辐照效应 part

合集下载

中子辐照效应

中子辐照效应

中子辐照效应
中子辐照效应是指物质受到中子辐照后发生的一系列物理、化学、生物等变化。

中子是一种无电荷的粒子,因此在穿过物质时不会被物质中的电子相互作用散射,而是会与原子核相互作用,从而产生中子辐照效应。

中子辐照效应的影响非常广泛。

在核工业中,中子辐照是产生放射性同位素、探测材料中氢和硼等的重要手段。

在核电站和核反应堆中,中子辐照会导致材料的辐射损伤和变形,增加材料的脆性,从而影响设备的安全性能。

除了核工业之外,中子辐照还具有广泛的应用价值。

例如,在材料科学中,中子辐照可以用于研究材料的晶体结构、缺陷等性质;在生物医学中,中子辐照可以用于研究DNA、蛋白质等生物大分子的结构和功能等。

因此,研究中子辐照效应的性质和规律,对于深入了解物质的本质和开发新型材料、新型医疗器械等具有重要意义。

- 1 -。

(优选)核材料的辐照效应

(优选)核材料的辐照效应

所致。
二铁合金的粒子辐照效应
1 辐照对12Cr-ODS钢氧化物稳定性影响 利用氢离子(H+)束和电子(e-)束,双束(H+/e-)同时 辐照用化学浸润法制备的新型12Cr-ODS铁素体钢,研究辐 照对12Cr-ODS钢氧化物稳定性的影响。对不同辐照剂量下 原位观察辐照区内氧化物形貌的变化过程发现:辐照前和 15dpa辐照后约10-20nm氧化物的尺寸并没有明显变化,而氧 化物周围出现微小高密度空洞并没有影响氧化物的稳定性。 当辐照温度升高至823K时,大尺寸的氧化物Y2O3与基体的 相界面变得不规则,但氧化物颗粒尺寸并不发生明显变化。 实 弥验散结强果化表相明Y2:O3弥与散铁强素化体相相Y界2O面3尺变寸得稳粗定糙,与无氢明的显存溶在解,现促象进。 铁素体内空位向Y2O3氧化物扩散有关。
离子辐照前后实验材料的显微组织
3.450 ℃高能电子辐照对CLAM 钢微观结构 的影响
为了研究低活化马氏体CLAM 钢的抗辐照肿胀性 能,在450 ℃下对CLAM 钢进行大剂量高能电子辐 照的原位动态实验. 利用超高压透射电子显微镜观 察发现,CLAM 钢中产生了大量的间隙原子型位错 环和多面体形状的辐照空洞. 分析了它们的形核和 长大规律以及相关机制. 计算表明,CLAM 钢在高 能电子辐照下的最大肿胀率为0.26 % ,具有较好 的抗辐照肿胀性能.
理论计算辐照环境下纳米晶材料的结构变化
A 传统晶态合金
B 纳米晶材料
1 Bai XM, etc., Science, 327, 1631 (2010);
2 Ackland G, Science, 327, 1587 (2010)
一 锆合金的辐照效应
❖ 1. 单位体量材料积中位移原子数与原子总数之比 定义为原子位移(dpa),通常以其值来衡的辐 照损伤程度,在典型轻水堆电站中锆合金包壳每 一次循环下所受到的辐照损伤为20(dpa),约相当 于10-7dpa/s,可见很严重。

材料辐照效应与核电材料--内含精选动图

材料辐照效应与核电材料--内含精选动图
(3)级联碰撞 氦气泡、氢气泡
1、辐照缺陷的产生过程
氦是惰性气体,不易溶于固体材料,因此一旦 金属中引入氦后,氦将与金属中点阵原子和缺 陷发生相互作用,最终导致金属微观结构和宏 观性质发生变化。
氦的存在形态有: 1)单个原子及原子团 2)氦泡
(3)级联碰撞 氦气泡、氢气泡
1、辐照缺陷的产生过程
氦泡形成后,可通过三种方式继续长大:
A、核电用钢
双相不锈钢
铁素体-奥氏体型双相不锈钢发展思路: 奥氏体不锈钢抗应力腐蚀性能较低 而铁素体不锈钢抗晶间腐蚀能差
A、核电用钢
双相不锈钢
I、铁素体分布在奥氏体中,提 高强度,增加导热性能,降低 焊接热裂纹倾向。塑性较高的 奥氏体降低了铁素体的脆性。
II、抗晶间腐蚀的原因。 铁素体钢的晶间腐蚀是由于在 晶界析出含Cr化合物Cr23C6。 双相钢中,C富集在奥氏体中, Cr富集在铁素体中。所以C和 Cr相遇的可能性明显降低, Cr23C6形成量减小,不会链接 成网状。
金属锆的物理性质
塑性比较差
原子序数 原子量
密度(g/cm3) 熔点(℃) 沸点(℃)
热膨胀系数(1/℃) 导热率(W/m℃)
40 91.22
6.5 1845 3852 4.9×10-6 16.7 (125℃)
晶体结构
热中子吸收 截面(靶)
<862℃ 密排六方
>862℃ 体心立方
a=0.323nm a=0.361nm
1)吸收新引入的或者热迁移来的氦原子或吸收空位。 2)迁移-合并机制。 3) Ostwald熟化长大。在热平衡时,氦泡的压强与大小有 关,小氦泡的内部压强小,大氦泡内压强大,因此不同尺 寸的氦泡之间存在着氦原子浓度梯度,这种浓度梯度使得 小氦泡的氦原子重新溶解而扩散到大泡,导致小的氦泡消 失,大的氦泡长大。

