IceMap System测冰雷达操作手册

合集下载

SnoTrace RGS 雪和冰消融系统安装说明书

SnoTrace RGS 雪和冰消融系统安装说明书

INSTALLATION PROCEDURESSnoTrace TMRGSTMSnow and Ice Melting for Roof and GuttersRefer to the “SnoTrace RGS Cable Testing Report” for required recording of test data and circuit information.A. Upon Receiving Cable . . .1.Upon receiving heating cable, check to make sure theproper type and output have been received. All cables are printed on the outer jacket with part number, voltage rating and watt output.2.Visually inspect cable for any damage incurred during shipment. The heating cable should be tested to ensure electrical integrity with at least a 500 Vdc megohmmeter (megger) between the heating cable bus wires and the heating cable metallic braid. IEEE 515.1 recommends that the test voltage for polymer insulated heating cables be 2500 Vdc. Minimum resistance should be 20 megohms.(Record 1 on Report Form.)B. Installation of Cable . . .1.Snow melting cable systems must be installed in accor-dance with Article 426 of the National Electrical Code as well as any applicable local codes. Review the requirements prior to installation.2.The layout of heating cable on roof and gutters will bedependant on roof material, roof pitch, amount of roof overhang, gutter layout or gutter width. The amount of cable required can be calculated using the Roof and Gutter Design Guide.3.Gutters and downspouts should be free from debris. Allsharp edges that may come in contact with the heating cable should be flattened, smoothed or otherwise pro-tected to prevent possibility of damage to cable.4.Begin installation at power connection point. Junction box (supplied by contractor) shall be NEMA 4, UL Listed weatherproof and should be located and mounted insheltered area.SnoTrace TMRGSTMI N S T A L LA TI O N P RO C E D U R E SConnect the positive lead of the megger to the cable bus wires and the negative lead to the metallic braid.CAUTI CAUTIO O N: D N: DO N O N O NOO T connect power to heating cable while it is on reel or in shipping carton.5.Form a drip loop with the heating cable as it leaves the junction box. Cable should be anchored with a RG-CMC cable clip as close as possible to the junction box, after the drip loop.6.Once the installation is complete, recheck the heating cable with at least a 500 Vdc megohmmeter (megger)between the heating cable bus wires and the heating cable metallic braid. IEEE 515.1 recommends that the testvoltage for polymer insulated heating cables be 2500 Vdc.Minimum resistance should be 20 megohms. (Record 2 on Report Form.)7.To prevent accumulation of moisture inside of the junction box, use the RGS-CFK heater cable circuit fabrication kit that includes a strain relief fitting and moisture barrier grommet.8.Refer to the Circuit Fabrication Kit instructions for details on making proper heater cable end terminations.9.If junction box will be mounted to vertical wall or underside of sloped roof overhang, locate heating cable termination kit on lower side of junction box.10.ELECTRIC HEAT TRACING CAUTION LABELS must be installed on circuit breaker panels, contactor panels and junction boxes.11.Before putting the system into operation, make sure the heating cables have been tested and that the documenta-tion has been completed for each heat tracing circuit. This will ensure that the system has been installed permanufacturer’s recommendations. (Record 3 on Report Form.)T he National Electric Code Article 426.28,requires ground-fault protection be provided for branch circuits supplying electric heat tracing on fixed outdoor electric de-icing and snow-melting equipment.SnoTrace TM RGSTMC. Heating Cable Layout - Roof Overhang Only . . .1.Refer to the RGS Design Guide to determine appropriateheating cable lengths required, as well as spacing pitchrequired for various overhang distances and roof types.2.The attachment clips should be anchored to the roof/fasciawith fasteners or adhesive suited for the roof and theweather. A waterproofing sealant should be used whereverscrews penetrate the roof or fascia.3.Where large roof areas will be present above the heatingcable a snow fence should be installed to prevent damage tothe cable from sliding snow and ice.AL-20PRG-DCHRG-CRFRG-CRFRG-DCHRG-CRF RG-CRFRG-CRFRG-CRF RG-CRFP i t chD. Heating Cable Layout - Gutter and Downspouts Only . . .1.Refer to the RGS Design Guide to determine appropriateheating cable lengths required for gutters and downspouts.2.The attachment clips should be anchored to the fascia/gutter edge with fasteners or adhesive suited for the roofand the weather. A waterproofing sealant should be usedwherever screws penetrate the gutter or fascia.3.Heating cable should be attached to the bottom of thegutter with aluminum tape. Be sure the bottom surface ofthe gutter is clean to promote maximum adhesion of thetape. Heating cable in the downspouts should not extendpast the downspout opening to prevent vandalism.4.Protect heating cable from sharp edges of gutter anddownspouts.E. Heating Cable Layout - Roof Overhang Plus Gutter andDownspouts . . .1.Refer to the RGS Design Guide to determine appropriateheating cable lengths required.2.The attachment methods outlined in sections C and Dwould apply to installing heating cable on both roofoverhang and gutter/downspout areas.INSTALLATION PROCEDURESAlternate Roof Types…SnoTrace RGS on Membrane Type RoofsDue to the design of membrane type roofs, the methods typi-cally used to secure electric heating cable to the roof may not be suitable. The best alternative is to construct “loops” ap-proximately 2" x 10" from the same material as the membrane and attach these loops to theroof at the points wherethe cable will pass andrequire anchoring, us-ing the same adhesiveas used on the roof.Typically these an-chors will be requiredevery two feet alongthe length of the cableor wherever the cablechanges direction. The sketch atright shows a typical loop with heating cable passing through it. Allow sufficient room in the loop for the cable to pass without binding.The location of the cable and loops should be coordinated be-tween the roofing and electrical contractors in accordance with design layout provided by the engineer and project manager. Using the loop method for attaching the heating cable to the roof will eliminate the need to penetrate the roof membrane with fasteners.SnoTrace RGS on Copper Type RoofsThe standard RGS mounting clips and tape are not compatible with copper roofing and copper gutters. The best alternative is to use a plastic cable mounting plate along with a cable tie wrap. The materials in the mounting plates, adhesives and tie wraps should be rated for outdoor use. These should be placed in the same spacing as used on the RG-CRF and RG-CMC clips for roof use. In gutters, the cable attachments should be no more than two feet apart. These types of mounts are not carried by Thermon, but are available from suppliers of general conduit attachment items.Please contact Thermon for additional information and design assistance for other roof types.SnoTrace™ RGS™ Cable Testing Report1.Refer to Thermon RGS Installation Procedures, FORM CPD1020, for general installation procedures, requirements and guidelines.2.Upon receiving heating cable, check the cable to make sure the proper type and output have been received. All cables areprinted on the outer jacket with part number, voltage rating and watt output.3.Visually inspect cable for any damage incurred during shipment.The heating cable should be tested to ensure electrical integritywith at least a 500 Vdc megohmmeter (megger) between theheating cable bus wires and the heating cable metallic braid.IEEE 515.1 recommends that the test voltage for polymerinsulated heating cables be 2500 Vdc. Minimum resistanceshould be 20 megohms.(Record 1 on Report Form.)A.Connect the positive lead of the megger to the cable bus wires.B.Connect the negative lead of the megger to the metallic braid.C.Energize the megger and record the reading. Readings between 20 megohms and infinity are acceptable. Readings below20 megohms may mean the electrical insulation has been damaged. Recheck the heating cable for physical damage betweenthe braid and the heating element; small cuts or scuffmarks on the outer jacket will not affect the megger reading unless there was actual penetration through the braid and dielectric insulation jacket.4.After installation is complete, visually inspect cable for any damage incurred during installation. Recheck the heating cable with atleast a 500 Vdc megohmmeter (megger) between the heating cable bus wires and the heating cable metallic braid. IEEE 515.1 recommends that the test voltage for polymer insulated heating cables be 2500 Vdc. Minimum resistance should be 20 meg-ohms.(Record 2 on Report Form.)5.Once power supply is completed, record the panel and circuit breaker information. Ensure all junction boxes, temperaturecontrollers, cable glands, etc. are properly secured. Set the temperature controller (if applicable) to the manual setting and apply rated voltage to the heat tracing circuit(s) for 10 minutes. Record the ambient temperature, measure and record the circuit(s) voltage and current. (Record 3 on Report Form.)NOTE:To ensure the heating cable warranty is maintained through installation, the testing outlined on this sheet must be completed on the installed heating cables, and the test results recorded andmailed/faxed to:Thermon Customer Service100 Thermon DriveSan Marcos, Texas 78666Fax: 512-754-2420SnoTrace™ RGS™ Cable Testing ReportCustomer:Contractor:Address:Address:Phone No:Phone No.Project Reference:Record 1: Prior to InstallationCable Type:Heater Length:Heater Number:Insulation Resistance M Ohms:Tested By:Date:Witnessed By:Date:Record 2: After InstallationInsulation Resistance M Ohms:Tested By:Date:Witnessed By:Date:Record 3: Final CommissioningPanel Number:Breaker Number:Volts:Ambient Temperature (deg. F):Recorded Amps:Tested By:Date:Witnessed By:Date:F O R M C P D 1020-0805 © T h e r m o n M a n u f a c t u r i n g C o . P r i n t e d i n U .S .A .100 Thermon Dr. • PO Box 609 • San Marcos, TX 78667-0609Phone: 512-396-5801 • Facsimile: 512-396-3627 • 800-820-HEAT In Canada call800-563-8461Other Products . . .Thermon offers additional cut-to-length cables or complete turn-key systems for the following applications:• Hot Water Temperature Maintenance • Pipe Heating• Freezer Floor Frost Heave Prevention • Rail and Rail Switch Heating • Tank and Hopper Heating • Instrument Heating Systems • Control and Monitoring Systems。

