EAD=180°,∴∠AEF+∠D=360°-(∠F+∠EAD)=180°.∵∠D=90°,∴∠AEF=90°,∴EF⊥AE.。

人教八年级上册第11章《三角形》单元检测及答案

人教八年级上册第11章《三角形》单元检测及答案

人教八年级上册第11章《三角形》单元检测及答案一. 选择题。

(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定 2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( ) A. n 个 B. (n-1)个 C. (n-2)个 D. (n-3)个4. n 边形所有对角线的条数有( ) A.()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。

若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( ) A. 1种 B. 2种 C. 3种 D. 4种 6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( )A. 2个B. 3个C. 4个D. 5个 二. 填空题。

(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。

2. 若等腰三角形的两边长分别为3cm 和8c m ,则它的周长是 。

3. 要使六边形木架不变形,至少要再钉上 根木条。

4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。

人教新版 八年级(上)数学 第11章 三角形 单元测试卷 (含解析)

人教新版 八年级(上)数学 第11章 三角形 单元测试卷 (含解析)

第11章三角形单元测试卷一、选择题(共10小题).1.(3分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③2.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3.(3分)(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°4.(3分)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.5.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°6.(3分)如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线7.(3分)下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形8.(3分)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°9.(3分)如图,△ABC的高BD、CE相交于点H,现给出四个判断:(1)∠ABD=∠ACE;(2)∠BHC与∠A互补;(3)∠BHC=∠ABD+∠ACE+∠A;(4)∠ABD+∠ACE+∠BHC+∠CHD=180°.其中错误的个数有()A.0个B.1个C.2个D.3个10.(3分)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°二、填空题(每小题3分,共30分)11.(3分)内角和为5040°的多边形共有条对角线.12.(3分)在△ABC中,若∠A﹣∠C=25°,∠B﹣∠A=10°,则∠B=.13.(3分)在△ABC中,如果AB=7cm,AC=9cm,则边BC的取值范围是.14.(3分)如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2的度数为.15.(3分)如图,在△ABC中,AB=AC,P为线段BC延长线上一点,过P点分别作AB,AC的垂线段PD,PE,过B点作AC的垂线段BF,若PE=3,PD=9,则BF=.16.(3分)△ABC中,∠B=40°,过点A的直线将这个三角形分成两个等腰三角形,则∠C的度数为.17.(3分)如图,连接正十边形的对角线AC与BD交于点E,则∠AED=°.18.(3分)如图,对面积为a的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2AC,顺次连接A1,B1,C1,得△A1B1C1,则其面积S=(用含a的式子表示).19.(3分)在△ABC,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α度,∠B增加β度,∠C增加γ度,则α、β、γ三者之间的等量关系是.20.(3分)如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为°.三、解答题(共40分21.(6分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.22.(6分)若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?23.(6分)如图,已知四边形ABCD中,∠BAF,∠DAE是与∠BAD相邻的外角,且∠BAD:∠BAF=2:3,且∠B+∠D=190°,求∠C的度数.24.(6分)如图,在△ABC中,M是BC中点,求证:AM+BM>(AB+AC).25.(6分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?26.(10分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.四、附加题(共10分)27.观察下列各图:(1)第1个图中有1个三角形,第2个图中有3个三角形,第3个图中有6个三角形,第4个图中有个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在请通过具体计算说明理由;(3)在下图中,点B是线段AC的中点,D为AC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3.试探索S1、S2、S3之间的数量关系,并说明理由.参考答案一、选择题(每小题3分,共30分)1.(3分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③B.①②C.②③D.①③解:①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误.故选:B.2.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°﹣∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B=∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选:D.3.(3分)(n+1)边形的内角和比n边形的内角和大()A.180°B.360°C.n×180°D.n×360°解:(n+1)边形的内角和:180°×(n+1﹣2)=180°(n﹣1),n边形的内角和180°×(n﹣2),(n+1)边形的内角和比n边形的内角和大180°(n﹣1)﹣180°×(n﹣2)=180°,故选:A.4.(3分)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.解:A、B、C均不是高线.故选:D.5.(3分)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.6.(3分)如图,小军任意剪了一张钝角三角形纸片(∠A是钝角),他打算用折叠的方法折出∠C的角平分线、AB边上的中线和高线,他能成功折出的是()A.∠C的角平分线和AB边上的中线B.∠C的角平分线和AB边上的高线C.AB边上的中线和高线D.∠C的角平分线、AB边上的中线和高线解:当AC与BC重合时,折痕是∠C的角平分线;当点A与点B重合时,折叠是AB的中垂线,故选:A.7.(3分)下列说法正确的是()A.四边形的内角和大于它的外角和B.三角形中至少有一个内角不小于90°C.一个多边形中,锐角最多有三个D.每一个外角都等于15°的多边形是二十六边形解:A、∵四边形的内角和等于它的外角和,∴选项A不符合题意;B∵三角形中,锐角最多有三个,∴选项B不符合题意;C、∵一个多边形中,锐角最多有三个,∴选项C符合题意;D、∵每一个外角都等于15°的多边形是二十四边形,∴选项D不符合题意;故选:C.8.(3分)如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.40°B.80°C.90°D.140°解:由折叠的性质得:∠D=∠C=40°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+80°,则∠1﹣∠2=80°.故选:B.9.(3分)如图,△ABC的高BD、CE相交于点H,现给出四个判断:(1)∠ABD=∠ACE;(2)∠BHC与∠A互补;(3)∠BHC=∠ABD+∠ACE+∠A;(4)∠ABD+∠ACE+∠BHC+∠CHD=180°.其中错误的个数有()A.0个B.1个C.2个D.3个解:△ABC的高BD、CE相交于点H,(1)∠ABD+∠A=90°,∠ACE+∠A=90°,∴∠ABD=∠ACE,故(1)正确;(2)四边形的一组对角互补,另一组对角互补,故(2)正确;(3)∠HDC=∠A+∠ABD,∠BHC=∠HDC+∠ACE,∴∠BCH=∠A+∠ABD+∠ACE,故(3)正确;(4)∵∠BHC+∠CHD=180°,∠ABD+∠ACE+∠BHC+∠CHD>180°,故(4)错误;故选:B.10.(3分)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是()A.(m﹣60)°B.(180﹣2m)°C.