高等数学中不等式的证明方法

合集下载

高等数学课程中的不等式的证明

高等数学课程中的不等式的证明

高等数学课程中的不等式的证明不等式是高等数学教学内容的重要组成部分,是高等数学中经常遇到而解决起来又比较困难的问题之一。

下面通过高等数学的一些原理和方法,分享几种不等式证明的常用的方法。

一、利用拉格朗日中值定理证明不等式拉格朗日中值定理:若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在区间(a,b)内至少存在一点,使得。

二、利用函数的单调性证明不等式函数单调性的判定定理:设函数y=f(x)在区间[a,b]上连续,在(a,b)内可导,那么:(1)如果f?(x)>0,则f(x)在区间[a,b]上单调增加;(2)f?(x)例2.证明:X>0时,1+>证明:令f(x)=,则f?(x)==,因为f(x)在[0,+oo)上连续,在(0,+oo)内f?(x)>0,因此f(x)在[O,+oo)上单调增加。

从而当x>O时,f(x)>f(O)。

由于f(O)=O,故f(x)>f(O)=O。

即>0,亦即1+>。

注:运用函数的单调性证明不等式,关键在于合理地利用题设条件,构造出相应的辅助函数f(x),将原问题等价代换,根据导数f?(x)的符号判定函数f(x)在所给区间上的单调性,从而导出所证不等式。

三、利用函数的凹凸性证明不等式函数凹凸性的定义:设f(x)在[a,b]上连续,若对[a,b]中任意两点x1,x2,恒有f((x1+x2)/2)2f(x1)+f(x2)/2,则称f(x)在[a,b]上是凸函数;若恒有f((x1+x2)/2)sf(x1)+f(x2)/2,则称f(x)在[a,b]上是凹函数。

函数凹凸性的判定定理:设f(x)在[a,b]上连续,在区间(a,b)内有二阶导数,(1)如果在区间(a,b)内,(x)>0,那么曲线y=f(x)在[a,b]内是凹的;(2)如果在区间(a,b)内,(x)例3.证明:a>0,b>0且a#b,n>1时,证明:令f(x)=xn,x?(0,+oo),则f?(x)=nxn-1,=n(n-1)xn-2,当n>1时,对任意的x?(0,+oo),都有>0。

高等数学中不等式的证明方法归纳

高等数学中不等式的证明方法归纳
l ̄pln26一争>ln2。一 4 n.故ln26一In2n> (6 .
通过函数的最大值、最小值来证 明不等式是一 种比较特殊 的方法 ,它主要是利用 连续 函数在 区间上 的最大最 小值定 理。 其思路是求 出函数在区间上的最大值 或者最小值 m,则 函数 在 区间中的任何值都满足 ,(z) 或者,( ) m。
( )
:)(b一口)。 故 有
如 果 在 所 要 证 明 的 结 论 中 包 含 形 如 f (
),
』 )
)出 ,证毕 。
1【,( )+ :)】的项 ,那么往往可以考虑 寻找合适 的函数 ,应
七 、利用 定 积 分 的 一些 性质 进 行 不 等式 的证 明
用函数 的凹凸性 来证 明不等式。
定积分的性 质在不 等式的证明 中也经 常被 用到 ,主要有定
例 4:已知 >0,Y>0且 ≠y,求证 xln +yln Y>( +Y) 积分的估值定理、定积分的比较定理 以及推论等 。
In 。
f ̄J 7:求证l
<or·
证 明 :构 造 函 数 F ( ) = xln ,( > 0),则 有
不等式的证明是 高等数学 中的一个重要 内容,同时 也是 一 理采 证 明。 本文 仅 介 绍 通过 拉 格 朋 日中值 定 理 证 明 不 等 式 的 方
个 比较难 以掌握的内容。不等式 的证明有一定 的技 巧和方法 , 法 ,利用柯西定理证明不等式的方法可仿照下例。
笔者结合多年的教学经验 ,归 纳了以下八种不等式的证明方法。
< x 2
函数的单调性 ,然后取 函数 F(x)在区间[o,b]端点处的函数上述式子中取 。--n,x2=n+1,则有
= 1厶十 ,