半导体辐照效应

半导体辐照效应

半导体辐照效应
半导体的光电效应是指当半导体被光照射时,其价带和导带中的电子和空穴被光子激发,产生光生载流子。

这些光生载流子可以在半导体中移动,产生光电流。

半导体的光电效应是半导体材料重要的物理特性之一。

当半导体被强光照射时,光的能量超过其禁带宽度,导致价带和导带之间的能级压降增大。

这样,光生载流子的浓度就会急剧增加,产生大量的光电流。

此外,半导体中的杂质也会影响光电效应的发生。

例如,在锗或硅晶体中掺入五价元素磷、砷、锑等杂质原子时,杂质能级上的电子很容易激发到导带成为电子载流子。

而掺入三价元素硼、铝、镓等杂质原子时,则会产生空穴载流子。

半导体辐照效应可以用来制造太阳能电池、光电子器件、光电探测器等光学器件。

在这些应用中,半导体的光电效应是实现光能量转化为电能的关键。

聚合物辐照效应

聚合物辐照效应

辐照效应(radiation effects)固体材料在中子,离子或电子以及γ射线辐照下所产生的一切现象。

辐照会改变材料的微观结构,导致宏观尺寸和多种性质的变化,对核能技术或空间技术中使用的材料是个重要问题。

在晶体中,辐照产生的各种缺陷一般称为辐照损伤。

对于多数材料而言,主要是离位损伤。

入射离子与材料中的原子核碰撞,一部分能量转换为靶原子的反冲动能,当此动能超过点阵位置的束缚能时,原子便可离位。

最简单的辐照缺陷是孤立的点缺陷,如在金属中的弗仑克尔缺陷对(由一个点阵空位和一个间隙原子组成)。

级联碰撞条件下,在约10 nm 直径的体积内产生数百个空位和数百个间隙原子。

若温度许可,间隙原子和空位可以彼此复合,或扩散到位错、晶界或表面等处而湮没,也可聚集成团或形成位错环。

一般地说,电子或质子照射产生孤立的点缺陷。

而中等能量(10-100KeV)的重离子容易形成空位团及位错环,而中子产生的是两种缺陷兼有。

当材料在较高温度受大剂量辐照时,离位损伤导致肿胀,长大等宏观变化。

肿胀是由于体内均匀产生的空位和间隙原子流向某些漏(如位错)处的量不平衡所致,位错吸收间隙原子比空位多,过剩的空位聚成微孔洞,造成体积胀大而密度降低。

辐照长大只有尺寸改变而无体积变化,仅在各向异性显著的材料中,由于形成位错环的择优取向而造成。

离位损伤造成的种种微观缺陷显然会导致材料力学性能变化,如辐照硬化、脆化以及辐照蠕变等。

辐照缺陷还引起增强扩散,并促使一系列由扩散控制或影响的过程加速进行,诸如溶解,沉淀,偏聚等,并往往导致非平衡态的实现。

对于某些材料如高分子聚合物,陶瓷或硅酸盐等,另一类损伤,即电离损伤也很重要。

入射粒子的另一部分能量转移给材料中的电子,使之激发或电离。

这部分能量可导致健的断裂和辐照分解,相应的引起材料强度丧失,介电击穿强度下降等现象。

结构材料中子辐照后主要产生的效应·1)电离效应:指反应堆中产生的带电粒子和快中子与材料中的原子相碰撞,产生高能离位原子,高能的离位原子与靶原子轨道上的电子发生碰撞,使电子跳离轨道,产生电离的现象。