Micropilot FMR20 HART 雷达物位仪简明操作指南说明书

Micropilot FMR20 HART 雷达物位仪简明操作指南说明书

Products Solutions Services简明操作指南Micropilot FMR20HART雷达物位仪本文档为《简明操作指南》;不得替代设备的《操作手册》。

设备的详细信息请参考《操作手册》和其他文档资料:所有设备型号均可通过以下方式查询:•网址:/deviceviewer•智能手机/平板电脑:Endress+Hauser Operations AppKA01248F/00/ZH/01.1671331405Micropilot FMR20 HART2Endress+HauserMicropilot FMR20 HART 目录Endress+Hauser 3目录1文档信息 (4)1.1特定信息图标.........................................................................41.2安全图标............................................................................41.3图中的图标 (4)2术语和缩写 (53)注册商标 (5)4基本安全指南 (6)4.1人员要求............................................................................64.2指定用途............................................................................64.3工作场所安全.........................................................................64.4操作安全............................................................................74.5产品安全............................................................................75产品描述 (8)5.1产品设计 (8)6到货验收和产品标识 (9)6.1到货验收............................................................................96.2产品标识 (10)7安装.............................................................................127.1安装条件 (12)8电气连接 (22)8.1电缆分配...........................................................................228.2供电电压...........................................................................228.3连接...............................................................................238.4连接后检查 (26)9可操作性 (27)9.1操作方法...........................................................................279.2采用Bluetooth®无线技术...............................................................279.3通过HART 通信 (28)10调试和操作 (28)10.1安装检查和功能检查..................................................................2810.2通过SmartBlue (app)进行操作和设置.....................................................2810.3通过HART 通信实现系统集成...........................................................3510.4通过RIA15进行操作和设置.............................................................3610.5通过调试工具进行液位测量设置..........................................................3910.6数据访问 - 安全性....................................................................4211补充文档资料 (44)11.1标准文档资料........................................................................4411.2补充文档资料........................................................................4411.3《安全指南》(XA).. (44)文档信息Micropilot FMR20 HART 1 文档信息1.1 特定信息图标1.2 安全图标1.3 图中的图标4Endress+HauserMicropilot FMR20 HART 术语和缩写Endress+Hauser 52术语和缩写3 注册商标组织(奥斯汀,美国)的注册商标Bluetooth®名称和LOGO 是Bluetooth SIG 公司的注册商标,Endress+Hauser 拥有使用权。

防冻液冰点测试仪使用说明书

防冻液冰点测试仪使用说明书

防冻液冰点测试仪使用说明书一、原理:防冻液冰点测试仪是测量防冻液冰点的精密光学仪器。

其基本原理是应用全反射临界角法测量溶液的折射率,进而标定出所测液体的浓度及其性能。

由于其原理可靠,精度能满足实际需要,又有体积小、重量轻、造型美观、使用方便等优点,所以广泛应用于汽车行业。

1.棱镜2.盖板3.校正钉4.把套5.目镜二、基本参数:JT-2T/JT-4T测量范围分度值准确度防冻液冰点-50~0℃1℃±0.5℃电池液比重 1.10~1.400.01±0.01玻璃液冰点-40~0℃1℃±1℃1、本仪器可测量防冻液冰点、铅酸蓄电池电解液的比重以及玻璃清洗剂冰点。