高等数学中证明不等式的几种方法

高等数学中证明不等式的几种方法

高等数学中证明不等式的几种方法收稿日期:2018-08-22作者简介:佘智君(1976-),女(汉族),讲师,主要从事于计算数学与应用软件的研究。

不等式的证明是高等数学的重要内容,同时也是高等数学教学中的一个难点,学生遇到不等式的证明时经常不知道如何下手。

不等式的证明方法灵活多样,技巧性强,所以证明不等式之前要对具体问题具体分析,根据题设及不等式的结构特点、内在联系,选择适当的证明方法,这样才能使证明过程简化。

一、利用函数的单调性利用单调性证明不等式是高等数学中最常用的一种方法,其基本思路是将不等式作适当的变形,作辅助函数f (x ),再利用导数确定该函数的单调性,把不等式的证明转化为利用导数研究函数的单调性,从而使不等式得到证明。

例题1证明:ln (1+x )>x1+x (-1<x <0)证明:设f (x )=ln (1+x )-x1+x∴f ′(x )=x(1+x )2∴f ′(x )<0(-1<x <0)∴f (x )在(-1<x <0)内单调下降又∵f (0)=0∴f (x )>0(-1<x <0)故ln (1+x )>x1+x(-1<x <0)二、利用微分中值定理证明不等式利用微分中值定理证明不等式的关键是不等式经过恒等变形后一端可化成函数值之差的形式,即f (b )-f (a ),则可考虑拉格朗日中值定理,这时构造辅助函数f (x ),使得f (x )在[a ,b ]上满足中值定理的条件,然后利用中值定理得到所要的结论。

例题2证明:x-y x <ln x y <x-yy(0<y <x )证明:设f (x )=lnx ,而f (x )=lnx 在(y ,x )满足拉格朗日中值定理∴∃ξ∈(y ,x )使lnx-lny=f ′(ξ)(x-y )=1ξ(x-y )∵0<y <ξ<x∴1x <1ξ<1y ∴x-y x <ln x y <x-y y 三、利用泰勒公式如果已知条件或不等式中含一阶及二阶等高阶导数时,一般用泰勒公式。

利用高等数学证明不等式的几种特殊方法探析

利用高等数学证明不等式的几种特殊方法探析

数 学的 重 要 内容 .初 等 数 学 教 育 的重 点在 于培 养 常 量 和 静 态 方 面的 数 学 应 用 , 因此 在 证 明 不等 式 时往 往 会 遭 遇 一 些 “ 死 角” .利 用 高等 数 学证 明 不等 式 可 以破 除 常 量 数 学 的 狭 隘性 . 并 且 更 为 快 速 、 效 , 文通 过 具 体 例 题 介 绍 利 用 高等 数 学 证 有 本
明不 等 式 的 几种 有 效 的 特 殊 方 法.
即 当且 仅 当 : …
b1 b 2
时等 号 成 立 .

二、 利用 L ga g 乘 数 法 ar n e 对 于 一 元 不 等 式 ,利 用 函 数 的 极值 来证 明不 等式 是一 种
关键 词 : 不等式 二 次型 L gag乘数 arne
将 L 别 对x Y z 入 偏 导 数 , 令 它们 都等 于0 则 有 : 分 ,,,求 并 ,
——

0 =c s s v sn L ・ - oxm lz


sl — — — 一 COS— n — —


x y+ + z 、 0


-A=U
a x



x +z +y

文 献 [— 3 利 用 高 等 数 学 中 的 微 分 中值 定 理 , 数 的 1 ] 函
单 调 性 、 数 的极 值 与 最 值 、 勒 公 式 、 函 泰 曲线 的 凹 凸 性 、 积 定

分 理 论 、柯 西 一 施 瓦 茨 不 等 式 等 相 关 理 论 研 究 了不 等 式 的 证 明方 法 ,这 些 不 等 式 证 明 中 的 高 等 数学 方 法 较 为 常 见 。 相 关 研 究 也 较 多 见 .本 文 针 对 不 等 式 证 明的 几 种 不 常 见 的 高 等 数 学 方 法 进 行 了 归纳 总结 , 结 合 例 题 讨 论 了 这 些 方 法 的具 并 体 应用.