chapter6 辐照效应 part1

chapter6 辐照效应 part1
因此,这个最初离位的原子,如同入射的高能粒子 还可以连续地和其它原子发生碰撞,构成二次、 三次以至更多次的碰撞
• PKA:快中子最初撞出 的第一次离位原子,叫 初级离位原子 (Primary knock-on atoms)
PKA PKA
辐照效应和辐照损伤
辐照损伤 级联碰撞与撞出损伤函数
• 级联碰撞(cascade process):最初被撞离位原子(PKA)的 能量远大于离位阈能,可连续地和点阵中其他原子发生碰 撞,构成二次、三次以至更多次生离位原子,称为级联碰 撞 • 损伤函数(E):一个PKA最终撞出的离位原子数目 (Frenkel对缺陷数),称为损伤函数。 损伤函数同辐照硬化和脆化的关系尚不明确,但同空洞长 大及辐照蠕变有较好的关系。因此损伤函数对评估中子辐照 产生的离位原子数及其随后的变化行为很重要,它能决定辐 照缺陷的数量、分布形态以及辐照效应大小 因此,对辐照损伤函数(E)的计算很重要
200
1263 1.1106 325 28
辐照效应和辐照损伤
辐照损伤
级联碰撞与撞出损伤函数 已知裂变中子平均能量为2MeV,它轰击铁原子,后者获得的能量 约为0.138MeV,此值远远大于铁的离位阈能(Ed=25eV),也远远 超过为使铁原子离位所需要的325eV的入射中子能量
4M1 M2 T max= E0 = 0.069E0 2 (M1 + M2)
辐照效应和辐照损伤
辐照过程的碰撞问题 • 坐标系的选择: 在对二体碰撞进行动力学分析时,可供选择的坐标系 有实验室坐标系、相对运动坐标系以及质心坐标系。在研 究中子对靶原子的碰撞中,主要采用实验室坐标系和质心 坐标系。
实验室坐标系:以实验室为静止参照物, 碰撞前靶原子处于静止状态,受到速度为 v1的入射粒子碰撞后,靶原子核入射粒子 的运动状态均发生变化 质心坐标系:以参加碰撞的两个物体的质 心为静止参照物,在该坐标系中,两个物 体分别以w1、w2相向运动,碰撞后又分别 以w1’、w2’背向运动

细胞生物学中的紫外线辐照效应研究

细胞生物学中的紫外线辐照效应研究

细胞生物学中的紫外线辐照效应研究紫外线辐射是一种高能量电磁辐射。

在自然界中,太阳光是紫外线最主要的来源,但人类活动也会导致紫外线污染。

紫外线光谱范围可分为三个区域:紫外线A波段(UVA,320nm-400nm)、紫外线B波段(UVB,290nm-320nm)和紫外线C波段(UVC,100nm-290nm)。

其中,UVC被大气层吸收,UVB和UVA能够穿透至地球表面。

然而,由于地球大气层的破坏和人类活动,UVB的强度已经明显增加,而导致皮肤癌等疾病的风险也因此增加。

细胞对紫外线辐射极为敏感,辐射会导致细胞DNA的损伤和其他分子的氧化损伤,从而诱发细胞凋亡或癌变。

因此,研究细胞在紫外线辐射下的反应和适应机制非常重要。

在细胞生物学中,已经发现了很多与紫外线辐照相关的生物效应,如DNA损伤的检测和修复、信号通路的变化、蛋白质的氧化损伤等。

这些生物效应在细胞内发挥着关键的作用,以适应外界环境的变化。

紫外线辐照对DNA的影响DNA是细胞内最基本的遗传物质,其稳定性对于细胞生存和繁殖至关重要。

UVB和UVC能够引起DNA分子内的氧化损伤,并在大多数情况下引起DNA单链断裂或氧化损伤。

这些损伤若无法及时修复,将会导致细胞凋亡或癌变等严重后果。

对于这种情况,细胞会启动一系列的DNA损伤修复机制,以保障正常的遗传信息重现。

目前,DNA损伤修复的主要途径有直接修复、碱基切除修复和重组修复等。

这些修复途径的不同,决定了细胞对UVB和UVC辐射的抗性不同。

除了直接修复、碱基切除修复和重组修复,细胞还可以通过其他途径来减轻紫外线辐照对DNA的损伤。

例如,研究表明,在DNA氧化损伤的发生过程中,NAD基因和谷胱甘肽还原酶等重要因子可以发挥重要作用。

此外,还有一些蛋白质能够增强DNA的应激防御,不仅可以固定DNA分子,更能够在DNA双链裂解时帮助完成修复。

紫外线辐照对细胞信号通路的影响细胞内的信号通路是细胞对环境变化做出反应的重要途径之一,它能够感知细胞内外环境的变化,进而调节细胞生命活动。

第七讲 核材料的辐照效应讲解

第七讲 核材料的辐照效应讲解
2. 要使锆原子位移就必须向其提供足够的能量, 这一位移能量阈值Ed为25~27ev.而对于1Mev的 入射中子,锆原子接受的反冲能量平均值为 20kev,其最大值可达40kev,显然都远高于锆原 子位移所需的能量,从而出现初级位移原子。
3. 在(2~3)×1019n/cm2的注量后观察到了 空位环和空位间隙,这时产生的空位环主要 是<a>型1/3<1120>环,空位环和间隙环大体 上均衡发展是锆合金的特点,其比例取决于 辐照温度和注量,注量达到 (3~8)×1021n/cm2后还产生<c>型1/6<2023> 环,这只是空位环。与不锈钢不同,中子辐 照下锆合金中未发现空洞的存在。
Zr-4合金的中子辐照生长
对由两厂分别生产的Zr-4包壳管样品在重水
堆内进行中子辐照试验, 辐照温度为610K, 快中
子注量为4.2×1020/cm2(E>1.0MeV)。试验结
果表明, Zr-4管的辐照生长应变随辐照中子注量
增加呈线性增加。两厂生产的Zr-4包壳管的生
长应变可用
表达式描述,
两者的差异可能是合金元素和杂质的综合影响
辐照对拉伸性能的影响
中子辐照铝的微观结构变化
铝的中子辐照实验是与硅的中子辐照同 时进行的。中子辐照时, 纯铝箔(纯度为99. 999% )包裹着硅。中子辐照实验在核反应 堆中进行, 辐照剂量为1015 —1016 neutron / cm2。辐照试样取出后, 放置一定时间, 等 到放射性降低后再对试样进行分析。利用 扫描电子显微镜( SEM) 、透射电子显微镜 ( TEM)和纳米显微力学硬度计对中子辐照 后的纯铝试样进行分析。
随着注量提高到4×1026n/m2,牌号1100技术纯铝不断 提高着强度极限和屈服极限,但相对延伸率仍然完全没变化。 甚至在高注量辐照下,也不会使铝明显脆化。加工变形铝的 特点是,辐照不但提高了强度性能,同时还保持了足够高的 塑性,所以铝的性能辐照后可能比辐照前要好