(2m﹣90)°D.(120﹣m)°解:如图,连接AE.∵△ABC是等边三角形,∴∠C=∠ABC=60°,∵∠ADB=m°,∠BDE=(180﹣2m)°,∴∠ADC=180°﹣m°,∠ADE=180°﹣m°,∴∠ADC=∠ADE,∵AD=AD,DC=DE,∴△ADC≌△ADE(SAS),∴∠C=∠AED=60°,∠DAC=∠DAE,∴∠DEA=∠DBA,∴A,D,E,B四点共圆,∴∠DBE=∠DAE=∠DAC=(m﹣60)°,故选:A.二、填空题(每小题3分,共30分)11.(3分)内角和为5040°的多边形共有405条对角线.解:设内角和为5040°的多边形的边数为n,由多边形内角和定理得:(n﹣2)•180°=5040°,解得:n=30,∴这个多边形所有对角线的条数为:n(n﹣3)=×30×(30﹣3)=405.故答案为:405.12.(3分)在△ABC中,若∠A﹣∠C=25°,∠B﹣∠A=10°,则∠B=75°.解:∵∠A﹣∠C=25°,∠B﹣∠A=10°,∴∠B﹣∠C=35°①,∠A=25°+∠C,∵∠A+∠B+∠C=180°,∴25°+∠C+∠B+∠C=180°,即2∠C+∠B=155°②,②﹣①得,3∠C=120°,解得∠C=40°③,把③代入①得,∠B=75°.故答案为:75°.13.(3分)在△ABC中,如果AB=7cm,AC=9cm,则边BC的取值范围是5<BC<16.解:∵在△ABC中,AB=7cm,AC=9cm,∴9﹣7<BC<9+7,即:5<BC<16,故答案为:5<BC<16.14.(3分)如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A=52°,则∠1+∠2的度数为64°.解:∵∠A=52°,∴∠ABC+∠ACB=128°,∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°,故答案为:64°;15.(3分)如图,在△ABC中,AB=AC,P为线段BC延长线上一点,过P点分别作AB,AC的垂线段PD,PE,过B点作AC的垂线段BF,若PE=3,PD=9,则BF=6.解:连接AP.∵AB=AC,∴S△APB=S△ABC+S△ACP=AC×BF+AC×PE=×AC×(BF+PE),∵S△APB=AB×PD=AC×PD,∴BF+PE=PD.∵PE=3,PD=9,∴BF=9﹣3=6.故答案为:6.16.(3分)△ABC中,∠B=40°,过点A的直线将这个三角形分成两个等腰三角形,则∠C的度数为80°或20°或50°或35°.解:有四种情况:①AD=AC,∵AD=BD,∴∠B=∠BAD=40°,∵AD=AC,∴∠C=∠ADC=∠B+∠BAD=80°,②AC=DC,∵AC=DC,∴∠DAC=∠ADC=∠B+∠BAD=80°,∴∠C=180°﹣∠ADC﹣∠DAC=20°,③AD=DC,∵AD=DC,∴∠C=∠DAC,∵∠ADC=80°,∴∠C=(180°﹣∠ADC)=50°,④AB=BD,AD=DC,∵∠B=40°,AB=BD,∴∠ADB=∠BAD=(180°﹣∠B)=70°,∵AD=DC,∴∠C=∠CAD,∵∠C+∠CAD=∠ADB,∴∠C=∠CAD=70°=35°,故答案为:80°或20°或50°或35°.17.(3分)如图,连接正十边形的对角线AC与BD交于点E,则∠AED=126°.解:正十边形的一个内角为(10﹣2)×180°÷10=144°,∠BAE=[(5﹣2)×180°﹣144°×3]÷2=54°,∠ABE=[(6﹣2)×180°﹣144°×4]÷2=72°,则∠AED=54°+72°=126°.故答案为:126.18.(3分)如图,对面积为a的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2AC,顺次连接A1,B1,C1,得△A1B1C1,则其面积S=19a(用含a的式子表示).解:连接BC1,∵C1A=2CA,∴S△ABC1=2S△ABC,同理:S△A1BC1=2S△ABC1=4S△ABC,∴S△A1AC1=6S△ABC,同理:S△A1BB1=S△CB1C1=6S△ABC,∴S△A1B1C1=19S△ABC=19a,故答案为19a.19.(3分)在△ABC,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α度,∠B增加β度,∠C增加γ度,则α、β、γ三者之间的等量关系是α=β+γ.解:∵三角内角和是个定值为180度,∴∠A+∠B+∠C=180°∴∠A越来越小,∠B、∠C越来越大时,∴∠A﹣α+∠B+β+∠C+γ=180°,∴α=β+γ.故答案为:α=β+γ.20.(3分)如图,将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,再将△DCE沿CD对折得到△DCF,若DF刚好垂直于BC,则∠A的大小为45°.解:∵AB=AC,∴∠ABC=∠ACB,∵将等腰△ABC(∠A是锐角)沿BD对折,使得点A落在射线BC上的E点处,∴∠A=∠E,∵将△DCE沿CD对折得到△DCF,∴∠E=∠F,∠DCE=∠DCF,∵∠DCE=∠ABC+∠A,∠DCF=∠ACB+∠BCF,∴∠BCF=∠A,∴∠BCF=∠A=∠E=∠F,∵DF⊥BC,∴∠BCF=∠F=45°,∴∠A=45°,故答案为:45°.三、解答题(共40分21.(6分)如图,BD,CE分别是△ABC的高,BD和CE相交于O.(1)图中有哪几个直角三角形?(2)图中有与∠2相等的角吗?请说明理由;(3)若∠A=55°,∠ACB=65°,求∠3,∠4和∠5的度数.解:(1)∵BD,CE分别是△ABC的高,∴∠ADB=∠CDB=∠AEC=∠BEC=90°,∴图中有6个直角三角形,分别为△ABD、△CBD、△ACE、△BCE、△OBE、△OCD;(2)图中有与∠2相等的角为∠1,理由如下:∵∠2+∠A=90°,∠1+∠A=90°,∴∠1=∠2;(3)∵∠CDB=90°,∠ACB=65°,∴∠3=90°﹣∠ACB=90°﹣65°=25°,∵∠A=55°,∠ACB=65°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣55°﹣65°=60°,∵∠BEC=90°,∴∠4=90°﹣∠ABC=30°,∴∠5=∠BOC=180°﹣∠3﹣∠4=180°﹣25°﹣30°=125°.22.(6分)若把一个多边形剪去一个角,剩余的部分内角和为1440°,那么原多边形有几条边?解:设新多边形是n边形,由多边形内角和公式得(n﹣2)×180°=1440°,解得n=10,原多边形是10﹣1=9,10+1=11,故答案为:9、10或11.23.(6分)如图,已知四边形ABCD中,∠BAF,∠DAE是与∠BAD相邻的外角,且∠BAD:∠BAF=2:3,且∠B+∠D=190°,求∠C的度数.解:∵∠BAD+∠BAF=180,∠BAD:∠BAF=2:3,∴∠BAD=,∵∠C+(∠B+∠D)+∠BAD=360°,∴∠C=360°﹣(∠B+∠D)﹣∠BAD=360°﹣190°﹣72°=98°.24.(6分)如图,在△ABC中,M是BC中点,求证:AM+BM>(AB+AC).【解答】证明:∵M是BC中点,∴CM=BM,∵AM+BM>AB,AM+CM>AC,∴2(AM+BM)>AB+AC,∴AM+BM>(AB+AC).25.(6分)如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED=S△ABC=×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.26.(10分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB的大小关系,并证明你的结论.【解答】证明:(1)探索实践①在等边△ABC与等边△CDE中AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACD+∠DCM=∠DCM+∠BCE,∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE(2)②如图,作∠BAC的平分线交CP于D,连结BD,∵P是边等边△ABC中AB边的中点∴CP是AB边上的中线,由“等腰三角形的三线合一”性质知,CP是AB的垂直平分线,CP平分∠ACB,∴DB=DA,∠PCB=30°要使DB+DM最小,只要DA+DM最小,即当A,D,M共线时,且AM⊥BC时,AM 最小,此时DB+DM最小③∵∠ACD=∠CAD=∠DCM=∠ECM=30°,CM⊥AM∴DC=DA=DE,DM=EM=DE,∴AM=3ME又∵Rt△CME的边ME上的高与Rt△ACM的边AM上的高均是CM∴S△CME:S△ACM=1:3(2)思维拓展∠AGC=∠AGB理由如下:∵点B关于直线CP的对称点为B',∴BC=CB',∠CB'G=∠CBG,∴AC=BC=B'C∴∠CAB'=∠CB'A,∴∠CAB'=∠CBG,∴点A,点B,点G,点C四点共圆,∴∠AGC=∠ABC=60°,∠AGB=∠ACB=60°,∴∠AGC=∠AGB四、附加题(共10分)27.观察下列各图:(1)第1个图中有1个三角形,第2个图中有3个三角形,第3个图中有6个三角形,第4个图中有10个三角形,…,根据这个规律可知第n个图中有个三角形(用含正整数n的式子表示);(2)问在上述图形中是否存在这样的一个图形,该图形中共有25个三角形?若存在,请画出图形;若不存在请通过具体计算说明理由;(3)在下图中,点B是线段AC的中点,D为AC延长线上的一个动点,记△PDA的面积为S1,△PDB的面积为S2,△PDC的面积为S3.试探索S1、S2、S3之间的数量关系,并说明理由.解:(1)10;;(2)不存在(法一)当n=6时,三角形的个数为;当n=7时,三角形的个数为;所以不存在n使三角形的个数为25.(法二)由=25,得n(n+1)=50,而不存在两个连续整数的乘积为50,所以不存在n使三角形的个数为25.(3)S1+S3=2S2.∵点B是线段AC的中点,∴AB=BC,∴S△PAB=S△PBC,∴S1+S3=2S2.。