几个常用不等式证明不等式方法辛

几个常用不等式证明不等式方法辛

不等式是高等数学中的一个重要工具。

运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。

这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。

几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。

2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。

3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。

4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。

不等式的高等数学证明方法

不等式的高等数学证明方法

不等式的高等数学证明方法作者:成继红来源:《读写算》2011年第66期内容摘要:在初等数学中,我们对不等式的证明采用移项初等变形方法达到证明不等式的目的,但有些不等式仅利用此方法证起来很麻烦,甚至证不出来,因此总结了一些用高等数学的方法来证明不等式,如利用中值定理,函数单调性,函数的极值,凸凹性,概率的方法等。

关键词:不等式证明方法在学习数学的过程中,不等式证明是非常重要的,下面主要介绍一些用高等数学的知识证明不等式的方法.希望通过这些方法的学习,我们可以很好的认识数学的一些特点.从而开拓一下我们的数学视野.1. 拉格朗日中值定理与函数单调性1.1 拉格朗日中值定理若函数f满足如下条件:(i)f在闭区间[a,b]上连续;(ii)f在开区间(a,b)内可导,则在(a,b)内至少存在一点,使得(1),其中(1)被称为拉格朗日公式。

例、证明不等式,其中0分析:应用拉格朗日中值定理,关键是找出函数及区间,这可结合不等式特点找,则此不等式可改为,由此猜到取,区间在[a,b].证明:由于,取,而在[a,b]上连续,在(a,b)内可导,故由拉格朗日中值定理,存在使得又01.2 函数单调性定理1.2 设函数在区间I上可导,则在上递增的充要条件是.例、证明不等式证明:设.则.则进而有.根据函数单调性则当时有: ,.进而得.2. 柯西中值定理定理2.1(柯西中值定理)设函数和满足:(i)在[a,b]上都连续(ii)在(a,b)内都可导(iii)和不同时为0 (iv)则存在使得.例.,证明:.证明:设,则.对于在[a,b]上应用柯西中值定理有:.设,考察.由于,显然当时,即.所以在时单调递减,从而有,即.故.3. 函数极值与最值通过变换,把某些问题归纳为求函数极值达到证明不等式的目的。

例:设,求证:.证明:令=-2+当时, .当时,.故.4. 函数的凸凹性和詹森不等式4.1 函数的凸凹性定义:设函数为定义在区间上的函数,若对上任意两点和对于任意的实数总有:,则称为上的凸函数.反之,若总有:则称为上的凸函数。