JT-2T塑制温补型,在使用前需要用蒸馏水校准零点(用螺丝刀调整校正钉来校零)。

JT-4T铜镀络温补型,内附温度补偿装置,保证在10o C~30o C环境温度下测量准确。

2、视场说明:中间标尺:(ETHYLENE GLYCOL)乙二醇型防冻液冰点。

(PROPYLENE GLYCOL)丙三醇型防冻液冰点。

左侧标尺:(BATTERY FLUID)电池液比重。

1.15~1.20需充电;1.20~1.25电量够用;1.25~1.30电量充足。

右侧标尺:玻璃清洗液冰点(乙醇型)。

三、操作:1、掀开盖板用柔软绒布将盖板及棱镜表面擦拭干净。

2、将待测液体用吸管滴于棱镜表面,合上盖板轻轻按压,将冰点测试仪对向明亮处,旋转目镜使视场内刻线清晰,读出明暗分界线在分划板上相应标尺上的数值即可。

3、测试完毕,用柔软绒布将盖板及棱镜表面擦拭干净,清洗吸管,将仪器收藏于包装盒内。

4、在测量电池液时,注意不要撒在皮肤和眼睛上,以防烧伤,测试后仔细擦净仪器。

四、仪器专用附件:1、说明书,2、螺丝刀,3、吸管,4、绒布。

五、注意事项:1、不要在相对湿度大于85%的环境中长期放置,以免光学系统受到影响。

2、不要将液体和水弄进调节旋钮和目镜内,以免损坏内部器件。

雷达fr-7062操作规程

雷达fr-7062操作规程

雷达fr-7062操作规程全文共四篇示例,供读者参考第一篇示例:雷达FR-7062是一种先进的舰船雷达系统,广泛应用于各类军用舰船和商用船舶上。

它具有高性能、可靠性强的特点,能够有效地帮助使用者监测周围的海上情况,确保船只的安全航行。

正确的操作规程对于保障雷达系统的有效运行、提高工作效率至关重要,下面我们将介绍雷达FR-7062的操作规程,希望能够帮助大家更好地了解如何正确操作这一系统。

一、开机操作1. 在开始使用雷达FR-7062之前,首先要确保雷达系统的供电已经接通,并检查供电是否正常。

2. 打开雷达系统的主电源开关,待系统启动完成后,再打开显示器和操作终端的开关。

3. 在系统启动完成后,会自动进入雷达系统的主界面,此时雷达系统已经可以正常工作。

二、雷达监控操作1. 在雷达监控模式下,可以显示周围海域的雷达图像和相关信息。

通过操作终端,可以进行雷达的调节和参数设置。

2. 在雷达工作过程中,需要不断检查雷达图像,确保其清晰度和准确性。

3. 随时留意雷达的告警信息,如海上目标告警、雷达异常等,及时采取相应措施。

2. 在航迹显示界面,可以查看目标的速度、方向等信息,帮助使用者更好地判断目标的动态情况。

3. 随时注意目标的变化,做好目标航迹的记录和跟踪,确保船只的航行安全。

1. 在雷达测距模式下,可以进行海上目标的距离测量。

通过操作终端,设置测距模式和参数,选择需要测距的目标并进行测量。

2. 在进行测距时,注意保持雷达的稳定性,避免目标距离测量不准确。

3. 在测距操作中,可以使用雷达的标识功能,为目标设置标识,便于后续跟踪。

五、雷达信号处理1. 在雷达信号处理过程中,可以对雷达系统接收到的信号进行处理和优化,以提高雷达系统的性能。

2. 确保雷达信号处理的参数设置合理,并根据实际情况进行调整,以获得更清晰、更准确的雷达图像。

3. 在信号处理过程中,随时留意雷达的反馈信息,及时进行调整和优化,确保雷达系统的正常工作。

海上冰观察指南说明书

海上冰观察指南说明书

Observers Guide toU. S. Department of Commerce • National Oceanic and Atmospheric Administration NOAA Ocean Service • Office of Response and RestorationNational Environmental Satellite, Data, and Information Service • National Ice CenterU. S. Department of CommerceNational Oceanic and Atmospheric AdministrationNOAA Ocean Service • Office of Response and RestorationNational Environmental Satellite, Data, and Information Service • National Ice CenterFor additional information contact:NOAA Emergency Response Division7600 Sand Point Way NESeattle, WA 98115This Observers’ Guide to Sea Ice was prepared by Dr. Orson P. Smith, University of Alaska Anchorage, School of Engineering for the National Oceanic and Atmospheric Administration with thanks to Kathleen Cole, Anchorage Forecast Office Ice Forecaster. It is a product of the Cook Inlet and Prince William Sound Navigation Safety and Ef-ficiency project. To order additional copies of this document, fax your request to (206) ************************************.1O B S E R V E R S ’ G U I D E T O S E A I CETable of ContentsIntroduction2 Completing an Observation Report 4 Sea Ice Observation Report Form 5Glacier Ice Observation Report Form 6Concentration 7Stages of Development 11Sea Ice Forms 16Glacier Ice Forms23IntroductionThis booklet is intended for use by volunteers to report aerial, ship-board, or shoreline observations of ice conditions at sea to authorities such as the National Weather Service, National Ice Center, U.S. Coast Guard, pilots’ associations, port authorities, or other maritime interests. Emphasis here is on conditions of concern to mariners with regard to safe passage of ships. Scientific observers may wish to note additional details following guidance of the World Meteorological Organization.Sea ice consists of frozen sea water. River (freshwater) ice is often indistinguishable when mixed with sea ice, especially with snow cover. Glacier ice, broken away from a tidewater glacier, is usually more irregular than river ice or frozen sea water. Tidal estuaries may also have thick, irregular pieces of sediment-laden beach ice, which have been grounded on tidelands, repeatedly submerged, and floated free by spring tides.Sea ice is observed in terms of three basic parameters: concentra-tion, stage of development, and form. Concentration refers to the fraction of the sea surface covered by ice, reported in tenths by international conven-tion. Stage of development refers to age and structural characteristics ofthe ice that may be inferred from specific visible features and knowledgeof regional conditions prior to the observation. Stage may be more directly observed from shipboard when ice breaking reveals the prevailing thickness of the ice. Stage classification does not apply to glacier ice. Form refers to the horizontal shape and dimensions of pieces of ice. The form of glacier ice is also reported in terms of freeboard, or maximum height above the sea surface.Observers should report sea ice conditions with reference to the date, time, and geographical position of the observation and the particular perspective, or field of view. The field of view from an airplane is much dif-ferent from the field of view from the bridge of a ship or from the shoreline.A reporting form for sea ice and a separate form for glacier ice are provided to aid observers in noting this essential information.2U.S. Sea Ice Reporting AgenciesNational Weather ServiceAlaska Region, Forecast Office6930 Sand Lake RoadAnchorage, Alaska 99502Ice Desk: (907) 266-5138Marine Desk (24 hours): (907) 266-5106Fax: (907) 266-5188e-mail:*******************/ice.phpNational Ice CenterFederal Office Building #4, Room 23014231 Suitland RoadWashington, D.C. 20395Telephone: (301) 394-3100Fax: (301) 394-3200e-mail:*******************.gov3Completing an Observation Report1. Use a dry-erase marker to fill out either the sea ice or the glacier iceobservation report form, or to make a permanent record on a copy ofthe form.2. Note the date, time, and time zone of the observation, e.g., “AlaskaStandard,” “Alaska Daylight Savings (summer) Time,” or “Greenwich Mean Time” (GMT).3. Note the latitude and longitude of the observation by reference to achart or Global Positioning System (GPS). GPS also give accurate time of day.4. Describe your position in words, as you would over the radio ortelephone, noting the water body and nearby charted geographicalfeatures, e.g., “central Cook Inlet, 3 nautical miles east of Middle GroundShoal.”5. Describe your perspective in terms of altitude above the water, the com-pass direction toward which you are looking, and the most recognizable geographical features directly in view, e.g., “10 m (30 ft) above the water(bridge-level), looking west toward the center of Trading Bay.”6. Check the choices of concentration that apply to the conditions youobserve, noting the average and the range of concentrations in view. 7. Sea ice: Circle the stages of development you judge to be in view. Directknowledge of recent local weather and prior nearby ice observations,as well as the appearance of the ice, may be applied to judge stage ofdevelopment.8. Use the length, or beam, of the ship or recognizable objects in view (likeships, docks, or oil platforms) to estimate the size of ice pieces observedand note the prevailing form and the range of ice forms visible.9. Glacier ice: Note the form in terms of estimated maximum freeboardand waterline length. Also note the above-water shape.10. Note any other observed features that might help mariners followingyou across the water body or that would help ice reporters match yourobservation with others.11. Transmit your report as soon as possible to the National WeatherService, National Ice Center, or other marine service organization.4Sea Ice Observation Report FormDate: Time: Time zone: Latitude:Longitude:Description of position:Altitude of observer:Looking toward (compass bearing):Charted landmarks in view:Concentration:(see pages 7-10)012345678910Stage of Development: (see pages 11-15)New Ni YN-GYN-GWFL FM FT OldForm:(see pages 16-22)New Brash Belts Strips PancakesCakes Small floes MediumfloesBig floes Vast floes Giant floesOther description:5Glacier Ice Observation Report FormDate:Time:Time zone: Latitude:Longitude:Description of position:Altitude of observer:Looking toward (compass bearing):Charted landmarks in view:Concentration:(see page 7)012345678910Glacier ice forms: (see pages 23-27)Growlers Bergy bits Small berg Medium berg Large berg Very large bergAbove-water shape:(see page 23)Blocky Tabular Domed Pinnacled Drydocked Wedged non-tabular Other description:67Concentrationless than 1 tenth “open water”2 -3 tenths “very open drift”4 tenths “open drift”5 tenths “open drift”6 tenths “open drift”7 -8 tenths “close pack”10 tenths “compact”8Concentration1 -2 tenths “very open drift”Photo provided by ConocoPhillips3 -4 tenths “open to very open drift”Photo provided by USCG MSD Kenai, Alaska9Concentration5 -6 tenths “open drift”7 - 8 tenths “close pack”Concentration9 tenths “very close pack”10 tenths “compact”11Stages of DevelopmentNew (N):Ice of the following initial stages of ice formationFrazil: Separate fine needles or plates suspended in the waterGrease: A thin skin of frazil crystals coagulated on the sea surface hav-ing a dark, greasy appearance (Also called ice fat, lard ice)Slush: Snow mixed with water in a viscous surface layerShuga: An accumulation of spongy white lumpsNilas (Ni):A thin, elastic crust of ice, less than 10 cm (4 in) thick, easily bending on waves, often with a striped or chevron appearanceYoung (YN):Ice 10 - 30 cm (4 - 12 in) thick of the following sub-stagesGray (G): Young ice 10 - 15 cm (4 - 6 in) thick, less elastic than nilas, that breaks on swell and rafts (one layer over another) under pressureGray-white (GW): Young ice 15 - 30 cm (6 - 12 in) thick, that buckles to form ridges on its edges from pressure or collisionsFirst-year thin (FL):Sea ice that, in uniform level areas without ridges or other deformations, is 30 - 70 cm (12 - 28 in) thickFirst-year medium (FM):Sea ice 70 - 120 cm (28 - 48 in) thickFirst-year thick (FT):Sea ice over 1.2 m (4 ft) thickOld or multi-year (MY):Sea ice of any thickness that has survived at least one melting season, char-acterized by undulating, weathered ridges and a well-defined melt waterdrainage patternStages of DevelopmentNew Ice (N)Frazil: Fine needles or plates suspended in the waterGrease: A thin skin of frazil crystals coagulated on the sea surface having a dark, greasy appearance (Also called ice fat, lard ice)New Ice (N)Slush: Snow mixed with waterShuga: An accumulation of spongy white lumps13Stages of DevelopmentNilas (Ni) A thin, elastic crust of ice, less than 10 cm (4 in) thick, easily bending on waves, often with astriped or chevron appearanceYoung (YN) Level ice 10 - 30 cm (4 - 12 in) thick, of the following sub-stages:Gray (G): Young ice 10 - 15 cm (4 - 6 in) thick, less elastic than nilas, that breaks on swell and rafts under pressureGray-white (GW): Young ice 15 - 30 cm (6 - 12 in) thick, which buckles to form ridges onits edges from pressure or collisionsStages of DevelopmentFirst-year thin (FL) Sea ice 30 - 70 cm (12 - 28 in) thickFirst-year medium (FM) Sea ice 70 - 120 cm (28 - 48 in) thick15Stages of DevelopmentFirst-year thick (FT) Sea ice over 1.2 m (4 ft) thick(Photo provided by Jerry Galt)Old or Multi-year (MY) Sea ice of any thickness that has survived at leastone melting season, characterized by undulating, weathered ridges and awell-defined melt water drainage patternSea Ice FormsNew:Small, thin, newly formed, dinner plate-sized piecesBrash: Broken pieces less than 2 m (6 ft) acrossPancake: Rounded floes 30 cm - 3 m (1 - 10 ft) across with ridged rimsIce Cake:Level piece 3 - 20 m (6 - 65 ft) acrossSmall Floe:Level piece 20 - 100 m (65 - 328 ft) acrossMedium Floe: Level, continuous piece 100 -500 m (328 - 1640 ft) acrossBig Floe: Level, continuous piece 500 m - 2 km (1/3 - 1 mi) acrossVast Floe: Level, continuous piece 2 - 10 km (1 - 6 mi) acrossGiant Floe:Level, continuous piece greater than 10 km (6 mi) acrossBelt:A linear accumulation of sea ice from 1 km to over 100 km (0.6 - 60 mi) wideStrip:A linear accumulation of sea ice less than 1 km (0.6 mi) wideBeach Ice: Irregular, sediment-laden blocks that are grounded on tide-lands, repeatedly submerged, and floated free, generally, by spring tides Fast Ice: Ice formed and remaining attached to shore17Sea Ice FormsUseful Size-Reference ObjectsGrowler: less than 5 m (16 ft)Pancake: 30 cm - 3 m (1 - 10 ft)Bergy Bit: 5 - 15 m (16 - 50 ft)Ice Cake: 3 - 20 m (6 - 65 ft) acrossSmall Berg: 15 - 60 m (50 - 200 ft)Small Floe: 20 - 100 m (65 - 328 ft)Medium Berg: 61 - 122 m (201 - 400 ft)Large Berg: 123 - 213 m (401 - 670 ft)Medium Floe:100 - 500 m (328 - 1640 ft)Very Large Berg:greater than 213 m (670 ft)Big Floe:500 m - 2 km (1/3 - 1 mi)Sea Ice FormsBrash Broken pieces less than 2 m (6 ft) across(Homer, Alaska)Pancake Ice Circular floes 30 cm - 3 m (1 - 10 ft) across and up to 10 cm (4 in.) thick with raised rims19Sea Ice FormsIce Cake Relatively level piece less than 20 m (65 ft) across (altitude 500 feet, Cook Inlet, Alaska)Small Floe Continuous level piece 20 - 100 m (65- 328 ft) across (altitude 500 ft, Anchorage, Alaska)Sea Ice FormsMedium Floe Continuous flat piece 100 - 500 m (328 - 1640 ft) across (altitude 800 ft, Cook Inlet, Alaska)Big Floe Continuous flat piece 500 m - 2 km (1/3 - 1 mi) across (altitude 500 - 600 ft, Arctic Ocean)21Sea Ice FormsBeltA linear accumulation of sea ice from 1 km to over 100 km (0.6 - 60 mi) wideStripA linear accumulation of sea ice less than 1 km (0.6 mi) wide (altitude 800 ft, Cook Inlet, Alaska)Sea Ice FormsBeach Ice Thick, irregular, sediment-laden pieces, which have been grounded on tidelands, repeatedly submerged, and floated free, generally, by spring tides (grounded beach ice, Cook Inlet, Alaska)Fast Ice Ice formed and remaining attached to shore (upper Cook Inlet, Alaska)23Glacier Ice FormsFormFreeboard (height above water) Length Growlerless than 1 m (3 ft) less than 5 m (16 ft)Bergy Bit1 - 5 m (3 - 16 ft) 5 - 15 m (16 - 50 ft)Small Berg5 - 15 m (16 - 50 ft) 15 - 60 m (50 - 200 ft)Medium Berg16 - 45 m (51 - 150 ft) 61 - 122 m (201 - 400 ft)Large Berg46 - 75 m (151 - 240 ft) 123 - 213 m (401 - 670 ft)Very Large Berg greater than 75 m (240 ft) greater than 213 m (670 ft)Blocky: Generally straight-sided polygonal shapeTabular: Flat top with near-vertical sidesDomed: Rounded appearance above the waterlineNon-tabular or irregular: No regular geometric shape apparent Wedged: Triangular wedge shapePinnacled: One or more prominent central spiresDrydocked: Melted out in center to form a U-shaped slotBlack Ice: Dark, sediment-laden ice from glacier medial moraines orassociated frozen glacier surface ponds of turbid runoff waterGlacier Ice FormsGrowler Glacier fragment less than 1 m (3 ft) freeboard and less than 5 m (16 ft) across (Prince William Sound, Alaska)25Glacier Ice FormsBergy bit (irregular)Bergy Bit Glacier fragment 1 - 5 m (3 - 16 ft) freeboard or 5 - 15 m (16 - 50 ft) across (Prince William Sound, Alaska, photo provided by Stan Stephens)Black ice bergy bit (blocky)Glacier Ice FormsSmall Berg Glacier fragment 5 - 15 m (16 - 50 ft) freeboard or 15 - 60 m (50 - 200 ft) across (Prince William Sound, Alaska)Medium Berg Glacier fragment 16 - 45 m (51 - 150 ft) freeboard or 61 - 122 m (201 - 400 ft) across (North Atlantic, photo provided by USCG International Ice Patrol)27Glacier Ice FormsLarge Berg Glacier fragment 46 -75 m (151 - 240 ft) freeboard or 123 - 213 m (401 - 670 ft) across (Photo provided by Jerry Galt)Very Large BergGlacier fragment over 75 m (240 ft) freeboard or over 213 m (670 ft) across (Antarctica, photoprovided by USCG International Ice Patrol)U.S. Department of CommerceNational Oceanic and Atmospheric Administration • NOAA Ocean ServiceCarlos M. GutierrezSecretary, U.S. Department of CommerceVice Admiral Conrad C. Lautenbacher, Jr., USN (Ret.)Under Secretary for Oceans and Atmosphere andNOAA AdministratorJohn H. DunniganAssistant Administrator,Ocean Services and Coastal Zone ManagementNOAA Ocean ServiceAugust 2007。