核材料辐照效应

核材料辐照效应
核材料辐照效应
第四章
主讲:黄群英
FDS 团队
中国科学技术大学 核科学技术学院 中国科学院 等离子体物理研究所
E-mail: qyhuang@
裂变堆结构与材料
堆芯 堆 内构件 控制
棒 反射层 压力容器
裂变堆原理图
压水堆结构图
聚变堆结构与材料
严酷 服 役环境
》 离位损伤的计算机模拟
模拟和定量计算材料中的级联碰撞和离位原子在材料中的分布形态。
右图为约500个原子的铜单晶点 阵原子的受撞模拟:
图a:级联碰撞过程 图b:缺陷(离位原子和空位) 的分布
注意,本章中离位损伤的计算均未考虑缺陷的回复(如间隙原子与邻近空位的复合)
离位峰和热峰
》 离位峰
Brinkman提出描绘级联碰撞结束时的Frenkel缺 陷分布模型:PKA 的高密度碰撞会驱使沿途碰撞 链上的原子向外运动,因此在级联碰 撞区域中心 附近的缺陷主要是空位,而间隙原子则分布在中 心空位 区的周边外围。这种空位和间隙原子相互 分离的现象称为离位峰。
第一节 辐照原理
1 碰撞与离位 碰撞Hale Waihona Puke 能量传递离位阈能和入射粒子阈能
2 级联与损伤函数 3 离位损伤剂量 离位原子数 计
算机模拟
4 微观结构 离位峰与热峰 沟道
效应和聚焦碰撞 Seeger对离位峰 的修正
碰撞与能量传递
先不考虑晶体效应和原子间的作用势,仅从经 典力学计算。设质量为M1和能量为E0的中子 与质量为 M2的靶原子发生碰撞。
•原子将脱离点阵节点而留下空位,离位原子而不能跳回原位时, 停留在品格间隙之中形成 间隙原子。间隙原子和留下的空位合称 为Frenkel对缺陷,这种损伤类型成为离位。

核材料的辐照效应PPT

核材料的辐照效应PPT

CLAM 钢在45ห้องสมุดไป่ตู้ ℃电子辐照时辐照空洞得变化、 (a) 0 dpa ; (b) 1、4 dpa ; (c) 3、6 dpa ; (d) 10 dpa ; (e) 11、5 dpa ; (f) 13、2 dpa ; (g) 13、8 dpa ; (h) 15、6 dpa
从图中可以瞧到,随着辐照损伤量得增加,产 生得空洞越来越多,并且尺寸也越来越大、 辐照损伤量达到1、4 dpa 时,开始观察到空 洞得存在,这时空洞得尺寸很小、数量有限; 当辐照损伤量达到3、6 dpa 时,空洞得尺寸 明显长大,数量也在增加; 在图 c 中还可以瞧 到有新得空洞产生;继续增加辐照剂量,空洞 得数量与直径都继续增加,当辐照损伤量达 到10 dpa 时,可以瞧到空洞得数量较多、
❖ 2、 要使锆原子位移就必须向其提供足够得能量, 这一位移能量阈值Ed为25~27ev、而对于1Mev得 入射中子,锆原子接受得反冲能量平均值为20kev, 其最大值可达40kev,显然都远高于锆原子位移所 需得能量,从而出现初级位移原子。
❖ 3、 在(2~3)×1019n/cm2得注量后观察到了空 位环与空位间隙,这时产生得空位环主要就是 <a>型1/3<1120>环,空位环与间隙环大体上 均衡发展就是锆合金得特点,其比例取决于辐 照温度与注量,注量达到(3~8)×1021n/cm2后 还产生<c>型1/6<2023>环,这只就是空位环。 与不锈钢不同,中子辐照下锆合金中未发现空 洞得存在。
辐照对拉伸性能得影响
辐照前12Cr-ODS钢组织形貌
723K双束辐照后氧化物形貌变化
823K双束辐照后氧化物形貌变化
2低活化铁素体/ 马氏体钢离子辐照后得微观 结构变化