高等数学中不等式的证明方法

高等数学中不等式的证明方法

1 。 2 1
2. 利用函数单调性证明不等式
函数不等式是判断函数之间的大小关系 , 基于这种思想 , 可以利用函数单调性证明不等式 。 其基本思想是 :(1 ) 将不等 式 两 边 的 函 数 移 到 同 一 端 , 并 作 辅 助 函 数 f (x );(2 ) 利 用 函 数 f (x ) 一阶导数的符号判断函数在所给区间上的单调性 ;(3 ) 根 据函数 f (x ) 的单调性 , 得到所求不等式 。 例 3 : 证明定理 : 设 (1 ) 函数 φ (x ) 及 ψ (x ) 可微分 n 次 ; (2 )φ (x0 )=ψ (x0 ),(k=0 ,1 ,2 ,…,n-1 ); (3 ) 当时 x>x0 ,φ (x )=ψ (x )。 则当 x>x0 时 , 有不等式 φ (x )>ψ (x )。 证 明 : 设 F (x ) =φ (x ) -ψ (x ), 则 由 于 φ
复数 z=x+iy圳 坐标平面上的点 p (x ,y )。 这样学生会将复数 z 、R 中 的 有 序 实 数 对 (x ,y )、 坐 标 平 面 上 的 点 p (x ,y ) 视 为 同 义 语 ,
2
把复数集 、 平面点集 、 二维空间 R 的子集看成一回事 。 由 z 圮 (x ,y ), 复 变 函 数 f (z ) 可 看 成 关 于 x 和 y 的 函 数 , 其 极 限定义可与实二元函数的极限定义比较 , 而实二元函数又是 在 多 元 微 分 学 中 讲 过 ,学 生 较 为 熟 悉 ,这 样 进 行 比 较 ,可 加 深 学生对复变函数极限念的进一步认识和理解 。 通过比较 , 可以发现复变函数的极限定义与实二元函数 极限定义相似成分较之实一元函数要多一些 , 似乎完全相似 , 不同的地方主要是一个复变函数确定两个实二元函数 , 复变 函数的极限存在与否取决于两个实二元函数极限的存在与 否 。 两个实二元函数的极限都存在才称复变函数的极限存在 。 2. 导数概念的类比 在微分学中 , 对一元函数的导数是这样定义的 : 设函数 y= f (x ) 在点 x0 的某一邻域内有定义 ( 包括 x0 点 ), 当自变量 x 在 x0 处 有增量 Δx 时 , 相应的 , 函数有增量 ,Δy=f (x0+Δx )-f (x0 ), 当 Δx→

高等数学中利用辅助函数证明不等式的几种方法

高等数学中利用辅助函数证明不等式的几种方法

高等数学中利用辅助函数证明不等式的几种方法作者:沈秀娟来源:《文化产业》2016年第06期摘要:高等数学中证明不等式的方法多种多样,而且有些题目适合一题多解.常用的方法有:比较法、反证法、判别式法等.本文从构造辅助函数出发,利用拉格朗日定理和函数的单调性,对于不等式的证明做了较系统的归纳和总结.关键词:拉格朗日定理;单调性;不等式;辅助函数在高等数学的学习过程中,不等式的证明是一个重点和难点,大多数人在遇到不等式证明的问题是就不知所措,对不等式的证明,常用以下情形证明不等式,如:拉格朗日中值定理法、Taylor展开式公式法、泰勒中值定理、极值法、定积分的一些性质等.本文以作辅助函数为出发点,对不等式的证明做了一下探讨.一、用拉格朗日中值定理构造函数证明不等式该定理证明不等式的关键是构造适当的函数和闭区间[a,b],使得:(一)要证不等式的一部分可以写成或;(二)在上满足拉格朗日公式的适当放大或缩小,即可证出要证明的不等式.二、用函数的单调性构造函数证明不等式构造辅助函数,取定闭区间;构造辅助函数方法:1、利用不等式两边之差构造辅助函数;2、利用不等式两边相同“形式”的特征构造辅助函数;3、若所证的不等式涉及到幂指数函数,则可通过适当的变形将其化为易于证明的形式,再如前面所讲那样,根据不等式的特点,构造辅助函数.(一)利用不等式两边之差构造辅助函数(二)利用不等式两边相同“形式”的特征构造辅助函数(三)利用公式法构造函数三、结论不等式的证明在整个数学学习中占有舉足轻重的作用,是进行计算、推理、数学思想方法渗透的重要内容.不等式的证法多种多样,针对本文所存在的局限性,在以后的学习中一定注重题型的复杂多变形,把问题简单化,找到合适的解决方法.本文从构造辅助函数为出发点,把题目变形整形,利用拉格朗日定理和函数单调性,对于不等式的证明给出了系统的归纳和总结,然后找到最简洁的证明方法.该方法对不等式的证明具有极其重要的意义,对学生在证明不等式时选择恰当的方法有一定的指导作用.参考文献:[1]郭大钧,陈玉妹.数学分析[M].山东科学技术出版社,2005,35-38.[2]王晓锋,李静.证明不等式的若干方法[J].数理医学杂志,2008.[3]田玉伟.微积分在解方程和不等式中的应用[J].长江大学学报,农学卷,2009.[4]李长明,周焕山.初等数学研究[M].北京:高等教育出版社,1995.[5]叶慧萍.反思性教学设计-不等式证明综合法[J].数学教学研究,2005,10(3):89-91.。