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.给出下列长度的三条线段,不能构成三角形的是()A.10,8,6 B.4,8,7 C.2,3,4 D.3,4,72.把一副三角板按如图所示平放在桌面上,点E恰好落在CB的延长线上FE⊥CE,则∠BDE的大小为()A.10°B.15°C.20°D.25°3.一个正多边形的每个内角都等于135°,那么它是()A.正六边形B.正十边形C.正八边形D.正十二边形4.如图,点D、E分别是△ABC边BC、AC上一点BD=2CD,AE=CE连接AD、BE交于点F,若△ABC 的面积为12,则△BDF与△AEF的面积之差S△BDF−S△AEF等于()A.1 B.2 C.3 D.45.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑皮正五边形的内角和是()A.180°B.360°C.540°D.720°6.如图AD,AE,AF分别是△ABC的中线、角平分线、高线,下列结论中错误的是()BC B.2∠BAE=∠BACA.CD=12C.∠C+∠CAF=90°D.AE=AC7.如图,在直角三角形ABC中∠BAC=90°,∠B=56°,AD⊥BC,DE//AC则∠ADE的度数为( )A.56°B.46°C.44°D.34°8.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行∠BCD=62°,∠BAC=54°当∠MAC为()度时,AM与CB平行.A.54 B.64 C.74 D.114二、填空题9.若一个三角形两边的长分别为8cm和9cm(三边长均为整厘米数),则这个三角形第三边最长可以是cm.10.已知一个正多边形的一个外角为36°,则这个正多边形的边数是.11.将一副三角板按如图所示的位置摆放,图中∠2−∠1=°.12.如图,将一把直尺摆放在含30°角的三角尺(∠A=30°,∠C=90°)上,其中顶点B在直尺的一边上,已知∠1=55°,则∠2的度数为.13.如图,在△ABC中,AD是BC边上的中线,若S△ABC=12,AC=3则点D到AC的距离为.三、解答题14.如图,在△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠DCE=10°,∠B=60°,求∠A的度数.15.如图,在△ABC中DE∥BC,F是AC上一点,FD的延长线与CB的延长线交于点G.求证:∠DGH>∠AED.16.如图,在△ABC中,D是AB上一点,E是AC上一点,BE、CD相交于点F,∠A=62°,∠ACD= 35°,∠ABE=20°求∠BFD的度数.17.如图,DE∥AB(1)判断AD与BE是否平行,并说明理由.(2)若∠A=∠C=2∠ABC,求∠E的度数.18.如图AC∥EF,∠1+∠3=180°.(1)求证AF∥CD;(2)若AC平分∠FAB,AC⊥EB于点C,∠4=78°求∠BCD的度数.参考答案1.D2.B3.C4.B5.C6.D7.A8.B9.1610.1011.3012.25°13.414.解:∵CE是AB边上的高∴∠A+∠ACE=90°,∠B+∠BCE=90°.∵CD是∠ACB的角平分线∠ACB∴∠ACD=∠BCD= 12又∵∠DCE=10°,∠B=60°∴∠BCE=90°﹣∠B=30°,∠BCD=∠BCE+∠DCE=40°∴∠ACE=∠ACD+∠DCE=∠BCD+∠DCE=50°∴∠A=90°﹣∠ACE=40°.15.证明:∵∠DGH是△DBG的一个外角∴∠DGH>∠DBG∵∠DBG是△ABC的一个外角∴∠DBG>∠C∴∠DGH>∠C∵DE∥BC∴∠AED=∠C∴∠DGH>∠AED.16.解:∵∠A=62°∴∠BDC=∠A+∠ACD=62°+35°=97°在△BDF中∵∠ABE=20°∴∠BFD=180°−∠ABE−∠BDC=180°−20°−97°=63°. 17.(1)解:AD∥BE,理由为:∵DE∥AB∴∠ABE+∠E=180°∵∠ABE+∠CDF=180°∴∠E=∠CDF∴AD∥BE;(2)解:∵∠A=∠C=2∠ABC∴5∠ABC=180°,则∠ABC=36°∴∠A=2∠ABC=72°∴∠E=∠CDF=∠A=72°.18.(1)证明:∵AC∥EF∴∠1+∠2=180°.又∵∠1+∠3=180°∴∠2=∠3.∴AF∥CD.(2)解:∵AC平分∠FAB∴∠2=∠CAD.∵∠2=∠3∴∠CAD=∠3.∵∠4+∠ADC=180°且∠4=78°∴∠ADC=180°−78°=102°.∴∠CAD=∠3=180°−102°=39°2∵AC⊥EB ∴∠ACB=90°.∴∠BCD=90°−∠3=90°−39°=51°.。

2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)

2023-2024学年人教版八年级数学上册第11章三角形 单元同步达标测试题(含答案)

2023年秋人教版八年级数学上册《第11章三角形》同步达标测试题一、单选题(满分40分)1.下列长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.5cm,5cm,11cmC.8cm,9cm,15cm D.7cm,12cm,20cm2.正十二边形的外角和为( )A.30°B.150°C.360°D.1800°3.如图,在△ABC中,BC边上的高为()A.线段AD B.线段BF C.线段BE D.线段CG4.如图,有一个与水平地面成20°角的斜坡,现要在斜坡上竖起一根与水平地面垂直的电线杆,电线杆与斜坡所夹的角∠1的度数为()A.50°B.60°C.70°D.80°5.用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠的铺成一片,就是平面图形的镶嵌.只用下面一种图形能够进行平面镶嵌的是()A.正三角形B.正五边形C.正八边形D.正十二边形6.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A.5B.10C.15D.187.将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为()A.100°B.105°C.110°D.115°8.如图,∠B=20°,∠C=60°,AD平分∠BAC,AE⊥BC,则∠DAE度数是()A.30°B.25°C.20°D.15°10.一个多边形的内角和是外角和的14.如图,在△ABC中,D为AC边的中点,积为4,则△BFC的面积为.15.如图,在△ABC中,∠ABC∠A的度数为____________.16.图①是一盏可折叠台灯,图为固定支撑杆,∠A是∠B的两倍,灯体旋转到CD′位置(图②中虚线所示∠BCD−∠DCD′=120°,则∠DCD三、解答题(满分40分)17.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?18.如图,在ΔABC中,AD是高,∠DAC=10°,AE是ΔABC外角∠MAC的平分线,交BC 的延长线于点E,BF平分∠ABC交AE于点F,若∠ABC=46°,求∠AFB和∠E的度数.19.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移5格,再向下平移1格.请在图中画出平移后的△A′B′C′;(2)利用网格在图中画出△ABC的中线CD,高线AE;(3)△A′B′C′的面积为__________;(4)在图中能使S△ABC=S△PBC的格点P的个数有__________个(点P异于A).20.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥EC;(2)若CE⊥AE于点E,∠F=50°,求∠ADF的度数.21.如图,已知△ABC中,点D、E分别在边AB、AC上,点F在BE上.(1)若∠ADE=∠ABC,(2)若D、E、F分别是△ABC的面积.(1)如图1,这是一个五角星,则(2)如图2,将五角星截去一个角后多出一个角,求参考答案∵电线杆与水平地面垂直,∴∠2=90°,∴∠1=∠3=180°−20°−90°故答案为:三角形具有稳定性.10.解:由题意,得:(n−2)180°=2×360°,解得:n=6;∴这个多边形的边数为6;故答案为:611.解:∵a+b>c,b−a<c,c+b>a,∴a+b−c>0,b−a−c<0,c−a+b>0,∴|a+b−c|+|b−a−c|+|c−a+b|=a+b−c+a+c−b+c−a+b=a+b+c故答案为:a+b+c.12.解:由折叠的性质得∠ADE=∠ADC=110°,∵∠ADB=180°−∠ADC=70°,∴∠BDE=110°−∠ADB=110°−70°=40°,∵DE∥AB,∴∠B=∠BDE=40°.故答案为:40.13.解:∵AB∥CD,∠B+∠D=70°,∴∠B=∠HGD,∵∠EHF是△HGD的一个外角,∴∠EHF=∠HGD+∠D,∴∠EHF=∠B+∠D=70°,∵∠1+∠2+∠EHF=180°,∴∠1+∠2=180°−∠EHF=110°.∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D′G⊥AB,∴∠AGC=∠AFC=90°,在四边形AFCG中,∠AGC+∠GCF+∠AFC(4)如图,利用等高模型,在图中能使S△ABC=S△PBC的格点P在直线m,n上(除点A 外),总共有21个;故答案为21.20.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,在△AFD中,∠F=50°∴∠ADF=180°−90°−50°=40°.21.(1)证明:∵∠ADE=∠ABC,∴DE∥BC,∴∠AED=C,∵∠EDF=∠C,∴∠EDF=∠AED,∴DF∥AC;(2)解:∵点F是BE中点,∴S△DEF=S△DBF,设S△DEF=S△DBF=x,∵D是AB中点,∴S△ADE=S△BDE=2x,∵E是AC中点,∴S△ABE=S△CBE=4x,S△CEF=2x,=3x∴S四边形DECF∵S=9,四边形DECF∴3x=9,x=3,∴S△ABC=2S△ABE=8x=24.22. 解:(1)如图,由三角形的外角性质,得∠A+∠C=∠1,∠B+∠D=∠2,∵∠2+∠1+∠E=180°∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°;(2)如图,延长CA与DG相较于点H,∠CAG和∠AGD是△HAG的两个外角,则∠CAG=∠H+∠AGH,∠AGD=∠H+∠HAG,∴∠CAG+∠AGD=∠H+∠HGA+∠H+∠HAG=∠H+180°,∴∠GAC+∠B+∠C+∠D+∠E+∠AGD=180°+180°=360°,故∠A+∠B+∠C+∠D+∠E+∠G的度数为360°.(3)由(2)知,每截去图1中的一个角,剩余角的度数会增加180°,图1中,∠A+∠B+∠C+∠D+∠E=180°,在题图3中,去掉五个角后,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠J =180°+5×180°=1080°.。