易克苏气温监测软件使用说明书

易克苏气温监测软件使用说明书

testo EasyClimate 软件说明书21目录1 目录1 目录 (3)1.1. 文档说明 (5)2 规范 (6)2.1. 用途 (6)2.2. 系统要求 (6)3 初始步骤 (7)3.1. 安装软件/驱动程序 (7)3.2. 启动软件 (7)4 使用本产品 (8)4.1. 初始页面菜单 (8)4.2. "设置"菜单 (10)4.2.1. 配置 (10)4.2.1.1. 程序选项卡 (10)4.2.1.2. 单位选项卡 (11)4.2.1.3. 自有数据选项卡 (11)4.2.1.4. 数据备份选项卡 (11)4.2.2. 系统信息 (12)4.2.3. 版权 (13)4.3. 仪器菜单 (13)4.3.1. 连接管理器 (13)4.3.2. 配置 (15)4.3.2.1. 仪器选项卡 (15)4.3.2.2. 电源管理选项卡 (16)4.3.2.3. 显示语言选项卡 (16)4.3.2.4. 密码安全选项卡 (16)4.3.2.5. 探头选项卡 (17)4.3.2 .6. 打印选项卡 (17)4.3.3. 联机测量 (17)4.3.3.1. 测量值选项卡 (18)4.3.3.2. 显示选项卡 (19)4.3.3.3. 表格选项卡 (19)4.3.3.4. 显示顺序选项卡 (19)31目录4 4.4. 归档菜单 (20)4.4.1. 资源管理器 (20)4.4.1.1. 添加文件夹 (21)4.4.1.2. 添加测量位置 (21)4.4.1.3. 添加测量点 (21)4.4.1.4. 添加测量程序 (21)4.4.1.5. 复制文件夹/测量值 (22)4.4.1.6. 更多功能 (22)4.4.2. 显示测量值 (23)4.4.2.1. 信息选项卡 (23)4.4.2.2. 表格选项卡 (24)4.4.2.3. 测量值选项卡 (24)4.4.2.4. 报表模板选项卡 (25)4.4.2.5. 报表选项卡 (25)4.4.2.6. 报表设计器选项卡 (26)1目录51.1. 文档说明使用说明>在使用本产品之前,请仔细阅读本文档,并熟悉本产品。

地质雷达操作手册

地质雷达操作手册

TerraSIRch SIR System-3000用户手册提供自1970年以来人们能够利用的完整测量解决办法信息地球物理测量系统公司版权:2003地球物理测量系统公司保留任何形式的全部或部分复制的权利。

出版者:地球物理测量系统公司(美国新罕布什尔州,北塞勒姆(North Salem),克来因巷道13号,邮编:03073-0097)印刷地:美国GSSI,RADAN和SIR是地球物理测量系统公司的注册商标。

限定的担保(或保修),责任和约束的限制地球物理测量系统公司(在下文称之为GSSI)保证从交给买方的交货日期起12个月内,GSSI的产品将不会出现材料和工艺方面的故障。

除上述的限制担保之外,GSSI拒绝所有的担保(明确的或暗指的),包括任何销路的担保或为特定目的合理性的担保。

GSSI的义务是被限定在修理或更换那些被返回的元件或设备上(已预付运输和保险费,没有变更和进一步损坏),和那些按照GSSI的看法是有缺陷的或在正常使用期间变得有缺陷的元件或设备上。

GSSI以为不管设备是否有缺陷,只要是因设备适当的或不正确的操作所引起的任何直接、间接、特殊的、偶然的或随之发生的损坏或损伤都不负赔偿责任。

在给GSSI返回任何设备前,必须先取得返回材料授权(RMA)的编号。

请打电话给GSSI 用户服务经理,他将分配一个RMA编号。

务必拥有设备的有效序列编号。

联邦通讯委员会(FCC)的B类服务(或顺从性)该设备遵守联邦通讯委员会规则的第15部分。

操作服从下列两个条件:(1)该设备不可以引起有害的干扰,(2)该设备必须接受任何接收的干扰,包括可以引起不希望有的干扰。

警告:若用户对该设备的改变或修改没有明显地得到担负服务一方的同意,就可能取消这个用户操作该设备的权利。

注释:该设备经过测试后发现,依据FCC规则的第15部分,它遵守B类数字设备的限制。

当该设备在商业环境或(居住装置)中操作时,这些限制被用来提供对有害干扰的合理保护。

维萨拉电子气象测量仪器用户指南说明书

维萨拉电子气象测量仪器用户指南说明书

Page 5
© Vaisala 2014-03-12
PR210147EN-A
Detailed Information on Rigging
The detailed instructions for radiosonde rigging and sounding preparations are given in Vaisala Guide to Sounding Preparations Technical Reference M211367EN
Page 2
© Vaisala 2014-03-12
PR210147EN-A
Recommendations for Rig Setup
The optimum ventilation of the radiosondes in comparison rig is eventual for gaining the high quality comparison data
The purpose of this document is to give guidance to achieve the goal with Vaisala radiosondes. The most important aspects are:
Good enough ascent rate Hanging of radiosondes with 80 cm string
Vaisala Radiosonde Comparison Rigging (~950 g)
Balloon Weight (g)
1200
1500
2000
3000
Nozzle Lift (g)*
2400
2700

国家能源ice操作手册

国家能源ice操作手册

国家能源ice操作手册
摘要:
1.国家能源ice 操作手册概述
2.手册的主要内容
3.手册的使用方法和注意事项
4.手册的适用对象和价值
正文:
【国家能源ice 操作手册概述】
国家能源ice 操作手册是由我国国家能源局编写的一本关于能源管理的专业指南,旨在规范和指导能源ice(能源信息与通讯技术)的操作和使用,以提高能源管理效率和安全性。

【手册的主要内容】
国家能源ice 操作手册主要包括以下几个部分:
1.ice 的基本概念和原理:详细介绍了ice 的定义、作用和基本原理,以及其在能源管理中的重要性。

2.ice 系统的组成和架构:详细阐述了ice 系统的各个组成部分,包括硬件设备、软件系统和网络架构等。

3.ice 的操作流程和方法:详细描述了如何使用ice 系统进行能源信息的采集、处理、分析和传递等操作。

4.ice 的安全管理和维护:介绍了如何确保ice 系统的安全运行,以及如何进行日常维护和管理。

【手册的使用方法和注意事项】
在使用国家能源ice 操作手册时,应注意以下几点:
1.认真阅读手册,理解其中的概念和原理,以便正确操作和使用ice 系统。

2.按照手册中的步骤和方法进行操作,以确保操作的正确性和有效性。

3.在使用ice 系统时,应注重系统的安全性,防止非法入侵和数据泄露。

4.定期对ice 系统进行维护和管理,以确保系统的稳定运行。

【手册的适用对象和价值】
国家能源ice 操作手册适用于所有从事能源管理的人员,包括能源企业的管理人员、技术人员和操作人员等。

国家能源ice操作手册

国家能源ice操作手册

国家能源ice操作手册一、国家能源ICE操作手册概述国家能源ICE操作手册是一部针对ICE(冰蓄冷技术)设备使用的指南,旨在帮助使用者正确、安全地操作和维护ICE设备,提高能源利用效率。