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。

高等数学中证明不等式的几种方法

高等数学中证明不等式的几种方法

高等数学中证明不等式的几种方法
高等数学中证明不等式是一个重要的技能,它可以帮助我们更好地理解数学问题,并且可以帮助我们更好地解决实际问题。

证明不等式的几种方法有:反证法、极限法、函数法、图形法、数学归纳法、数学归纳法等。

反证法是证明不等式的最常用的方法,它的基本思想是:假设不等式不成立,从而得出矛盾,从而证明不等式成立。

极限法是另一种常用的证明不等式的方法,它的基本思想是:当变量的值趋近于某个值时,不等式的结果也会趋近于某个值,从而证明不等式成立。

函数法是另一种常用的证明不等式的方法,它的基本思想是:通过求解函数的极值,从而证明不等式成立。

图形法是另一种常用的证明不等式的方法,它的基本思想是:通过绘制函数的图形,从而证明不等式成立。

数学归纳法是另一种常用的证明不等式的方法,它的基本思想是:通过对一系列数学问题的归纳,从而证明不等式成立。

数学归纳法是一种比较复杂的证明不等式的方法,它的基本思想是:通过对一系列数学问题的归纳,从而证明不等式成立。

以上就是证明不等式的几种方法,它们都有各自的优点和缺点,因此,在实际应用中,我们应该根据实际情况选择最合适的方法。

只有这样,我们才能更好地理解数学问题,并且可以帮助我们更好地解决实际问题。

高等数学中不等式的证明方法

高等数学中不等式的证明方法
不 等 式 证 明 是 高 等 数 学 中 的 常 见 问 题 . 各 类 考 试 中 经 在 常 出现 。 证 明不 等 式 没 有 固 定 的模 式 , 法 因 题 而 异 , 活 多 证 灵 变 , 巧性强 , 技 因此 不 等 式 证 明 题 历来 是学 生 最 感 到 困惑 的 问 题 之 一 。 它 也 有一 些 基 本 的 常 用方 法 。 们 要 熟 练 掌握 不 等 但 我 式 的 证 明 技 巧 . 必须 了解 这 些 基本 方 法 。 就
助 函 数fx 和 区 问 [ , ]( ) 函 数 fx 在 区 间 [ ,] () ab ;2 当 () ab 上满 足 中 值 定 理 的 条 件 , 用 中 值 公 式 ;3 利 用 得 到 的 公 式 结 合 题 利 () 设条件 , 对写 出的 公 式 进行 适 当的 变化 . 到 所证 不 等 式 。 得
1 . 利用 微 分 中值公 式 证 明 不等 式 中值 定理 特 别 是 拉 格 朗 日中值 定 理 和柯 西 中值 定 理在 不 等 式 的证 明 中有 着 重 要 作 用 , 过 对 不 等 式 结 构 的分 析 , 造 通 构 某 特 定 区 间 上 的 函数 , 足 定理 的条 件 , 到证 明的 目的 。 其 满 达 基 本 思想 是 : 1 根 据 题 目给 定 的 不 等 式 , 取 一 个 适 当 的辅 () 选
参考文献 : 『 ] 玉 泉. 变 函 数. 京 . 等教 育 出版 社.943 1钟 复 北 高 18 ..