第五章 辐照效应。

第五章  辐照效应。

第五章辐照效应辐照损伤是指材料受载能粒子轰击后产生的点缺陷和缺陷团及其演化的离位峰、层错、位错环、贫原子区和微空洞以及析出的新相等。

这些缺陷引起材料性能的宏观变化,称为辐照效应。

辐照效应因危及反应堆安全,深受反应堆设计、制造和运行人员的关注,并是反应堆材料研究的重要内容。

辐照效应包含了冶金与辐照的双重影响,即在原有的成分、组织和工艺对材料性能影响的基础上又增加了辐照产生的缺陷影响,所以是一个涉及面比较广的多学科问题。

其理论比较复杂、模型和假设也比较多。

其中有的已得到证实,有的尚处于假设、推论和研究阶段。

虽然试验表明,辐照对材料性能的影响至今还没有确切的定量规律,但辐照效应与辐照损伤间存在的定性趋势对实践仍有较大的指导意义。

5.1 辐照损伤1. 反应堆结构材料的辐照损伤类型反应堆中射线的种类很多,也很强,但对金属材料而言,主要影响来自快中子,而α,β,和γ的影响则较小。

结构材料在反应堆内受中子辐照后主要产生以下几种效应:1) 电离效应:这是指反应堆内产生的带电粒子和快中子撞出的高能离位原子与靶原子轨道上的电子发生碰撞,而使其跳离轨道的电离现象。

从金属键特征可知,电离时原子外层轨道上丢失的电子,很快被金属中共有的电子所补充,所以电离效应对金属性能影响不大。

但对高分子材料,电离破坏了它的分子键,故对其性能变化的影响较大。

2) 嬗变:受撞原子核吸收一个中子变成异质原子的核反应。

即中子被靶核吸收后,生成一个新核并放出质子或α带电粒子。

例如:嬗变反应对含硼控制材料有影响,其它材料因热中子或在低注量下引起的嬗变反应较少,对性能影响不大。

高注量(如:>1023 n/m 2)的快中子对不锈钢影响明显,其组成元素大多都通过(n,α)和(n,p)反应产生He 和H ,产生辐照脆性。

HeLi n B 427310105+→+H N n O 11167168+→+3) 离位效应:碰撞时,若中子传递给原子的能量足够大,原子将脱离点阵节点而留下一个空位。

食品辐照效应与辐照保藏原理

食品辐照效应与辐照保藏原理

食品辐照效应与辐照保藏原理食品经射线照射会发生一系列的辐照效应,主要有物理学效应、化学效应和生物学效应。

辐照保藏食品,通常是用X射线、Y射线、电子射线照射食品,这些高能带电或不带电的射线照射食品会引起食品及食品中的微生物、昆虫等发生一系列物理、化学反应,使有生命物质的新陈代谢、生长发育受到抑制或破坏,达到杀菌、灭虫,改进食品质量,延长保藏期的目的。

(一)α射线和Y射线与物质的作用α射线、Y射线都是高能电磁辐射线,它们又常被称为“光子”,当与被照射物(如食品、微生物、昆虫和包装材料)原子中的电子相遇,光子有时会把全部能量交给电子(光子被吸收),使电子脱离原子成为光电子。

如果射线的光子与被照射物的电子发生弹性碰撞,当光子的能量略大于电子在原子中的结合能时,光子把部分能量传递给电子,自身的运动方向发生偏转,朝着另一方向散射,获得能量的电子(也称次电子,康普顿电子),从原子中逸出,上述过程称康普顿散射(ComptonScattering)。

如果了射线和X射线的能量大于某一阂值时,能量和某些原子核作用而射出中子或其他粒子,因而使被照射物产生犷放射性(RadiOaCtiVity)C.能否产生这种放射性(也称感生放射性),取决于射线的能量和被辐照物质的性质。