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-附答案(人教版)一、单选题(本大题共12小题,每小题3分,共36分)1.下列说法中正确的是( ) A .直角三角形的高只有一条B .锐角三角形的三条高交于三角形内部C .直角三角形的高没有交点D .钝角三角形的三条高所在的直线没有交点 2.如图,在ABC 中,延长BC 至点D ,使CD BC =,记ABC 的面积为1S ,ACD 的面积为2S ,则1S 与2S 的大小关系是( )A .12S S >B .12S S <C .12S SD .不能确定3.现有长度分别为2cm 、4cm 、5cm 、7cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .44.如图,在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O,若∠A=70°,则∠BOC 的度数为( )A .100°B .120°C .125°D .130°5.如图,在ABC 中9065C B ∠=︒∠=︒,,点D 、E 分别在AB AC 、上,将ADE 沿DE 折叠,使点A 落在点F 处.则BDF CEF ∠-∠=( )∠∠A=∠B=2∠C;∠∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.下列说法中错误的是().A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形的一个外角大于任何一个内角D.三角形的三条高至少有一条高在三角形的内部8.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.8B.7或8C.7或8或9D.8或9或10A.1B.2C.3D.4分别平分ABC的外角2A.∠∠∠B.∠∠∠C.∠∠∠D.∠∠∠∠11.如图,在直角三角形ABC中90∠=︒,AB=3,AC=4,BC=5,DE//BC,若点A到DE的距离是1,则DEA与BC之间的距离是()A.2B.1.4C.3D.2.412.从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A.36°B.40°C.45°D.60°二、填空题(本大题共8小题,每小题3分,共24分)13.已知三点M 、N 、P 不在同一条直线上,且MN=4厘米,NP=3厘米,M 、P 两点间的距离为x 厘米,那么x 的取值范围是 .14.如图1,为响应国家新能源建设,某市公交站亭装上了太阳能电池板.当地某一季节的太阳光(平行光线)与水平线最大夹角为62︒,如图2,电池板AB 与最大夹角时刻的太阳光线相垂直,此时电池板CD 与水平线夹角为48︒,要使//AB CD ,而将电池板CD 逆时针旋转α度,则α为 .()090α<<15.如图,ABC 中55A ∠=︒,90ACB ∠=︒将ABC 沿过C 点的直线折叠,使A 点落在边BC 上的E 点处,折痕交边AB 于点D ,则BDE ∠= .16.如图,图中x 的值为 .17.三角形的三边长分别为2,5,32x -则x 的取值范围是 .18.如图,在∠ABC 中,AB >AC ,AE∠BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .19.如图中36B ∠=︒,76C ∠=︒且AD 、AF 分别是ABC 的角平分线和高,DAF ∠= .20.在△ABC 中,若A B C ∠=∠-∠,则B ∠的度数为 度.三、解答题(本大题共5小题,每小题8分,共40分)21.如图,△ABC 的面积为21平方厘米,DC =3DB ,AE =ED ,求阴影部分面积.22.如图:已知在ABC 中,AD 平分BAC ∠,AE BC ⊥垂足为E ,38B ∠︒=和70C ∠︒=求DAE ∠的度数.23.如图,在ABC 中,AD 是BAC ∠的平分线,DE AC ∥交AB 于点E 且55B ∠=︒,95ADC ∠=︒求AED ∠的度数.24.如图,AB△CD,AC△BE,△MAC=40,△D=50°,CH平分△ACD,BH平分△ABD(1)求△EBH的角度(2)求△BHC的角度25.如图,在△ABC中,点D是∠ACB与∠ABC的角平分线的交点,BD的延长线交AC于点E.(1)若∠A=80°,求∠BDC的度数;(2)若∠EDC=40°,求∠A的度数;(3)请直接写出∠A与∠BDC之间的数量关系(不必说明理由).参考答案:1.B2.C3.B。

八年级数学上册《第十一章 三角形》单元测试卷附答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷附答案-人教版

八年级数学上册《第十一章三角形》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.以下列每组数为长度(单位:)的三根小木棒,其中能搭成三角形的是()A.2,2,4 B.1,2,3 C.3,4,5 D.3,4,82.如图,是的中线,点E为的中点,连接,若的面积为,则的面积为()A.3 B.5 C.4 D.63.在中,AB=2n-5,AC=4,BC=13,则的取值范围是()A.B.C.D.4.如图,在三角形中,为的平分线∠ABC=115°,∠A=25°则的度数为()A.B.C.D.5.如图,足球的表面是由正五边形和正六边形拼接而成,其中黑皮的正五边形有12块,白皮的正六边形有20块.如图,足球图片中的一块黑色皮块的内角和是()A.180°B.360°C.540°D.720°6.如图,已知直线,∠CAB=135°,∠ABD=75°,则等于()A.B.C.D.7.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.180米B.110米C.120米D.100米8.把一块直角三角板和一把直尺如图放置,若,则的度数等于()A.B.C.D.二、填空题9.来修理一条摇晃的凳子的数学原理是利用三角形的.10.如图,AD∥BC,AD=2,BC=3,三角形ABC的面积是4,那三角形ACD的面积是.11.如图,AC⊥BD于点C,已知∠A=40°,∠AEF=70°,则∠D=.12.如图,已知为的中线,为的中线.过点作于.若的面积为40,EF=5,则的长为.13.如图,直线,直线分别交,于点E,F,EG平分,交于点G.已知,则的度数为.14.“花影遮墙,峰峦叠窗”,苏州园林空透的窗棂中蕴含着许多的数学元素.图①中的窗棂是冰裂纹窗棂,图②是这种窗棂中的部分图案.若∠1+∠3+∠5=186°,则∠2+∠4+∠6=°.三、解答题15.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=100°,求∠A和∠ACE的度数.16.已知:如图,过AC上一点D,作交BC于点F.求证:.17.如图,在三角形中,AB=10cm,AC=6cm,是的中点,点在边上.若三角形的周长与四边形的周长相等,求线段的长.18.在中,于,是的平分线,∠A=20°,∠B=60°;求:(1)的度数;(2)的度数;(3)的度数.19.已知:如图,四边形中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:(1)(2).参考答案1.C2.A3.B4.D5.C6.B7.D8.B9.稳定性10.11.20°12.413.14.36615.解:∵∠ADB=∠DBC+∠ACB∴∠DBC=∠ADB﹣∠ACB=100°﹣60°=40°.∵BD是角平分线∴∠ABC=80°∴∠A=180°﹣∠ABC﹣∠ACB=40°;∵CE是高∴∠AEC=90°∴∠ACE=90°﹣∠A=50°16.证明:∵∴∵∴∵∴.17.解:由图可知:三角形的周长,四边形的周长又∵三角形的周长与四边形的周长相等,是的中点∴∴又∵∴∴∴cm18.(1)解:由得(2)解:(3)解:是的平分线.19.(1)证明:∵∠A+∠ABC+∠C+∠CDA=360°,∠A=∠C=90°∴∠ABC+∠CDA=180°.∵BE、DF分别是∠ABC、∠ADC的角平分线∴∠1=∠ABC,∠2=∠ADC∴∠1+∠2=(∠ABC+∠ADC)=×180°=90°.(2)证明:∵∠2+∠DFC=90°,∠1+∠2=90°∴∠2=90°-∠1∴90°-∠1+∠DFC=90°∴∠1=∠DFC∴BE∥DF.。

2023-2024学年数学人教版八年级上册第11章三角形 单元测试题(含解析)

2023-2024学年数学人教版八年级上册第11章三角形 单元测试题(含解析)