具 备 一定 的 自学 能 力 。 因此 , 据 自主 探 索学 习 的基 本 理论 , 依 结 合 目前 的教 学 现 状 .在 复 变 函 数教 学 中教 师 可 适 合安 排 一 定 的 教学 内容 让 学 生 进 行 自主探 索学 习 , 以便 收 到 更好 的教 学效果 . 同时 也 便 于 不 断提 高 学 生 自主 探 究 、 自我 建 构 知 识 的 能 力 。 例 如 ,复数 ”这 节 的 内容 大 部 分 学 生在 中学 阶 段 都 学 “ 过 ,复 平 面上 的点 集 ” 的 内容 与 数 学 分 析 中平 面点 集 的 内 容 “ 几 乎 是 一 样 的 , 讲 这 些 内容 , 浪 费 时 间 . 生 听 起 来 也 不 再 既 学 会 感 兴 趣 。 果 让 学 生 自学 , 后 教 师 提 出 一些 问 题让 学 生 去 如 然 讨 论 , 思 考 , 们 会 更 集 中精 力 去 钻研 , 而 收 到 更 好 的 学 去 他 从 习效 果 . 不断 地 提 高 自学能 力 。 并 在 课 堂 上我 们 应 坚 持 “ 师 是 主 导 , 生 是 主体 ” 教 学 教 学 的 原 则 , 学 生 在 教 师 帮 助 下 逐 渐 消 化 、 解 知 识 , 导 学 生 对 让 理 引 所 学 知识 进 行 概 括 与 总 结 , 养 学 生 驾 驭 知 识 的 能力 , 学 生 培 让 将 知识 不 断 地 经 过 自 己头 脑 的 分 析 、综 合 变成 自 己可 以 运用 自如 的 知识 体 系 。 师 可 以 利 用章 节 的小 结 、 题课 等形 式 训 教 习 练 学 生对 同 一 问题 从 不 同 的路 径 和方 向去 思考 , 多角 度 多方 向 去 观 察 , 量 探 索 出多 种 解 法 , 学 生 变 “ 动 学 习 ” “ 动 尽 让 被 为 主 学 习 ” 从 而 掌握 学 习 的 主 动 性 . 逐 步 培 养学 生 一 定 的 自学 . 并 能 力 和 提 出 问题 、 析 问题 、 决 问题 的 综 合能 力 。 分 解 三 、 力提 高 教 学质 量 努 复 变 函 数 的 教 学 过程 是 一 个 不 断 摸 索 的 开 发 过 程 ,教 师 需 要 具 备 扎 实 的 专 业 知识 背 景 ,在 此 基 础 上 教 学 手 段 的 多样 化 , 学 内 容 的兴 趣 化 , 及 教学 器 材 的现 代 化 都 是 提 高 教 学 教 以 效 果 的手 段 。 只有 充 分 调 动教 师 的聪 明 才 智 、 动 广大 学 生 的 调 积 极 性 和 创 造 性 , 能 够 取得 更 好 的教 学 效 果 。 才 教 学 中教 师 应 注 意 把 教 书 和 育 人 融 为 一体 。教 师 首 先 要 以 身 作 则 , 人 师 表 . 教 学 中 认 真 处 理好 每 一 个 问 题 , 真 为 在 认 回 答学 生提 出的 每 一 个 问 题 . 在把 握 好 接 受 性 的原 则 下 , 疑 对 难 问 题 不 回避 . 严 谨 治 学 的 精 神 影 响 学 生 , 养 学 生 勤奋 读 以 培 书 、 苦 钻 研 、 论 联 系 实 际 、 实 严谨 的学 风 。 次 对 学 生要 刻 理 求 其 严 格 要 求 。对 于学 生 在 学 习 中暴 露 出 的一 些 不 正 确 思 想 和 做 法 , 及 时 指 出 , 确 引 导 , 学 生 的 注 意 力 和 精 力 引 导 到 学 要 正 把 习 功 课 上来 只 要 能充 分 调 动 学 生 的 学 习 积极 性 。 何 学 习 上 任 的 困难 都 可 以克 服 , 变 函数 的教 学 质 量 就 可 以得 到 提 高 。 复