ICE 技术在我国北方地区冬季供暖中发挥着重要作用,通过合理利用低谷电价,实现能源的节约和环保。

二、ICE操作手册的主要内容1.操作流程ICE操作手册详细介绍了ICE设备的启动、运行、停止和紧急处理等各个环节的操作步骤,以便于使用者按照规定的流程进行操作。

2.设备使用与维护手册中包含了ICE设备的使用方法、维护保养措施以及更换零部件的相关知识,帮助使用者确保设备处于良好的工作状态,延长使用寿命。

3.安全注意事项为保障人身和设备安全,手册中强调了安全操作的重要性,包括防止触电、火灾等事故的发生,以及应对突发事件的有效措施。

三、如何运用ICE操作手册提高工作效率1.熟悉操作流程熟练掌握ICE设备的操作流程,能够使使用者在实际操作中更加得心应手,降低操作失误的概率。

2.注重设备维护定期对ICE设备进行维护和检查,确保设备处于良好的工作状态,提高能源利用效率。

3.遵守安全规定严格遵守ICE操作手册中的安全规定,做好个人防护,预防事故发生,保障人身和设备安全。

四、ICE操作手册在实际工作中的应用案例在我国北方地区,某大型企业采用ICE技术进行冬季供暖,通过正确操作和维护ICE设备,实现了能源的节约和环保。

该企业员工表示,ICE操作手册为他们提供了详尽的操作指南,有效提高了工作效率。

五、总结与建议国家能源ICE操作手册是一部实用性很强的指南,对于ICE设备的操作人员和维护人员具有重要参考价值。

在使用过程中,应认真阅读并遵循操作手册中的规定,不断提高操作水平,确保设备安全、高效运行。

FLIR M系列红外热像仪探冰技术说明书

FLIR M系列红外热像仪探冰技术说明书

由于冰中的气泡和其他缺陷分散了雷达信号,所以使用雷达很难发现冰川的踪迹。

许多经验丰富的航海者证明,雷达探冰非常艰难。

即使是大型冰山反馈的雷达信号,其强度也远低于船舶目标反馈的雷达信号,原因是冰(特别是雪)的雷达反射率低于钢的雷达反射率。

因此,冰目标的检测难度相当大,尤其是他们有低矮或光滑的外形时。

冰块从冰山上脱落之后,产生的较大冰块称为小冰山,较小部分称为残碎冰山。

残碎冰山更难被雷达探测。

这在波涛汹涌的海洋条件下更是如此,从浮冰 反馈回的雷达信号可能会消失在所谓的“海面干扰”里,也就是说,因为海浪在雷达图像上显示,因此很难区分冰和海浪。

在白天,如果雷达不能检测到冰,但在一定条件下还可以通过目测来弥补。

这需要有良好的能见度,但是,在漫长的极夜,由于缺乏光而变得极其困难,即使偶尔有几小时的日光,其能见度可能受到雾或雪的限制。

在北极的开放水域期间,雾极其常见,无惧冰山!增加极地地区海上旅行的安全性使用红外热像仪探冰许多航海者都认为地球的极地是世界上最具环境挑战性的区域。

极为漫长的夜晚,恶劣的天气和冰山,使得穿越北极和南极水域极其危险。

现在,使用FLIR Systems公司的红外热像仪可以使这些旅行安然无忧。

红外热成像技术可以帮助航海者找到游刃于冰山之间的最安全路径。

在测试中,两种型号的M系列红外热像仪安装在驱冰船桥楼旁边的三脚架上。

这是一艘穿越格陵兰北极水域的驱冰船。

借助热像仪,穿越北极水域更安全。

FLIR M系列红外热像仪在完全黑暗的环境中,在各种天气条件下无缝探冰技术说明书而在冬季则经常会出现暴风雪。

在夜间,黑暗加上雾或雪限制了肉眼检测冰危害的能力。

热像仪检测冰解决这个问题的方法是使用热像仪。

热像仪记录红外光谱中的电磁辐射强度。

所有物质均会发出红外辐射,即使我们认为是很冷的东西,比如冰,也发出红外辐射。

在热像仪中,红外辐射通过透镜聚焦在探测器上。

所记录的红外辐射强度转换成可视图像。

由于热像仪依赖于热对比,而不是色彩对比,所以他们在夜间并不需要照明来产生清晰的图像。

南极海冰质量平衡 (SIMBA),版本 1 用户指南说明书

南极海冰质量平衡 (SIMBA),版本 1 用户指南说明书

Sea Ice Mass Balance in the Antarctic (SIMBA), Version 1USER GUIDEHow to Cite These DataAs a condition of using these data, you must include a citation:Ackley, S. F., B. Delille, J. L. Tison, G. Carnat, B. Weissling, M. J. Lewis, C. H. Fritsen, and S. Stammerjohn. 2016. Sea Ice Mass Balance in the Antarctic (SIMBA), Version 1. [Indicate subset used]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center.https:///10.7265/N53F4MJ7. [Date Accessed].FOR QUESTIONS ABOUT THESE DATA, CONTACT ***************FOR CURRENT INFORMATION, VISIT https:///data/G10014TABLE OF CONTENTS1OVERVIEW (2)2DETAILED DATA DESCRIPTION (2)2.1Format (2)2.1.1Ice Cores (2)2.1.2Brussels Site (3)2.1.3Liege Site (5)2.1.4Stations 1, 2, and 3 (6)2.1.5SIMBA Buoy Data (10)2.2File and Directory Structure (14)2.3Spatial and Temporal Coverage/Resolution (17)2.3.1Spatial Coverage and Resolution (17)2.3.2Temporal Coverage and Resolution (18)2.4Parameters (22)2.5Quality Assessment and Error Sources (22)3SOFTWARE AND TOOLS (22)4DATA ACQUISITION AND PROCESSING (22)4.1Data Acquisition Methods (22)4.2Sensor Descriptions (23)4.2.1Ice Core Instrumentation (23)4.2.2Sea Ice Thickness Database Instrumentation (23)4.2.3Ice Mass Balance Buoy Instrumentation (23)4.3Version History (26)5REFERENCES AND RELATED PUBLICATIONS (26)5.1References (26)5.2Related Data Collections (28)6CONTACTS AND ACKNOWLEDGMENTS (28)6.1Acknowledgments (28)7DOCUMENT INFORMATION (28)7.1Document Author (28)7.2Document Creation Date (29)7.3Document Revision Date (29)1 OVERVIEWThe Sea Ice Mass Balance in the Antarctic (SIMBA) project was a study conducted in the Southern Ocean from October 2007 through December 2007 with an additional buoy deployment campaign conducted from February 2009 through March 2009. Three ice mass balance (IMB) buoys were deployed on a pack ice floe called the Belgica Floe Drift Station in the Bellingshausen Sea while the research vessel, icebreaker Nathaniel B. Palmer, drifted along with the floe. The goal of the project was to determine the evolution of Antarctic sea ice cover and the mass balance of ice in the Amundsen Sea and the Bellingshausen Sea in the Southern Ocean during the International Polar Year (2007-2008) as part of the IPY Antarctic Sea Ice Program. The SIMBA project usedthe Nathaniel B. Palmer and employed drifting buoys as a main source of measurements. These buoys were endorsed as an IPY contribution to the World Climate Research Program/Scientific Committee on Antarctic Research (WCRP/SCAR) International Programme on Antarctic Buoys (IPAB).For this study three IMB's were equipped with thermistor strings, ice and snow thickness measurement gauges, meteorological sensors for measuring atmospheric pressure, temperature, and incoming radiation, and oceanographic sensors just under the ice that measured salinity, temperature, and light transmission. In addition to the buoy data, in situ data were also acquired from ice cores and snow pits in the vicinity of the camp on the Belgica Floe. The data from these three buoys and the drifting station in situ measurements are presented here as this data set.2 DETAILED DATA DESCRIPTIONThe data files in this data set are broken up into three categories by type of data:•Ice Cores•Sea Ice Thickness Database (SITD)•SIMBA Buoy Data2.1 Format2.1.1 Ice CoresAll measurements collected from ice cores during the SIMBA project are in one Excel file: SIMBA-ice-core-data.xlsx. It contains 30 sheets: 13 sheets with the data and 17 sheets with graphs. Data were taken at these sites: Brussels, Liege, and Stations 1, 2, and 3. Measurements taken from the ice cores are temperature, salinity, brine volume, and delta-O-18.2.1.2 Brussels SiteAt the Brussels site, five ice cores were taken over a period of five days. These ice cores serve as a time series from the same ice floe (within 10m of each other) where the camp was moored. The first five sheets of the SIMBA-ice-core-data.xlsx file contains the data from these five ice cores and the next four sheets contain graphs of Brussels data. Table 1 describes the sheets forBrussels data and Table 2 describes the columns in the data sheets.Table 1. Ice Core Spreadsheet Contents: Brussels Site (Sheets 1-9)Table 2. Column Descriptions of the Ice Core Data Sheets2.1.3 Liege SiteAt the Liege site, five ice cores were taken over a period of five days. These are a time series of ice cores from the same ice floe (within 10 m of each other) where the camp was moored. Sheets 10 through 14 of the SIMBA-ice-core-data.xlsx file contains the data from each of the Liege sub-sites and sheets 15 through 18 contain graphs of Liege data. Table 3 describes the sheets for Liege data and Table 2 describes the columns.Table 3. Ice Core Spreadsheet Contents: Liege Site (Sheets 10-18)2.1.4 Stations 1, 2, and 3Stations 1, 2, and 3 were taken on the inbound track to the Ice Station Belgica floe. Sheets 19 through 21 of the SIMBA-ice-core-data.xlsx file contains the data from Stations 1, 3, and 3 and sheets 22 through 30 contain graphs of the data. Table 4 describes the sheets for Stations 1, 2, and 3 data and Table 2 describes the columns.Table 4. Ice Core Spreadsheet Contents: Stations 1, 2, and 3 (Sheets 19-30)Sea Ice Thickness Database and Snow Pit MeasurementsAll sea ice thickness data recorded during SIMBA are provided in seven Excel files for seven different sites: Brussels, Fabra, Liege, Patria, Station 1, Station 2, and Station 3. These Excel files were created from the SCAR Sea Ice Thickness Database Data Entry Form provided to the SIMBA team. Table 5 lists the number of transects and pits at each site, and Table 6 describes the sheets in these data files. Tables 7 and 8 describe the data columns for the sheets in the file. Note, if a cell is empty or contains zeros, then that measurement was not recorded at that site.Table 5. Number of thickness transects and snow pits per siteTable 6. Description of Sheets in the SITD Excel FilesTable 7. Column Descriptions of Thickness Transect Data SheetsTable 8. Column Descriptions of Snow Pit Data SheetsFor the Brussels site only, changes in sea ice thickness over time were measured along two 200 m long track lines in the vicinity of the Brussels site. Each of the two track lines was measured twice, once on 7 October 2007 and once on 21 October 2007. For each track line, freeboard, snow depth, and ice thickness measurements were taken every 20 m on both dates. Table 9 describes the columns in the Thickness Gauges sheet. The top row of that sheet provides the date of the measurements.Table 9. Column Descriptions of Thickness Gauges Sheet (Brussels Site Only)2.1.5 SIMBA Buoy DataDuring the SIMBA campaign, three IMB buoys were released to record sea ice measurements while drifting. The file SIMBA-Buoy-Overview.xlsx gives start/stop dates, start/stop lat/lon, and comments for the three buoys. Table 10 gives the name, ID, and dates of operation of each buoy. The data from each of the three buoys are contained in three Excel files; one for each buoy. The sheets in these Excel file are described in Table 11. For a list of instrumentation on the buoys, see Table 15.Table 10. SIMBA BuoysTable 11. Buoy Data Sheet Descriptions2.2 File and Directory StructureAll the data files reside in ftp:///DATASETS/NOAA/G10014. This main directory is broken up into three subdirectories; one for each type of data. Table 12 describes the sub-directories.2.3 Spatial and Temporal Coverage/Resolution2.3.1 Spatial Coverage and ResolutionThis data set covers the Western Antarctic waters of the Bellingshausen and Amundsen Seas. The spatial resolution varies, but the approximate spatial coverage bounding box is the following:Northernmost: -68.5°Southernmost: -75°Easternmost: -75°Westernmost: -120°Figure 1. Belgica Floe: IMB buoy deployment sites Oct. 2007. Click for larger image.Figure 2. Satellite image of the Belgica Floe showing the regional ice conditions on October 12 at maximum expansion of the lead, with the ships position (yellow star) and a portion of the drift track with ship’s position on dates 9 October 2007(X) and 17 October 2007 (Y). Click for larger image.2.3.2 Temporal Coverage and ResolutionThe temporal coverage of the data set is 01 October to 14 December 2007, the spring/summer transition and 06 February to 19 March 2009, the summer/autumn transition. The temporal resolution varies. Figure 3 shows the drift track for each IMB with start and stop dates.For specific locations and dates, see the sections below broken up by data type:•Ice Core Data•Sea Ice Thickness Data•IMB Buoy Data•Figure 3. IMB Drift Tracks with start and stop dates. Click for larger version.2.3.2.1 Ice Core DataTable 13 lists the locations and dates of the ice core measurements. Note: The location of the Brussels and Liege ice core samples are approximated by taking the known date that the ice core was taken and then cross referencing that with the location