第11章 三角形 单元测试题一、单选题1.根据下列已知条件,能确定的形状和大小的是( )A .,,B .,,C .,,D .,,2.如图,一只手握住了一个三角形的一部分,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .以上都有可能3.如图,为估计池塘两岸,间的距离,小明在池塘一侧选取了一点,测得,,那么间的距离不可能是( )A .B .C .D .4.如图,人字梯中间一般会设计一“拉杆”,这样做的道理是( )A .三角形具有稳定性B .垂线段最短C .两点之间,线段最短D .两直线平行,内错角相等5.在中,,若,则等于( )A .B .C .D .6.如图,AE ,AD 分别是的高和角平分线,,,则的度数为( )ABC 30A ∠=︒=60B ∠︒90C ∠=︒40A ∠=︒50B ∠=︒5cm AB =5cm AB =4cm AC =30B ∠=︒6cm AB =4cm BC =30A ∠=︒A B P 14m PA =10m PB =AB 4m 15m 20m 22m Rt ABC 90C ∠=︒50A ∠=︒B ∠55︒50︒45︒40︒ABC 30B ∠=︒70C ∠=︒DAE ∠A .40°B .20°C .10°D .30°7.四边形具有不稳定性,如图,挤压矩形ABCD ,会产生变形,得到四边形EBCF ,则在这个变化过程中,关于矩形ABCD 的周长和面积,下列说法正确的是( )A.周长和面积都不变B.周长不变,面积变小C .周长变小,面积不变D .周长变小,面积变小8.一个多边形每个外角都等于,则从这个多边形的某个顶点画对角线,最多可以画出几条( )A .7条B .8条C .9条D .10条9.正五边形的每个内角度数为( )A .B .C .D .10.一个正多边形的外角等于36°,则这个正多边形的内角和是( )A .1440°B .1080°C .900°D .720°11.一个多边形截去一个角后,形成另一个多边形的内角和为,那么原多边形的边数为( )A .5B .5或6C .6或7D .5或6或712.小磊利用最近学习的数学知识,给同伴出了这样一道题:假如从点A 出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转θ……如此下去,当他第一次回到A 点时,发现自己走了60米,θ的度数为( )A .28°B .30°C .33°D .36°二、填空题36︒72︒100︒108︒120︒720︒14.如图,在中, .15.如图,在中,上,且,则16.大桥钢架、索道支架、人字梁等为了坚固,学校门口的电动推拉门是利用四边形的17.如图,两条平行线l 1、那么∠2= .ABC A ∠=ABC ∆∠DE BC ∥EDC ∠三、解答题(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm ,AD=7 cm 时,求△ABC 22.已知:在中,,分别是(1)若,.求(2)试求与有何关系?23.如图,在中,(1) ;(2)若是两条外角平分线的交点,则ABC AD AE 30B ∠=︒50C ∠=︒DAE ∠DAE ∠C B ∠-∠ABC 50BAC ∠=︒BIC ∠=︒D(3)在(2)的条件下,若是内角和外角的平分线的交点,试探索与的数量关系,并说明理由.E ABC ∠ACG ∠BEC ∠BAC ∠参考答案:1.B解:A 、∠A =30°,∠B =60°,∠C =90°,△ABC 的形状和大小不能确定,故不符合题意;B 、∠A =40°,∠B =50°,AB =5cm ,则利用“ASA”可判断△ABC 是唯一的,故符合题意;C 、AB =5cm ,AC =4cm ,∠B =30°,△ABC 的形状和大小不能确定,故不符合题意;D 、AB =6cm ,BC =4cm ,∠A =30°,△ABC 的形状和大小不能确定,故不符合题意. 2.D解:A 、当另外两角为44°和100°时,该三角形为钝角三角形,B 、当另外两角为90°和54°时,该三角形为直角三角形,C 、当另外两角为80°和64°时,该三角形为锐角三角形,∴钝角三角形,直角三角形,锐角三角形都有可能,3.A解:,,,即,间的距离不可能是:.4.A解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性.5.D解:在中,,,,,6.B解:∵,,AE ⊥BC ,∴∠BAC=80°,∠AEB=90°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=40°,在△AEB 中,∠AEB+∠B+∠BAE=180°,∴∠BAE=60°,14m PA = 10m PB =PA PB AB PA PB ∴-<<+4m 24m AB <<AB ∴4m Rt ABC =90C ∠︒ =50A ∠︒=90A B ∴∠+∠︒=9050=40B ∴∠︒-︒︒30B ∠=︒70C ∠=︒∴∠EAD=∠BAE-∠BAD=60°-40°=20°;7.B解:因为把长方形拉成平行四边形后,每个边的长度不变,所以它的周长就不变;但是平行四边形的高比长方形的宽变小了,所以平行四边形的面积就变小了.8.A解:根据题意可知多边形为正多边形,设边数为则由多边形外角和的性质可得,解得则从一个顶点最多可以画10-3=7条对角线9.C解:,∴正五边形的每个内角度数为 10.A解:∵一个正多边形的外角等于36°,∴这个正多边形是正十边形,∴内角和为(10﹣2)×180°=1440°,11.D解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1,②只过一个顶点剪,则和原来边数相等,③按照顶点连线剪,则比原来的边数少1,设内角和为的多边形的边数是n ,∴,解得:.则原多边形的边数为5或6或7.12.Bn36360n ︒⨯=︒10n =()180525=108︒⨯-÷︒108︒720︒()2180720n -⋅︒=︒6n =。

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版

八年级数学上册《第十一章 三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果一个多边形的内角和等于360度,那么这个多边形的边数为( )A .4B .5C .6D .72.已知三角形的两边长分别为4和9,则此三角形的第三边长可以是( )A .4B .5C .9D .133.如图,在△ABC 中,∠C =90°,若BD ∥AE ,∠DBC =20°,则∠CAE 的度数是( )A .40°B .60°C .70°D .80°4.如图,在 ABC 中,点 D 是 BC 边的延长线上一点, ABC ∠ 与 ACD ∠ 的平分线相交于点 E ,若 50A ∠=︒ ,则 E ∠= ( )A .25°B .30°C .40°D .45°5.在△ABC 中,如图,CD 平分∠ACB ,BE 平分∠ABC ,CD 与BE 交于点F ,若∠DEF=120°,则∠A=( )A .30°B .45°C .60°D .90°6.如图,在五边形ABCDE 中,∠A+∠B+∠E=∠EDC+∠BCD+140°,DF ,CF 分别平分∠EDC 和∠BCD ,则∠F 的度数为( )A .100°B .90°C .80°D .70°7.如图,在ABC 中AB AC =,中线AD 与角平分线CE 相交于点F ,已知40ACB ∠=︒,则AFC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒8.如图,从ABC 各顶点作平行线AD EB FC ,各与其对边或其延长线相交于点D ,E ,F.若ABE 的面积为1S ,AFC 的面积为2S ,EDC 的面积为3S ,只要知道下列哪个值就可以求出DEF 的面积( )A .12S S +B .123S S S ++C .3SD .1232S S S ++二、填空题:(本题共5小题,每小题3分,共15分.)9.为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是10.从一个多边形的顶点出发,分别连接这个点与其余各个顶点,得到分割成的十个三角形,那么,这个多边形为 边形.11.已知 ABC 的高为 AD , ∠BAD=65°,∠CAD=25° ,则 BAC ∠ 的度数是 .12.如图,小明在操场上从A 点出发,沿直线前进5米后向左转40°,再沿直线前进5米后,又向左转40°,照这样走下去,他第一次回到出发地A 点时,一共走了 米.13.纸片△ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C 落在△ABC 内(如图),若∠1=20°,则∠2的度数为 .三、解答题:(本题共5题,共45分)14.在△ABC 中,∠ADB=100°,∠C=80°,∠BAD= ∠DAC ,BE 平分∠ABC ,求∠BED 的度数15.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD 与CE 相交于点P ,∠BAC=66°,∠BCE=40°,求∠ADC 和∠APC 的度数.16.如图所示,在 ABC ∆ 中,∠A=38° ,∠ABC=70° , CD AB ⊥ 于点 D , CE 平分 ACB ∠ , DF CE ⊥ 于点 F ,求 CDF ∠ 的度数.17.如图,AD 为△ABC 的中线,BE 为△ABD 的中线,过点E 作EF 垂直BC ,垂足为点F .(1)∠ABC=35°,∠EBD=18°,∠BAD=30°,求∠BED的度数;(2)若△ABC的面积为30,EF=5,求CD的长度.18.在△ABC中,∠C=90°,BD是△ABC的角平分线,P是射线AC上任意一点(不与A、D、C 三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.(1)如图,当点P在线段AC上时,说明∠PDE=∠PED.(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.参考答案:1.A 2.C 3.C 4.A 5.C 6.C 7.B 8.C9.三角形的稳定性10.十二11.90°或40°12.4513.60°14.解答:∵∠ADB=100°,∠C=80°∴∠DAC=∠ADB-∠C=100°-80°=20°∵∠BAD= ∠DAC∴∠BAD= ×20°=10°在△ABD 中,∠ABC=180°-∠ADB-∠BAD=180°-100°-10°=70° ∵BE 平分∠ABC∴∠ABE= ∠ABC= ×70°=35°∴∠BED=∠ABE+∠BAD=35°+10°=45°.15.解:∵AD 是△ABC 的角平分线,∠BAC=66°∴∠BAD=∠CAD= 12∠BAC=33° ∵CE 是△ABC 的高∴∠BEC=90°∵∠BCE=40°∴∠B=50°∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°16.∵在 ABC 中, ∠A=38°, ∠ABC=70°∴∠ACB =180°−∠A −∠ABC =72°∵CE 平分 ACB ∠∴∠ECB =12∠ACB =36°∵CD AB ⊥ 于点 D∴90CDB ∠=︒∴在 CDB 中∴∠FCD =∠ECB −∠DCB =36°−20°=16°∵DF CE ⊥ 于点 F∴∠CDF =90°−∠FCD =74°17.(1)解:∵∠ABC =35°,∠EBD =18°∴∠ABE =35°﹣18°=17°∴∠BED =∠ABE+∠BAD =17°+30°=47°(2)解:∵AD 是△ABC 的中线∴S△ABD=12S△ABC又∵S△ABC=30∴S△ABD=12×30=15又∵BE为△ABD的中线∴S△BDE=12S△ABD∴S△BDE=12×15=152∵EF⊥BC,且EF=5∴S△BDE=12•BD•EF∴12•BD×5=152∴BD=3∴CD=BD=3.18.(1)解:∵PQ⊥AB∴∠EQB=∠C=90°∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°∵BD为∠ABC的平分线∴∠CBD=∠EBQ∵∠PED=∠BEQ∴∠PDE=∠PED(2)解:当P在线段AC上时,如图1所示,此时PF∥BD理由为:∵∠PDE=∠PED∴PD=PE∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角∴∠CPF=∠QPF=∠PDE=∠PED∴PF∥BD;当P在线段AC延长线上时,如图2所示,PF⊥BD 理由为:∵∠PDE=∠PED∴PD=PE∵PM为∠CPQ的平分线∴PF⊥BD。