(二)电子射线的作用当辐射源射出的电子射线(高速电子流)通过被照射物时,受到原子核库仑场的作用,会发生没有能量损失的偏转,称库仑散射。

库仑散射可以多次发生、甚至经过多次散射后,带电粒子会折返回去,发生所谓的“反向散射”。

二、食品辐照的化学效应电离辐射穿透食品物料的程度取决于食品性质和辐射的特性。

辐射作用时的效应取决于其改变分子的能力及其电离电位。

Y-射线的穿透力比B-粒子大。

B・粒子一般具有较大的能力,能在它们通过物质时产生电离作用。

能量级较高的电子束具有较高的穿透深度,并能沿着其径迹(比能量低的电子束)产生更多的变更分子和电离作用。

当中等能量级的电离辐射通过食品时,在电离辐射与分子级和原子级的食品粒子之间有撞击现象,当来自撞击的能量足以使电子从原子轨道移去时,即导致产生离子对。

4 核材料辐照效应

4 核材料辐照效应
Brinkman离位峰
热峰周围的温度变化
沟道效应
沟道效应与聚焦碰撞
离位原子沿材料中点阵密排晶向围成的间隙腔入 射时,碰撞距离比较长的现象。 沟道效应易出现在级联碰撞的高能阶段。 特点是不产生大量点缺陷。
聚焦碰撞
指级联碰撞时每级离位原子的散射角逐级减 小,并按某一晶向以准直线方式传递能量和输 送原子的碰撞过程。 聚焦碰撞易发生在级联碰撞的低能阶段。 (1)能量损失大,缺陷生成少。 (2)PKA能量沿聚焦轴可传输到较远的地方, 并使空位和间隙原子相隔较远,二者复合 消失概率最小 (3)在密排原子列上产生动力挤塞子。
辐照肿胀(Swelling)
辐照产生空位浓度达到一定过饱和之后,聚集在一起,形成三维晶 体缺陷空洞,宏观上出现材料密度降低,体积膨胀。
HT9 – no swelling
Stainless steel - swelling
辐照损伤
辐照硬化(Irradiation Induced Hardening)
氦效应 - 氦脆
辐照损伤
中子辐照的嬗变反应会产生氦,氦在晶体材料中的溶解度极小,很 容易在晶界、位错出析出,形成氦泡,因此会引起材料的DBTT上 升等脆性现象,称为氦脆。
RAFM钢在JMTR堆内辐照后的冲击吸收功曲线
氦效应 - 氦硬化
辐照损伤
氦泡对位错的钉扎作用增加了位错移动的阻力,使得材料的强度上 升而产生氦硬化。
辐照产生的缺陷团会阻碍位错的运动形成硬化,性能上表现为辐 照后强度升高,尤其是屈服强度增加更快。
辐照损伤
辐照脆化(Irradiation Induced Embrittlement)
随着温度下降,材料会在某一特定温度附近发生由韧性断裂向脆 性断裂的突然变化,这个转变温度通常称为韧脆转变温度 DBTT,辐照后将向高温方向移动。

核电厂材料_2_第四章材料的辐照效应

核电厂材料_2_第四章材料的辐照效应
• 热峰: 一个快中子会经历几次弹性碰撞,速度下降到不可 能再造成原子位移时,剩余的能量会以振动的形式消散在 一个很小的范围内,形成一个热峰。局部温度可达几千度。
离位峰模型
辐照效应
• 金属点阵中存在大量的空位和间隙原子会大大增 加金属的硬度, 降低它的延性。许多材料的体积 会明显增加(如石墨、金属铀)。在各向异性的 晶体中会发生定向生长和严重畸变。
辐照效应
• 位移峰: 一个高能粒子击出的级联碰撞原子趋向于积聚在 粒子运动的初级方向上,影响的区域称为位移峰,其长度 约10nm。被击出的初级位移原子将沿垂直于初级原子径 迹方向,继续运动几个原子的距离,然后停留在间隙位置 上,形成一个间隙原子壳。
这个极小体积所获得的能量在短时间内转变为热能,并 使间隙原子壳发生熔化。在此熔融区内原子重新排列,由 于接着而来的迅速冷却使原子冻结在畸变后的位置上,出 现了包含大量空位和间隙原子的离位峰。
材料的辐照效应
• 2)辐照肿胀 辐照导致材料中产生大量的缺陷,缺陷聚集后产生空
位位错环和间隙位错环。空位位错环不易坍塌,因为核反 应产生的氦气易聚集在空位位错环内,而使其形成三维的 空洞造成体积膨胀;间隙位错环坍塌后在原晶体中多了一 个原子面,使体积增加。因此辐照导致材料的肿胀。
• 辐照肿胀与温度有关。如不锈钢大约在0.3-0.5Tm下辐 照肿胀量最大(当中子通量达1027n/m2时,肿胀可达 15%)。 低于此温度,空位、间隙原子可动性不大,被 冻结在材料中,高于此温度,缺陷复合的机会增加,肿胀 量就会减少。
– 核转化生成异种原子的反应(n, α), ( Nhomakorabea, p)反应

10 5
B
n
37
Li 24
He

第七讲-核材料的辐照效应

第七讲-核材料的辐照效应

CLAM 钢在450 ℃电子辐照时的微观结构变化. (a) 0 dpa ; (b) 3.6 dpa ; (c) 10 dpa ; (d) 11.5 dpa ; (e) 13.2 dpa ; (f) 13.8 dpa
图 (a) 是刚刚开始辐照时的微观结构. 从中可以看 出,钢中存在一定数量的均匀分布的位错环,位错环 的平均直径为13 nm. 伴随着辐照损伤量的增加,位 错环不断长大,位错环的密度也在增加,当辐照损伤 量达到11.5 dpa 时(图4.1 ( d) ) ,位错环最大,继续 增加辐照损伤量,最大位错环的大小基本保持不变; 但位错环的数密度增加,比较小的位错环继续长大. 从图4.1 中可以看到,当辐照损伤量达到10 dpa (图 4.1 (c) ) 之前,位错环的数密度增加较慢,当辐照损 伤量达到10 dpa (图4.1 (c) ) 以后,位错环的数密度 迅速增加,以至于辐照损伤量达到13.2dpa (图4.1 (e) ) 以后,看到的位错环的分布密度很大;由于在辐 照过程中的每一时刻产生的间隙原子的数量是一 定的,这将产生“位错环直径增长较快时其数密度 增长较慢、位错环直径增长较慢时其数密度增长 较快”的结果.
核材料的辐照效应本质
粒子辐照,特别是中子辐照时,粒子与原子的各种 碰撞效应导致受激发原子的自由迁移,再通过撞击 其他原子导致级联效应的产生。在此过程中,缺陷 萌生、长大,并集中于晶界,甚至于材料表面。微 观的空位、空穴等缺陷长大、集中,发展为介观到 宏观尺度的空洞,最终导致材料的结构变化和损伤, 性能失效。因此,被激发原子的随机迁移性与晶体 内部结构的有序性之间的矛盾是制约晶态合金耐辐 照性的最根本原因。
辐照前12Cr-ODS钢组织形貌
723K双束辐照后氧化物形貌变化
823K双束辐照后氧化物形貌变化