of the Brussles-1 and Liege buoy at that time, respectively. The locations of the Station 1, 2, and 3 ice core samples are taken from the same location as those in the sea ice thickness measurement files.Table 13. Ice Core Measurements' Locations and Dates2.3.2.2 Sea Ice Thickness Data SitesTable 14 lists the dates and locations of the sea ice thickness measurements.Table 14. Sea Ice Thickness Measurements Location and Dates2.3.2.3 IMB Buoy DataTable 15 lists the different measurements taken by the three IMB Buoys and the duration of those measurements.Table 15. Type and Duration of Buoy Measurements2.4 Parameters•The parameters covered by this data set are the following:•Sea ice temperature (°C)•Sea ice salinity (psu)•Sea ice thickness (m)•Oxygen isotope concentrations - δO18 (o/oo)•Sea ice freeboard (m)•Snow thickness (m)•Snow surface temperature (°C)•Snow density (kg/m3)•Snow wetness (vol%)•Snow classification•Air temperature (°C)•Barometer (mb)•Brine volume (decimal fraction of total volume)•Ice irradiance (μW/cm2)2.5 Quality Assessment and Error SourcesNo quality assessment has been performed on these data due to the complexity of assigning error sources to a variety of data sets and measurements by different sampling and techniques.3 SOFTWARE AND TOOLSThese data files can be opened with Microsoft Excel, OpenOffice, GoogleDocs, or other similar spreadsheet tool.4 DATA ACQUISITION AND PROCESSING4.1 Data Acquisition MethodsAll measurements were acquired remotely with instrumentation on floating buoys or in situ measurements of ice core, snow, and sea ice thickness taken from an idividual sea-ice floe. See the Sensor Descriptions section for details on the instrumentation. In October 2007, three IMB’s, called Brussels-1, Brussels-2, and Liege, were deployed on a pack ice floe in the Bellingshausen Sea in the Southern Ocean. The floe, called the Belgica Floe, had the research vessel, icebreaker N.B. Palmer, drifting along with the it (NBP 07-09). Each of the IMB’s measured geographic position with a Garmin GPS16-HVS, snow depth with a Campbell SR50A-L24 acoustic sensor, ice thickness with a Benthos PSA-916 sonar altimeter, and a temperature profile using YSI-44033-BP thermistors that extended from the air, through the snow, ice, and surface water at0.05 - 0.10 m intervals. Brussels-1 also measured irradiance at the ice undersurface with an OCR-504 under water radiometer, while Brussels-2 and Liege were equipped to measure conductivity, temperature, and depth below the ice using a Sea-Bird MicroCAT SBE 37-SI CTD with pressure sensor. However, the CTD did not function on the Liege IMB; so, before the N.B. Palmer left the Belgica Floe drift station, the Liege IMB was retrieved. The CTD was repaired, and the Liege IMB was redeployed on another cruise in February 2009 at a fast ice site in the Amundsen Sea (NBP 09-01). All measurements were autonomously sampled at bihourly intervals, sent to the Campbell CR1000-ST-SW-NC data logger, and transmitted through the Advanced Research and Global Observation Satellite (ARGOS) satellite system in hexadecimal code. The sensors and IMB’s experienced various life spans, with some transmitting data up to 75 days.4.2 Sensor Descriptions4.2.1 Ice Core InstrumentationIce cores were primarily acquired with a stainless steel ice corer of 10 cm diameter, driven by an electric drill powered by a remote generator to maintain the cleanliness of the site.4.2.2 Sea Ice Thickness Database InstrumentationSea ice thickness measurements were acquired primarily by an EM-31, electromagnetic induction (EMI) meter. This instrument measured a conductivity proportional to the distance to the conducting layer of seawater beneath the ice and could, therefore, be calibrated to convert conductivity to ice thickness. Other thickness measurements were made using a Kovacs 5 cm ice-thickness auger driven by an electric drill powered by rechargeable batteries.4.2.3 Ice Mass Balance Buoy InstrumentationThe three IMB buoys used for the SIMBA investigation were built by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL). They were named Brussels-1, Brussels-2, and Liege. The sensors and IMBs experienced life spans varying from 18 days (minimum) to 75 days (maximum). All IMB sensors were autonomously sampled at 30 minute intervals. Data were saved on a Campbell CR1000-ST-SW-NC data logger, transmitted, and downloaded via theARGOS system. Table 16 describes the different instruments on each buoy and Table 15 provides the dates of the duration of the measurements.of M. Lewis. Click for larger view.Table 16. Instruments on IMB BuoysFigure 5. Photographs of the under ice surface at (A) Brussels-1 and (B) Liege. Photographs courtesy of C.Fritsen.4.3 Version HistoryTable 17. Version History5 REFERENCES AND RELATED PUBLICATIONS 5.1 ReferencesAckley, S. F., H. Xie, E. A. Tichenor. 2015. Ocean heat flux under Antarctic sea ice in the Bellingshausen and Amundsen Seas: Two case studies. Annals of Glaciology 56(69): 200-10. doi: 10.3189/2015AoG69A890.Ackley, S. F., M. J. Lewis, C. H. Fritsen, and H. Xie. 2008. Internal melting in Antarctic sea ice: development of "Gap Layers". Geophysical Research Letters 35(L11503). doi:10.1029/2008GL033644Carnat G., F. Brabant, I. Dumont, M. Vancoppenolle, S. F. Ackley, C. Fritsen, B. Delille, J. L. Tison. 2016. Influence of short-term synoptic events and snow depth on DMS, DMSP, and DMSO dynamics in Antarctic spring sea ice. Elementa: Science of the Anthropocene 4(1), 000135. doi: 10.12952/journal.elementa.000135.De Jong, J. T. M., S. E. Stammerjohn, S. F. Ackley, J. L. Tison, N. Mattielli, V. Schoemann. 2015. Sources and fluxes of dissolved iron in the Bellingshausen Sea (West Antarctica): The importance of sea ice, icebergs and the continental margin. Marine Chemistry 177: 518-535. doi:10.1016/j.marchem.2015.08.004.DeLiberty, T. L., C. A. Geiger, S. F. Ackley, A. P. Worby, M. L. Van Woert. 2011. Estimating the Annual Cycle of Sea-Ice Thickness and Volume in the Ross Sea. Deep-Sea Research II: Topical Studies in Oceanography 58(9): 1250-1260. doi: 10.1016/j.dsr2.2010.12.005.Fritsen, C. H., E. D. Wirthlin, D. K. Momberg, M. J. Lewis, S. F. Ackley. 2011. Bio-optical properties of Antarctic pack ice in the early austral spring. Deep-Sea Research II: Topical Studies in Oceanography 58(9): 1052-1061. doi: 10.1016/j.dsr2.2010.10.028.Geilfus, N. X., J. L. Tison, S. F. Ackley, R. J. Gulley, S. Rysgaard, L. A. Miller, B. Delille. 2014. Sea Ice pCO2 dynamics and air-ice CO2 Fluxes during the Sea Ice Mass Balance in the Antarctic (SIMBA) Experiment-Bellingshausen Sea, Antarctica. The Cryosphere 8(6): 2395-2407.Kern, S., B. Ozsoy-Cicek, S. Willmes, M. Nicolaus, C. Haas, and S. F. Ackley. 2011. An intercomparison between AMSR-E snow-depth and satellite C- and Ku-band radar backscatter data for Antarctic sea ice. Annals of Glaciology 52(57): 279-290.Lewis, M. J., J. L. Tison, B. Weissling, B. Delille, S. F. Ackley, F. Brabant, H. Xie. 2011. Sea ice and snow cover characteristics during the winter-spring transition in the Bellingshausen Sea: an overview of SIMBA 2007. Deep Sea Research II: Topical Studies in Oceanography 58(9): 1019-1038. doi: 10.1016/j.dsr2.2010.10.027Ozsoy-Cicek, B., S. F. Ackley, H. Xie, D. Yi, and H. J. Zwally. 2013. Sea ice thickness retrieval algorithms based on in-situ surface elevation and thickness values for application to altimetry. Journal of Geophysical Research: Oceans 118(8): 3807-3822. doi: 10.1002/jgrc.20252.Ozsoy-Cicek, B., S. Kern, S. F. Ackley, H. Xie, A. E. Tekeli. 2011. Intercomparisons of Antarctic sea ice properties from ship observations, active and passive microwave satellite observations in the Bellingshausen Sea. Deep Sea Research II. doi: 10.1016/j.dsr2.2010.10.031.Ozsoy-Cicek, B., S. F. Ackley, A. Worby, H. Xie, and J. Lieser. 2011. Antarctic sea ice extents and concentrations: Comparison of satellite and ship measurements from IPY cruises. Annals of Glaciology 52(57): 318-326.Tekeli, A. E., S. Kern, S. F. Ackley, B. Ozsoy-Cicek, H. Xie. 2011. Summer Antarctic sea ice as seen by ASAR and AMSR-E and observed during two IPY field cruises: A case study. Annals of Glaciology 52(57): 327-336.Vancoppenolle, M., R. Timmermann, S. F. Ackley, T. Fichefet, H. Goosse, P. Heil, K. C. Leonard, J. Lieser, M. Nicolaus, T. Papakyriakou, J. L. Tison. 2011. Assessment of radiation forcing data sets for large-scale sea ice models in the Southern Ocean. Deep-Sea Research II: Topical Studies in Oceanography 58(9): 1237-1249. doi: 10.1016/j.dsr2.2010.10.039.Weissling, B. P., M. J. Lewis, S. F. Ackley. 2011. Sea-ice thickness and mass at Ice Station Belgica, Bellingshausen Sea, Antarctica. Deep-Sea Research II 58: 1112-24. doi:10.1016/j.dsr2.2010.10.032.Weissling, B. P. and S. F. Ackley. 2011. Antarctic sea ice altimetry: Scale and resolution effects on derived ice thickness distribution. Annals of Glaciology 52(57): 225-235Weissling, B., S. F. Ackley, P. Wagner, and H. Xie. 2009. EISCAM - Digital image acquisition and processing for sea ice parameters from ships. Cold Regions Science and Technology 57(1): 49-60. doi: 10.1016/j.coldregions.2009.01.001.Worby, A. P., K. M. Meiners, S. F. Ackley. 2011. Antarctic sea-ice zone research during the International Polar Year, 2007-2009. Deep-Sea Research II: Topical Studies in Oceanography58(9): 993-998. doi: 10.1016/j.dsr2.2011.01.001.Xie, H., S. F. Ackley, D. Yi, H. J. Zwally, P. Wagner, B. Weissling, M. Lewis, and K. Ye. 2011. Sea ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep Sea Research Part II: Topical Studies in Oceanography 58(9): 1039-1051. doi: 10.1016/j.dsr2.2010.10.038.Xie, H., A. Tekeli, S. F. Ackley, D. Yi, and H. J. Zwally. 2013. Sea ice thickness estimations from ICESat Altimetry over the Bellingshausen and Amundsen Seas, 2003-2009. Journal of Geophysical Research: Oceans 118(5): 2438-2453. doi: 10.1002/jgrc.20179.5.2 Related Data Collections•Unified Sea Ice Thickness Climate Data Record Collection Spanning 1947-2012•IceBridge L4 Sea Ice Freeboard, Snow Depth, and Thickness•CRREL Arctic Sea Ice Mass Balance (IMB) Buoy Data•Ocean measurements in the Amundsen Sea, Nathaniel B. Palmer Cruise 09-01, 05 January -28 February 20096 CONTACTS AND ACKNOWLEDGMENTS6.1 AcknowledgmentsThe SIMBA project was supported by NSF Award #0703682.7 DOCUMENT INFORMATION7.1 Document AuthorThis document was created by Ann Windnagel from correspondence with Steve Ackley.7.2 Document Creation DateDecember 20167.3 Document Revision DateDecember 2016: A. Windnagel published the initial release of this document.。