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷(含答案解析)

人教版八年级上册数学第11章《三角形》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2cm,5 cm,8cm B.3 cm,3 cm,6 cmC.3 cm,4 cm,5 cm D.1 cm,2cm,3 cm2.在△ABC中,∠A=80°,∠B=50°,则∠C的余角是()A.130°B.50°C.40°D.20°3.如第3题图,∠C=25°,∠AED=150°,则∠CDE为()第3题图A.100°B.115°C.125°D.155°4.如第4题图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()第4题图A.25°B.50°C.65°D.70°5.如第5 题图,工人师傅砌门时,常用木条EF固定长方形门框,使其不变形,这样做的根据是()第5题图A.三角形具有稳定性B.两点确定一条直线C.两点之间线段最短D.三角形内角和180°6.如果将一副三角板按如第6题图方式叠放,那么∠1=()第6题图A.90°B.100°C.105°D.135°7.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个B.2个C.3个D.4个8.一个正多边形的一个内角是它相邻外角的5倍,则这个正多边形的边数是()A.12 B.10 C.8 D.69.如第9题图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为()第9题图A.40°B.41°C.42°D.43°10.在△ABC中,∠A=150°.第一步:在△ABC上方确定一点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB,如第10题图1.第二步:在△A1BC上方确定一点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA,如第10题图2.照此下去,至多能进行()步.第10题图1 第10题图2A.3 B.4 C.5 D.6二、填空题(每小题4分,共24分)11.如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是.12.如第12题图,∠A+∠B+∠C+∠D+∠E+∠F=度.第12题图13.下列第13题图1、图2、图3中,具有稳定性的是图.图1 图2 图3第13题图14.如第14题图是由射线AB、BC、CD、DE、EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.。

八年级数学上册《第十一章 三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章 三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、单选题1.下列语句正确的是()A.三角形的角平分线、中线和高都在三角形内B.直角三角形的高只有一条C.三角形的高至少有一条在三角形内D.钝角三角形的三条高都在三角形外2.正多边形的每一个外角都等于45°,则这个多边形的边数是()A.6 B.7 C.8 D.93.已知三角形的两边长分别是4、7,则第三边长a的取值范围是()A.3<a<11 B.3≤a≤11 C.a>3 D.a<114.如图,∠1+∠2+∠3+∠4+∠5+∠6=()A.180°B.270°C.360°D.不能确定5.如图,在△ABC中AB=AC,点D是B C延长线上一点,且∠BAC=2∠CAD已知BC=4,AD= 7则△ACD的面积为()A.7 B.14 C.21 D.286.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么()A.S1<S2<S3B.S1>S2>S3C.S1=S2=S3D.S2<S1<S37.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A.180°B.270°C.360°D.720°8.如图,将三角尺的直角顶点放在直尺的一边上∠1=30°,∠2=50°则∠3的度数等于()A.20°B.30°C.50°D.80°二、填空题9.在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是.10.正多边形的每一个内角比相邻的外角大90°,则这个多边形的边数是11.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5则∠B=度,∠C=度.12.如图,已知AB//DE,∠ABC=70°,∠CDE=140°则∠BCD=.13.如图,△ABC中,点D在BC上且BD=2DC,点E是AC中点,已知△CDE面积为2,那么△ABC的面积为.14.如图所示,在△ABC中∠A=66°,点I是三条角平分线的交点,则∠BIC的大小为三、解答题15.将长度为24的一根铝丝折成各边均为正整数的三角形,这个三角形的三边分别记为a、b、c,且a≤b≤c,请写出满足题意的a、b、c.16.已知:如图,△ABC的两条高线BD、CE相交于H点∠A=56°求∠BHC的度数.17.探索归纳:(1)如图1,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( ) A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中∠A=40°,剪去∠A后成四边形,则∠1+∠2=(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.18.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.如图,已知直线AB,CD,AC上的点M,N,E满足ME⊥NE,∠AME+∠CNE=90°,∠ACD的平分线CG 交MN于G,作射线GF∥AB.(1)直线AB与CD平行吗?为什么?(2)若∠CAB=66°,求∠CGF的度数.参考答案1.C2.C3.A4.C5.A6.C7.C8.A9.115°10.811.60;10012.30°13.1214.123°15.解答:∵a+b+c=24,且a+b>c,a≤b≤c,∴8≤c≤11,即c=8,9,10,11,故可得(a,b,c)共12组:当c=11时,有:2,11,11; 3,10,11;4,9,11;5,8,1;6,7,11.当c=10时,有:4,10,10;5,9,10;6,8,10;7,7,10.当c=9时,有: 6,9,9;7,8,9.当c=8时,有:8,8,8.16.∵BD⊥AC,CE⊥AB∴∠AEH=∠ADH=90°在四边形AEHD中,∠AEH=∠ADH=90°,∠A=56°∴∠EHD=360°-∠AEH-∠ADH-∠A=360°-90°-90°-56°=124°∵∠BHC与∠EHD是对顶角∴∠BHC=∠EHD=124°.17.(1)C(2)220°(3)∠1+∠2=180°+∠A(4)∵△EFP是由△EFA折叠得到的∴∠AFE=∠PFE,∠AEF=∠PEF∴∠1=180°﹣2∠AFE,∠2=180°﹣2∠AEF∴∠1+∠2=360°﹣2(∠AFE+∠AEF)又∵∠AFE+∠AEF=180°﹣∠A∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A.18.解:∵DE=EB∴设∠BDE=∠ABD=x∴∠AED=∠BDE+∠ABD=2x∵AD=DE∴∠AED=∠A=2x∴∠BDC=∠A+∠ABD=3x∵BD=BC∴∠C=∠BDC=3x∵AB=AC∴∠ABC=∠C=3x在△ABC中,3x+3x+2x=180°解得x=22.5°∴∠A=2x=22.5°×2=45°.19.(1)解:∵六边形ABCDEF的内角相等∴∠B=∠A=∠BCD=120°∵CF∥AB∴∠B+∠BCF=180°∴∠BCF=60°∴∠FCD=60°(2)解:∵∠AFC=360°﹣120°﹣120°﹣60°=60°∴∠AFC=∠FCD∴AF∥CD20.(1)解:平行,理由如下:∵ ME⊥NE,即∠MEN=90°∴∠AEM+∠CEN=90°又∵∠AME+∠CNE=90°∴∠A+∠ECN=180°+180°-(∠AEM+∠CEN+∠AME+∠CNE) =360°-90°×2=180°∴ AB∥CD.(2)解:∵GF∥AB, AB∥CD∴GF∥CD∴∠GNC=∠FGN∴∠CGF=∠CGN+∠FGN=∠CGN+GNC=180°-∠GCN∵AB∥CD,∠CAB=66°∴∠ACD=180°-∠CAB=180°-66°=114°∴CG 平分∠ACD∠ACD=57°∴∠GCN=12∴∠CGF=180°-∠GCN=180°-57°=123°。