核材料辐照效应

核材料辐照效应
》 离位损伤的计算机模拟
模拟和定量计算材料中的级联碰撞和离位原子在材料中的分布形态。
右图为约500个原子的铜单晶点 阵原子的受撞模拟:
图a:级联碰撞过程 图b:缺陷 (离位原子和空位)
的分布
注意,本章中离位损伤的计算均未考虑缺陷的. 回复(如间隙原子与邻近空位的复合)
离位峰和热峰
》 离位峰
Brinkman提出描绘级联碰撞结束时的Frenkel缺 陷分布模型:PKA的高密度碰撞会驱使沿途碰撞 链上的原子向外运动,因此在级联碰撞区域中心 附近的缺陷主要是空位,而间隙原子则分布在中 心空位区的周边外围。这种空位和间隙原子相互 分离的现象称为离位峰。
.
Brinkman离位峰 热峰周围的温度变化
沟道效应与聚焦碰撞
》 沟道效应
离位原子沿材料中点阵密排晶向围成的间隙腔入 射时,碰撞距离比较长的现象。
沟道效应易出现在级联碰撞的高能阶段。
特点是不产生大量点缺陷。
》 聚焦碰撞
指级联碰撞时每级离位原子的散射角逐级减
小,并按某一晶向以准直线方式传递能量和输 送原子的碰撞过程。
.
碰撞与能量传递
先不考虑晶体效应和原子间的作用势,仅从经 典力学计算。设质量为M1和能量为E0的中子 与质量为M2的靶原子发生碰撞。
》正碰
根据弹性碰撞中能量和动量的守恒方程,可 求出中子传给靶原子的最大能量(二体迎头 正碰撞时) 为
(μ:中子能量损失系数)
》随机碰撞 将直角坐标换成质心系(二体质心同速运动)坐标参数后,代入能
与撞出概率的关系中建立的。
K-P模型有如下许多简化假定: (1) 所有串级碰撞都是同类原子刚性球的二体碰撞; (2) 只计两原子间的作用势,不考虑晶格影响; (3) PKA撞出晶格原子的离位概率Pd(T)与被击原子接受的能量T的关系用单值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辐照效应和辐照损伤
辐照效应 射线的种类
• 中性粒子:中子、射线(光子) • 带电粒子:粒子(He核)、质子、电子(包括) • 高能原子和离子:裂变产物、一次碰撞反冲原子以及加速的 离子
两种主要的辐射 • 对于结构材料:射线、射线和射线对金的损 伤可忽略,辐照损伤主要来源于中子的辐照; 射线 对高分子材料有损伤作用,会导致诸如电缆的老化; • 对于燃料材料:其损伤主要来源于裂变产物
铁原子的离位阈能:25eV
结构材料的辐照效应主要是由高能中子引起一些原子离开点阵位 臵而产生的缺陷造成的
辐照效应和辐照损伤
辐照过程的碰撞问题 碰撞过程是一个非常复杂的问题,简化为:
• 二体碰撞:忽略原子之间的相互作用,只考虑直接参与碰撞 的两个物体,即入射粒子和被撞的靶原子,忽略材料中其它 相邻原子对这一碰撞的影响。 • 原子碰撞和原子核碰撞: 原子的尺度等于其轨道电子产生的电子云的尺度(10-8cm), 原子核的尺度只有10-12cm 入射粒子先与靶原子的电子云碰撞,穿过电子云后才能与靶 原子核碰撞,前者称为原子碰撞(或电子碰撞);后者称为原 子核碰撞 入射离子和电子带电荷,与靶原子发生原子碰撞—激发 (电离态);因此入射能量的大部分都消耗于原子碰撞,只有 很少一部分作用在原子核碰撞上。 入射中子本身不带电荷,辐照时主要是原子核碰撞
辐照效应和辐照损伤
辐照效应 辐照的间接效应: 材料还会因辐照产生一些间接效应,其中最重要的是 辐照对材料的腐蚀稳定性的影响 • 腐蚀介质的成分由于辐照分解而发生变化;
比如:水的辐射分解--水在反应堆条件下会产生辐射分解: 游离氧、水合电子、氢离子
• 材料表面的保护性氧化膜因辐照出现损伤; • 材料表面参与化学反应的原子还会从辐照射线获得 能量 这些现象往往会加快材料的腐蚀过程
235 92 235 92 87 U n 147 La 57 35 Br 2n 139 59 94 38
U n Xe Sr 3n
辐照效应和辐照损伤