上海结冰测试设备操作规程

上海结冰测试设备操作规程

上海结冰测试设备操作规程
一、结冰测试设备的使用要求
1、结冰测试设备的安装要求:设备的操作之前,用户需要查看结冰设备的安装、操作指南,以确保设备被正确地安装和操作;
2、设备的操作安全:在操作结冰设备的过程中,用户需要注意操作安全,防止设
备出现危险情况;3、设备的维护及维修:用户应当定期维护及维修设备,以确保设备性能达到最佳状态;
二、结冰测试设备的操作及要求
1、调试操作:设备调试时应当参考操作指南,仔细对比调试前后的数值差异;
2、运行操作:结冰设备的运行可以根据用户的需求进行相应的参数设置,以保证运行质量;
3、维护操作:设备的清洁及维护要定期检查和更换,以确保设备性能不受影响;
4、存储操作:在设备维护时期,设备运行参数应当被精确存储,以备下次使用。

三、结冰测试设备的培训及要求
1、安全培训:使用结冰设备的人员应当接受安全培训,以确保安全操作;
2、操作培训:除安全操作外,设备的人员也需要接受基础的操作培训,
如参数设置培训;
3、检测培训:此外,人员还需要接受结冰设备的检测培训,以保证操作质量;
4、维修培训:设备人员还应当接受维修保养培训,以更好地保障设备的安全。

四、结冰测试设备的服务及要求
1、售后服务:购买结冰设备的用户应当了解相关设备的售后服务信息,以保障服务质量;
2、技术支持:用户在购买设备后,还可以获得相应的技术支持,帮助解决设备使用中的问题和疑难;
3、维修服务:用户在发生维修问题时,可以通过请求厂商维修服务,保障设备的正常运行;
4、咨询服务:用户在调试时也可以请求厂商咨询服务,以获取专业的技术指导。

测量淡水冰的动车雷达法

测量淡水冰的动车雷达法

测量淡水冰的动车雷达法
G.S.克林;G.A.尤费特
【期刊名称】《水利水文自动化》
【年(卷),期】1994()4
【摘要】快速雷达测量冰厚是非常有效的方法,因为它可在运动过程中直接进行测量,并可得到冰厚剖面图。

根据与水域调查有关的国际组织的要求,需设计安装在某些车辆上的冰厚测量设备。

虽然这种设备的功率比安装在飞机上的装置低,但其价格不太昂贵,且精确度高,分辨力足够。

【总页数】4页(P60-63)
【作者】G.S.克林;G.A.尤费特
【作者单位】俄罗斯国立水文研究所
【正文语种】中文
【中图分类】P343.6
【相关文献】
1.基于油气平台的海冰雷达监测图像处理及冰速测量 [J], 季顺迎;陈晓东;刘煜;唐茂宁;刘宗勋;王宇新
2.基于雷达海冰图像互相关的冰漂流场测量 [J], 孙鹤泉;孙延维;王平让
3.机动车雷达测速仪模拟测速量值比对测量结果的不确定度评定 [J], 董乃飞;邵志伟
4.机动车雷达测速仪模拟测速量值比对测量结果的不确定度评定 [J], 董乃飞;邵志伟
5.单脉冲雷达测量日本中部Kuranosuke地下冰及多年雪原的内部结构 [J], K. yamamoto;M. yoshida;汪安泰
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IceMap System操作手册目录一、系统连接 (2)二、软件操作 (3)1.显示主界面 (3)2.系统设置目录 (6)3.视图设置 (10)4.采集IceMap数据 (13)5.显示之前采集的测线 (20)6.帮助 (21)三、IceMap数据处理 (22)1.IcePicker软件 (23)2.QuickMap软件 (32)四、故障排除 (35)五、保养和维护 (38)一、系统连接二、软件操作1.显示主界面IceMap主界面显示了带有水平位置标尺和垂直深度标尺的IceMap数据断面图像。