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)

人教版数学八年级上册 第十一章《三角形》单元测试题(配套练习附答案)
∴∠C=60°,
∵BD平分∠ABC,
∴∠DBC=35° ,
∴∠BDC=180°﹣60°﹣35°=85°.
故答案为85°.
17.若n边形的内角和是它的外角和的2倍,则n=.
【答案】6
【解析】
此题涉及多边形内角和和外角和定理
多边形内角和=180(n-2),外角和=360º
所以,由题意可得180(n-2)=2×360º
16.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.
【答案】85°.
【解析】
【分析】
根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.
【详解】∵在△ABC中,∠A=50°,∠ABC=70°,
【答案】2cm2
【解析】
【分析】
由点E为AD的中点,可得△ABC与△BCE的面积之比,同理可得,△BCE和△EFC的面积之比,即可解答出.
【解析】
解:如图2,连接BE,由对顶三角形可得,∠C+∠D=∠CBE+∠DEB.∵五边形ABEFG中,∠A+∠ABE+∠BEF+∠F+∠G=540°,即∠A+∠ABC+∠CBE+∠BED+∠DEF+∠F+∠G=540°,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F+∠G=540°.故答案为540.
点睛:本题主要考查了多边形内角和定理的运用,解决问题的关键是作辅助线构造“对顶三角形”以及五边形,并得出∠C+∠D=∠CBE+∠DEB.解题时注意,五边形的内角和为540°.

八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章-三角形》单元测试卷-带答案(人教版)

八年级数学上册《第十一章三角形》单元测试卷-带答案(人教版)一、选择题(共9题)1.下列图形中具有稳定性的是( )A.B.C.D.2.判断下列说法,正确的是( )A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补3.等腰三角形的两边长分别是5cm和11cm,则它的周长是( )A.27cm B.21cmC.27cm或21cm D.无法确定4.两根木棒分别为5cm和6cm,要选择第三根,将它们钉成一个三角形,如果第三根木棒长为偶数,则方法有( )A.3种B.4种C.5种D.6种5.如图所示,直线m∥n,∠1=63∘,∠2=34∘则∠BAC的大小是( )A.73∘B.83∘C.77∘D.87∘6.如图l1∥l2,∠1=120∘,∠2=100∘,则∠3=( )A.20∘B.40∘C.50∘D.60∘7.将一副直角三角板按如图所示的位置放置,使含30∘角的三角板的一条直角边和含45∘角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.35∘B.45∘C.60∘D.75∘8.如图,在△ABC中,E,F分别是AD,CE边的中点,且S△ABC=8cm2,则S△BEF为( )A.4cm2B.3cm2C.2cm2D.1cm29.如图,△ABC中,∠ABC=50∘,∠ACB=70∘,AD平分线∠BAC,过点D作DE⊥AB于点E,则∠ADE的度数是( )A.45∘B.50∘C.60∘D.70∘二、填空题(共5题)10.一个正多边形的每个内角都是150∘,则它是正边形.11.如图,△ABC中,∠BAC=70∘,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=度.12.如图,直线a∥b,∠1=60∘,∠2=40∘则∠3=∘.13.如图,△ABC的∠A为40∘,剪去∠A后得到一个四边形,则∠1+∠2=度.14.如图∠A=20∘,∠B=30∘,∠C=50∘则∠ADB的度数.三、解答题(共6题)15.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50∘,∠C=80∘求∠DAE的度数.16.如图,在△ABC中∠B=∠C=45∘点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.(1) 当∠BAD=60∘,则∠CDE的度数是:.(2) 当点D在BC(点B,C除外)边上运动时,设∠CDE=α,请用α表示∠BAD,并说明理由.17.在△ABC中∠B<∠C,AQ平分∠BAC,交BC于点Q,P是AQ上的一点(不与点Q重合)PH⊥BC于点H.(1) 若∠C=2∠B=60∘,如图1,当点P与点A重合时,求∠QPH的度数;(2) 当△ABC是锐角三角形时,如图2,试探索∠QPH,∠C,∠B之间的数量关系,并说明理由.18.如图,已知点E,F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1) 请说出AB∥CD的理由.(2) 若∠EHF=100∘,∠D=30∘,求∠AEM的度数.19.如图,在四边形ABCD中∠B=50∘,∠C=110∘,∠D=90∘,AE⊥BC,AF是∠BAD的平分线,与边BC交于点F.求∠EAF的度数.20.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1) 判断DE与BF是否平行?并说明理由;(2) 试说明:∠C=2∠P.参考答案1.【答案】A2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】C9.【答案】C10.【答案】十二11.【答案】3512.【答案】8013.【答案】22014. 100°15. 【答案】∵△ABC中∠B=50∘,∠C=80∘∴∠BAC=180∘−∠B−∠C=180∘−50∘−80∘=50∘,∵AE是∠BAC的平分线∠BAC=25∘∴∠EAC=12∵AD是BC边上的高∴在直角△ADC中∠DAC=90∘−∠C=90∘−80∘=10∘∴∠DAE=∠EAC−∠DAC=25∘−10∘=15∘.16.【答案】(1) 30∘ (2) ∠BAD=2α.证明:设∠BAD=x∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=45∘+x∵∠AED是△CDE的外角∴∠AED=∠C+∠CDE∵∠B=∠C,∠ADE=∠AED∴∠ADC−α=∠45∘+x−α=45∘+α解得:∠BAD=2∠CDE=2α.17.【答案】(1) ∵∠C=2∠B=60∘∴∠B=30∘,∠BAC=180∘−60∘−30∘=90∘.∵AQ平分∠BAC∠BAC=45∘∴∠BAQ=∠QAC=12∴∠AQH=∠B+∠BAQ=30∘+45∘=75∘∵PH⊥BC∴∠PHQ=90∘∴∠QPH=∠QAH=90∘−75∘=15∘.(2) 如图,过点A作AG⊥BC于点G 则∠PHQ=∠AGQ=90∘∴PH∥AG∴∠QPH=∠QAG设∠QPH=∠QAG=x∵AQ平分∠BAC∴∠BAQ=∠QAC=x+∠GAC∵∠AQH=∠B+∠BAQ又∠AQH=90∘−x∴∠BAQ=90∘−x−∠B.∴x+∠GAC=90∘−x−∠B∵AG⊥BC∴∠GAC=90∘−∠C∴x+90∘−∠C=90∘−x−∠B∴x=12(∠C−∠B),即∠QPH=12(∠C−∠B).18. 【答案】 (1) ∵∠CED=∠GHD∴CE∥GF∵∠C=∠FGD又∵∠C=∠EFG∴∠FGD=∠EFG∴AB∥CD∴∠AED+∠D=180∘.(2) ∵∠DHG=∠EHF=100∘,∠D=30∘∴∠CGF=100∘+30∘=130∘∵CE∥GF∴∠C=180∘−130∘=50∘∵AB∥CD∴∠AEC=50∘∴∠AEM=180∘−50∘=130∘.19. 【答案】∵AE⊥BC∴∠AEC=∠AEB=90∘∵∠B=50∘∴∠BAE=180∘−90∘−50∘=40∘∵∠C=110∘,∠D=90∘∴∠DAE=360∘−∠D−∠C−∠AEC=70∘∴∠DAB=∠BAE+∠DAE=40∘+70∘=110∘∵AF平分∠DAB∴∠FAB=12∠DAB=12×110∘=55∘∴∠EAF=∠FAB−∠BAE=55∘−40∘=15∘.20. 【答案】 (1) DE∥BF理由是:因为∠3=∠4所以BD∥CE所以∠5=∠FAB因为∠5=∠C所以∠C=∠FAB所以AB∥CD所以∠2=∠BGD因为∠1=∠2所以∠1=∠BGD所以DE∥BF.(2) 因为AB∥CD所以∠P=∠PDH因为DP平分∠BDH所以∠BDP=∠PDH所以∠BDP=∠PDH=∠P 因为∠5=∠P+∠BDP所以∠5=2∠P所以∠C=∠5所以∠C=2∠P.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学上册第十一章三角形单元测试题含答案(上)学习过程评价题内容:第11章 三角形班级:___________姓名:___________得分:______一、选择题(30分).1.从五边形的一个顶点出发的对角线,把这个五边形分成( )个三角形. A.5 B.4 C.3 D.22.以下列各组线段长为边能组成三角形的是( ).A.1cm ,2cm ,4cmB.2cm ,4cm ,6cmC.4cm ,6cm ,8cmD.5cm ,6cm ,12cm 3.下列图形中一定能说明∠1>∠2的是( ).4.一个三角形的三条角平分线的交点在( ). A.三角形内 B.三角形外 C.三角形的某边上 D.以上三种情形都有可能5.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( ). A.正三角形 B.矩形 C.正六边形 D.正八边形6.能把一个任意三角形分成面积相等的两部分的是( ).A.角平分线B.中线C.高D.A 、B 、C 都可以7.一个角的两边与另一个角的两边互相垂直,且这两个角之差为40°,那么这两个角分别为( ).A.70°和110°B.80°和120°C.40°和140°D.100°和140°8.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ). A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 9.(n+1)边形的内角和比n 边形的内角和大( ). A.180° B.360° C.n ·180° D.n ·360°10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变,试着找一找这个规律.你发现的规律是( ).A.∠1+∠2=2∠AB.∠1+∠2=∠AC.∠A=2(∠1+∠)D.∠1+∠2=21∠A二、填空题.(每题2分,共16分) 第10题图 第14题图12ABCD E 第11题图BAC D2134第15题1 2 1 2 2 1 12AB C D11.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条,这样做的根据 是 .12.某一个三角形的外角中有一个角是锐角,那么这个三角形是 角三角形. 13.一个多边形的内角和是外角和的一半,则它的边数是 . 14.如图所示:(1)在△ABC 中,BC 边上的高是 ;(2)在△AEC 中,AE 边上的高是 . 15.如图,正方形ABCD 中,截去∠B 、∠D 后,∠1、∠2、∠3、∠4的和为 . 16.若一个等腰三角形的两边长分别是3 cm 和5 cm ,则它的周长是 cm. 17.三角形的三边长分别为5,1+2x ,8,则x 的取值范围是________.18.一个四边形的四个内角中最多有_______个钝角,最多有_____个锐角?三、解答题(2×4/=8/).19.一个多边形的内角和等于它的外角和的6倍,这是一个几边形.20.已知三角形的两个外角分别是α°,β°,且满足(α-50)2=-|α+β-200|.求此三角形各角的度数.四、解答题(3×5/=15/).21.△ABC 中,∠ABC 、∠ACB 的平分线相交于点O.(1)若∠ABC = 40°,∠ACB = 50°,则∠BOC =_______. (2)若∠ABC +∠ACB =116°,则∠BOC =_______. (3)若∠A = 76°,则∠BOC =_______. (4)若∠BOC = 120°,则∠A =_______.(5)你能找出∠A 与∠BOC 之间的数量关系吗?22.如图的四边形是某地板厂加工地板时剩下的边角余料,用这种四边形的木板可以进行镶嵌吗?请说明理由.23.已知等腰三角形中,AB =AC ,一腰上的中线BD 把这个三角形的周长分成15cm 和6cm 两部分,求这个等腰三角形的底边的长.DC A B四、解答题(3×7/=21/).24.如图,已知△ABC ,D 在BC 的延长线上,E 在CA 的延长线上,F 在AB 上,试比较∠1与∠2的大小.25.已知:如图,AC 和BD 相交于点O ,说明:AC+BD >AB+CD.26.如图,它是一个大型模板,设计要求BA 与CD 相交成20°角,DA与CB 相交成40°角,现测得∠A=145°,∠B=75°,∠C=85°∠D=55°,就断定这块模板是合格的,这是为什么?五、解答题((3×10/=30/)).27.如图,四边形ABCD 中,∠A =∠C =90°,BE 、DF 分别是∠B 、∠D 的平分线. (1)∠1与∠2大小有何关系,为什么? (2)BE 与DF 有何关系?请说明理由.28.如图1,∠ACD 是△ABC 的外角,BE 平分∠ABC ,CE 平分∠ACD,且BE 、CE 交于点E. 求证:(1)∠E =12∠A ;(2)若BE 、CE 是△ABC 两外角的平分线且交于点E ,则∠E 与∠A 又有什么关系?并说明理由. A D B C E AF B C D 12AD B C O321F ED C B A AG F E D B A C29.如图,∠ECF =90°,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与∠CAB 的外角平分线AG 所在的直线交于一点D.(1)∠D 与∠C 有怎样的数量关系?(2)点A 在射线CE 上运动(不与点C 重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.参考答案1C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.A ;8.D ;9.A ;10.A ;11.三角形具有稳定性;12.钝;13.3;14.AB 、CD ;15.540°;16.11或13;17.1<x <6;18.3、3;19.14;20.130°、30°、20° 21. (4)∠BOC=180°-(∠OCB+∠OBC)B C A 备用图=180°-21(∠ACB+∠ABC ) =180°-21(180°-∠A)=90°+21∠A 。