辐照效应 辐照损伤(irradiation damage)-类型 高能射线对材料产生的辐照损伤效应,按其作用时间 的长短,可分为三类 • 过渡效应(电离效应):是指反应堆内产生的带电 粒子和快中子撞出的高能离位原子与靶原子轨道上 的电子发生碰撞,而使其脱离轨道的电离现象。
辐照效应和辐照损伤
辐照损伤
碰撞时的能量传递
离位效应是金属材料辐照损伤的源头 什么样的中子能对材料产生辐照损伤?
• 裂变反应释放的中子能谱: 从0.1~10MeV,平均能量为2MeV-快中子; 能量在0.01~0.1eV,为慢中子 • 大于1MeV的快中子在级联碰撞中因产 生离位原子数量多,从而形成的缺陷团 和贫原子区以及它们的存活率也随之增 高
例如:普通的58Ni原子受中子辐照后,会放出射线,同时生成 自然界中不存在的59Ni,即: 58Ni(n,)59Ni 59Ni继续受到中子辐照后,引起下列的核嬗变反应: 59Ni(n,)56Fe 放出粒子(氦核),同时生成具有放射性的原子核56Fe
嬗变反应将会使材料的合金元素成分发生变化。由于这种辐照效 应不可能通过热处理方法来消除,故称为不可逆效应
金属材料中的过渡效应是一种暂态效应,而可逆效应则是一种累积效应,它 与射线的辐照剂量有密切的关系
辐照效应和辐照损伤
辐照效应 • 永久效应(嬗变):中子能量超过MeV量级,就有 可能与靶材料的原子核发生核嬗变,而生成新的原 子核,常用A(x,y)B来表示核嬗变反应,其意 义为原子核A吸收一个入射粒子x后,放出粒子y, 同时原子核A嬗变为原子核B
对于金属材料来说,这些效应最终主要转换成热量 释放,一般不会给材料结构带来什么变化。 过渡效应所产生的热效应对于 材料的辐照行为具有不可忽视的影响
辐照效应和辐照损伤
辐照效应 • 可逆效应(离位效应):材料中的原子受到射线辐 照后,有可能被弹击出原来的晶格位臵,产生晶体缺 陷,从而影响材料的性能。 具体来说:中子与材料原子发生碰撞,如果传递 给阵点原子的能量超过某一最低阈能,这个原子就会 离开它在点阵中的正常位臵,在点阵中留下空位。当 这个原子的能量在多次碰撞后不能再引 起另一个阵点原子位移时,该原子会 停留在间隙形成一个间隙原子。 由于可以通过适当温度的退 火来消除这些因辐照产生的晶体缺陷, 故称之为“可逆效应”
• 一般冶金学从热力学平衡的角度研究材料的变化, 所涉及的能量只有几个乃至几十个eV
• 核能相关的射线能量一般都非常高,中子射线的能 量达到keV~MeV数量级,相差近百万倍 • 这些高能射线在材料中将会产生许多特殊的辐照效 应,对其结构乃至物性产生重大的影响
辐照效应和辐照损伤
辐照效应
辐照损伤是指材料受载能粒子轰击后产生的点缺陷和缺陷团及 其演化的离位峰、层错、位错环、贫原子区和微空洞以及析出 的新相等。这些缺陷引起材料性能的宏观变化,称为辐照效应。
辐照效应和辐照损伤
辐照效应 因此:在反应堆结构材料的合金设计中,必须考虑核 嬗变引起的合金成分变化,以保证合金的性能不会受 到过大的损害,并尽可能减少材料因辐照而诱发产生 的放射性影响 (n,)、(n,p)是材料辐照损伤研究中最重要的两类 核嬗变反应。这两类嬗变反应产生的氢、氦等元素与 辐照缺陷作用在一起,会对材料的结构和性能产生更 加复杂的影响。它们一直是辐照损伤研究中的重要课 题。
辐照效应和辐照损伤
辐照过程的碰撞问题 • 弹性碰撞和非弹性碰撞: 在弹性碰撞假定中,入射粒子与靶原子相互碰撞后, 不会放出新的粒子,自身也不会被激发或嬗变成其它粒子, 就是说两个碰撞物体的内部状态不会发生任何变化,碰撞 前后两个物体的动能和动量均满足守恒定律。 弹性碰撞主要用于分析原子核碰撞 非弹性碰撞主要用于分析原子碰撞,它不会产生晶体 原子离位性质的辐照损伤
辐照效应 Irradiation Effects on structural materials part1
China Institute of Atomic Energy, 102413, Beijing, China
辐照效应和辐照损伤
辐照效应 • 核反应堆结构材料的一个显著特点就是会受到各种 射线的辐照,这是它与其它工业材料的最大不同之 处。
相关文档
最新文档