如果是米制,这些标度单位将是米和厘米,如果是美标将显示英尺和英寸。

深度标尺会在当前冰厚显示蓝色带,最小冰厚显示红色带,最大冰厚显示绿色带。

显示信息分别为:System status---系统状态GPS status---GPS状态Minimum Ice Thickness---最小冰厚Current Ice Thickness---当前冰厚Maximum Ice Thickness---最大冰厚IceCal---冰厚校验值Toolbar---工具栏Position Scale---位置标尺Depth Scale---深度标尺Position Scale Grid Lines---位置标尺网格线Depth Scale Grid Lines---深度标尺网格线Core Location and IceCal---核心位置和IceCalFiducial Marker---基准打标IceMap侧边栏屏幕左方的侧边栏显示了系统状态,GPS状态,当前冰厚线的最小冰厚,当前冰厚,当前冰厚线的最大冰厚,以及冰厚校验值(IceCal)。

Threshold Line---浅冰层警告显示为IceMap数据断面图像上的一道橙色水平阈值线,如果当前冰厚小于该值,则当前冰厚值会红色闪烁并发出报警声。

用户可以使用键盘的向上向下键改变阈值,或者选择视图设置>视图设置选项卡>阈值来改变。

GPS状态点击GPS状态按钮,将打开对话框提供关于GPS的更多详情,包括信号强度,卫星数目,时间,位置和高度。

位置信息以经纬度或UTM显示,取决于GPS的单位设置。

IceMap工具栏屏幕顶部的工具栏包括了用于数据获取,更改系统设置和视图设置的各种按钮。

如下所示:打开:打开之前采集的冰厚线。

开始:开始一个新的测量或继续被暂停的。

暂停:暂停当前的数据采集。

停止:停止当前的数据采集。

系统设置:允许操作者更改深度,步长,和速度。

冰层校验:在数据采集过程中,点选后填入从core测得的已知冰厚。

基准打标:在数据采集过程中,在冰厚线的当前位置添加标记。

扩大增益:增加信号放大率视图设置IcePicker:启动IcePicker程序。

仅用于IceMap SmartTow,不适用于IceMap基本系统。

启动Google Earth,如果在电脑上装载了改程序。

帮助。

2.系统设置目录系统设置对话框允许用户快速编辑各参数。

点击IceMap工具栏上的系统设置按钮,即显示当前系统设置,如下图:图:系统设置菜单2.1General Tab(常规选项卡)2.1.1文件管理(File Management)Project Name(项目名称)是IceMap数据文件存放的文件夹名称。

默认命名为Project1。

Line Prefix(前缀)是线条开始的前缀名字,如以定义为RedRiver前缀,就某条测线就会命名为RedRiver0017。

默认前缀是Line。

2.1.2单位(Units)允许用户以米制(Metric)如公里/时,米和厘米或美标(US Standard)如公里/时,英尺和英寸来显示速度,位置和深度数据。

点击偏好的单位进行选择。

2.1.3触发(Triggering)基于IceMap数据采集的控制来设置该参数。

选项有:1)Free Run(自由运行)2)Odometer(里程表),需要选配的Odometer。

在未使用odometer时选择Free Run模式。

自由运行模式按当前系统设置调整,在需要时自动触发IceMap系统进行数据采集。

在自由运行模式下采集的探地雷达(GPR)数据的定位精度,是由系统相对于用户所设速度有多快控制的。

2.1.4深度(Depth)所采集探地雷达(GPR)数据的总深度。

如果单位是米制(Metric),则用户可选择预定义的0.5,1,2,3,5或10米。

如果单位是美标(US Standard),则用户可选择预定义的2,4,6,10,20或30英尺。

较典型的取值为1到2米或者2到6英尺。

2.1.5步长(Step Size)当触发设为自由运行模式下操作是,该值估计沿冰剖面的数据采集点间的距离,即步长。

图:步长是数据采集点间的距离如果单位是米制(Metric),则用户可选择预定义的0.05,0.1,0.2,0.25,0.5和1.0米。

如果单位是美标(US Standard),则用户可选择预定义的0.1,0.2,0.5,1.0,1.5,3或6英尺。

较典型的步长取值为0.25到1.0米或者1到3英尺。

估算的步长的精度将随数据采集时相对用户定义的速度大小不同。

如果测量时的速度超过预设的速度,数据显示的步长偏大。

如果测量时的速度小于预设的速度,数据显示的步长偏小。

2.1.6速度和最大速度数据采集的目标拖车速度。

其数值取决于单位。

如果单位是米制(Metric),则用户可选择预定义的1,2,5,10,15,20,25,30,40,50,60或80千米/小时。

如果单位是美标(US Standard),则用户可选择预定义的0.5,1,2,5,10,15,20,25,30,35,40或50mph。

当前深度和步长的最大速度,如果深度设置高且步长设置低,该值可能小于80km/hr或50mph。

2.2高级选项卡系统设置>高级选项卡将允许用户设置数据文件夹,配置GPS,以及校准里程表。

图:系统设置>高级选项卡2.2.1数据文件夹(Data Folder)数据文件夹是IceMap数据文件在计算机上存储的路径和文件名。

使用浏览(Browse)按钮进行选择。

2.2.2GPS设置略2.2.3里程表校准(Odometer Calibration)略2.3状态选项卡(Status Tab)系统设置>状态选项卡提供了系统信息。

电池,温度和Wi-Fi状态以水平栏框显示。

当栏内为绿色,一切正常。

变为红色就预示有问题。

电池:如果电池栏变为红色,应及时充电或更换电池。

温度:如果温度栏变红,则系统过热,应关闭系统,冷却后再工作。

Wi-Fi:如果Wi-Fi栏变红,IceMap的电子器件与计算机通讯有困难。

上图中下栏框中显示了各种系统信息,包括IceMap软件版本和序列号,Noggin GPR传感器频率和序列号挤挤嵌入式NIC软件版本号和序列号。

如果传感器和软件服务部门要求您提供系统详细信息,使用Copy Info按钮复制系统信息到剪贴板,继而粘贴在文档或邮件中。

3.视图设置视图设置对话框允许用户快速编辑各个数据显示设置。

点击IceMap工具栏上的视图设置按钮以显示当前视图设置。

图:视图设置对话框3.1视图设置选项卡3.1.1深度标尺3.1.1.1间隔深度标尺间隔是深度标尺上的轴线距离。

间隔通常设为自动,系统会一句最大标尺刻度计算出一个合适的距离,但如果用户想要特点的间隔可自行输入。

3.1.1.2最大尺度最大尺度是IceMap网格上最大深度。

注意这是现实的深度值,不是数据采集的深度值。

最大尺度可以被设置成不同于采集深度的值,比如,如果采集深度是2米,最大范围可以设为1米。

3.1.1.3显示网格线如果深度标尺网格线显示功能已经启用,对应深度标尺标签的水平线就会标记在横截面数据图像上。

3.1.2位置标尺3.1.2.1模式位置标尺上的显示的距离是根据GPS(如果有)或触发模式自由运行或里程表而定的。

自由运行依据步长和速度计算距离。

自由运行的距离测量精度是要看操作者移动系统的速度与设置的速度接近程度。

3.1.2.2范围范围是以选定单位在屏幕上显示的数据的总距离。

如果单位是米制(Metric),则用户可选择预定义的50,100,200,250,30,400,500,600或1000米。

如果单位是美标(US Standard),则用户可选择预定义的150,300,600,800,900,1200,1600,2000或3000英尺。

3.1.2.3显示网格线如果位置标尺网格线显示功能已经启用,对应位置标尺标签的垂直线就会标记在横截面数据图像上。

3.1.3阈值线阈值是对应用户定义冰厚值的位于IceMap数据断面图像上的一道橙色水平线。

如果,在数据采集过程中,当前冰厚小于该值,则当前冰厚值会红色闪烁并发出报警声。

用户可以使用键盘的向上向下键改变阈值,或者选择视图设置>视图设置选项卡>阈值来改变。

当数据被保存,且采集停止时,或者回放之前的采集数据线,整条测线都会在屏幕上重新显示。

回放栏会出现在屏幕底端。

对话框显示,冰层薄于当前阈值,沿整条数据线的垂直橙色线条。

如果阈值改变,对话框自动更新以显示根据新阈值确定的薄区域。

3.2冰厚校验(Ice Cals)选项卡Ice校验值是表示穿过冰层的探地雷达(GPR)信号速度的,从100到250的一个值。

冰层校验数字代表冰速值,单位是毫米/纳米。

典型的取值是140到170,但随不同地点的包括冰中的空气和液态水量等若干因素的影响而不同。

精确的冰层校验对于取得精确冰厚数据非常重要。

数据采集暂停时完成一份Ice Calibration(冰层校验),即可计算出冰层校验值。

在视图设置>冰层校验选项卡列出了当前测线上的所有冰层校验值。

用户可将冰层校验设置为依据最终值,所有冰层校验的平均值,或手动键入。

3.2.1冰厚如何确定深度设置是指探地雷达(GPR)信号将渗透地下的深度。

重点是要认识到深度设置是依托冰层校验值的一个预估值。

探地雷达系统记录了一个无线电波穿行至目标并返回所用的时间。

并不直接测量距离目标的深度,该深度是依据电波往返的速度(Ice Cal)计算出来的。

公式如下:D=V x T/2其中,D是深度(m),V是速度(m/ns),T是往返时间(ns)。

4.采集IceMap数据IceMap软件初次启动时,系统状态框显示搜索中(Searching)。

当IceMap系统被检测到时,信息会变为找到(Found),系统初始化会显示一个进度条。

当初始化完成系统准备就绪后,消息显示为准备就绪(Ready),绿色的开始按钮启动,可开始数据采集。

点击IceMap工具栏上的绿色箭头开始数据采集。

4.1选择线名点击开始按钮后,用户被要求输入线名。

相关文档
最新文档