22. 能进行镶嵌; 理由:由镶嵌的条件知,在一个顶点处各个内角的和为360°时,就能镶嵌. 而任意四边形的内角和是360°,只要放在同一顶点的4个内角和为360°, 故能进行镶嵌. 23. 如图,根据题意得:AB=AC ,AD=CD , 设BC=xcm ,AD=CD=ycm , 则AB=AC=2ycm , ①若AB+AD=15cm ,BC+CD=6cm , 则⎩⎨⎧=+=+6152y x y y ,解得:⎩⎨⎧==51y x , 即AB=AC=10cm,BC=1cm ; ②若AB+AD=6cm,BC+CD=15cm, 则⎩⎨⎧=+=+1562y x y y ,解得:⎩⎨⎧==213y x , 即AB=AC=4cm,BC=13cm , ∵4+4=8<13,不能组成三角形,舍去;∴这个等腰三角形的底边的长为1cm . 24.根据三角形的外角性质,在△AEF中,∠BAC >∠1, 在△ABC 中,∠2>∠BAC,所以,∠2>∠1. 25. 证明:∵AO+BO >AB ,DO+CO>CD , ∴AO+BO+DO+CO>AB+CD,即AC+BD >AB+CD . 26. 解:延长DA 、CB ,相交于F ,∵∠C+∠ADC=85°+55°=140°, ∴∠F=180°-140°=40°;延长BA 、CD 相交于E , ∵∠C+∠ABC=85°+75°=160°, ∴∠E=180°-160°=20°,故合格.27. (1)∠1+∠2=90°; ∵BE,DF 分别是∠ABC ,∠ADC 的平分线, ∴∠1=∠ABE ,∠2=∠ADF , ∵∠A=∠C=90°, ∴∠ABC+∠ADC=180°, ∴2(∠1+∠2)=180°, ∴∠1+∠2=90°; (2)BE ∥DF; 在△FCD 中,∵∠C=90°, ∴∠DFC+∠2=90°, ∵∠1+∠2=90°, ∴∠1=∠DFC,∴BE ∥DF . 28. (1)证明:∵∠ACD=∠A+∠ABC , ∴∠2=21(∠A+∠ABC ). 又∵∠4=∠E+∠2, ∴∠E+∠2=21(∠A+∠ABC ). ∵BE 平分∠ABC , ∴∠2=21∠ABC , ∴21∠ABC+∠E=21(∠A+∠ABC ), ∴∠E=21∠A;(2)如图2所示, ∵BE 、CE是两外角的平分线, ∴∠2=21∠CBD ,∠4=21∠BCF , 而∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∴∠2=21(∠A+∠ACB ),∠4=21(∠A+∠ABC ). ∵∠E+∠2+∠4=180°,∴∠E+21(∠A+∠ACB )+21(∠A+∠ABC )=180°,即∠E+21∠A+21(∠A+∠ACB+∠ABC )=180°. ∵∠A+∠ACB+∠ABC=180°,∴∠E+21∠A=90°. 29.。

相关文档
最新文档