高等数学中不等式的证明方法

高等数学中不等式的证明方法

高等数学中不等式的证明方法1.常用在多项式中"舍掉一些正(负)项'而使不等式各项之和变小(大),或"在分式中扩大或缩小分式的分子分母',或"在乘积式中用较大(较小)因式代替'等效法,而达到其证题目的。

所谓放缩的技巧:即欲证,欲寻找一个(或多个)中间变量C,使,由A到C叫做"放',由B到C叫做"缩'。

常用的放缩技巧还有:(1)假设(2)(3)假设则(4) (5)(6)或 (7)2.你必须铭记基本公式,均值不等式以及课后的一些重要推倒式.证实主要就是要将不等式的一边变形成为你所熟知的公式类型,也要铭记分析法,综合法等解题思路,一般不等式证实用分析法就好,思路比较简单,试于为灵活应用公式打下基础.2学习方法一比较法是证实不等式的最基本方法,具体有作差比较和作商比较两种。

基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。

当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)例1已知a+b0,求证:a3+b3a2b+ab2分析:由题目观察知用作差比较,然后提取公因式,结合a+b0来说明作差后的正或负,从而达到证实不等式的目的,步骤是10作差20变形整理30推断差式的正负。

∵(a3+b3)?(a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证实: =(a-b)2(a+b)又∵(a-b)20a+b0(a-b)2(a+b)0即a3+b3a2b+ab2例2 设a、bR+,且ab,求证:aabbabba分析:由求证的不等式可知,a、b具有替换对称性,因此可在设ab0的前提下用作商比较法,作商后同1比较大小,从而达到证实目的,步骤是:10作商20商形整理30推断为与1的大小证实:由a、b的对称性,无妨解ab0则aabbabba=aa-b?bb-a=(ab)a-b∵a?b?0,ab?1,a-b?0(ab)a-b?(ab)0=1即aabbabba1,又abba0aabbabba 学习1 已知a、bR+,nN,求证(a+b)(an+bn)2(an+1+bn+1) 3学习方法二1. 解:设函数f(x)=e^x,g(x)=x+1.关于函数f(x)=e^x,为自然指数函数,定义域为全体实数,函数在定义域上为单调增函数,值域为:[0,+),图像示意图如下: 2. 关于函数g(x)=x+1,为一次函数,定义域和值域均为全体实数,在定义域范围内,函数为增函数,图像示意图如下3.从图像可,函数g(x)=x+1在函数f(x)=e^x的下方,二者有一个交点为(0,1),所以有:f(x)=g(x)即:e^x=x+1,成立。

高中数学不等式问题的思路、方法、技巧

高中数学不等式问题的思路、方法、技巧

证明:由变形公式③, a2 b 2+b 2 c2+c2 a 2≥ ab·bc+bc · ca+ca· ab=abc(b+c+a),当且仅
当 a=b=c 时等号成立。
3. 分析法
2
分 析 法 也 是 证 明 不 等 式 的 一 种 基 本 方 法 , 模 式 为 : 欲 证 A B, 若 已 知
B C1 C2 …… I ,( I 为一个真命题,可以是 A,也可以是另一已知成立的真命题) , 则命题得证。 分析法的证题思路和综合法正好相反, 是一步步寻找结论成立的条件。 它的优
证明:∵( 2x 4+1)- x 2( 2x+1 ) =2x4+1-2x 3-x 2=2x 3 (x-1 )- ( x2 –1)=( x-1) [2x 3 –x-1]
=( x-1 )[2x 3 –2x+x-1]=

x-1

[2x

2
x
–1)
+

x-1

]
=

x-1
) 2( 2x
2
+2x+1

=( x-1 ) 2[x 2 +( x+1 )2 ] ≥ 0.
证明:∵(
a2+b2)
-[2

2a-b)-5]=
a
22
+b
-4a+2b+5
= a2-4a +4+b 2+2b+1= ( a-2)2 +( b+1) 2≥ 0.
∴命题成立 .(当且仅当 a = 2, b= -1 时等号成立)

不等式的推导和证明方法

不等式的推导和证明方法

不等式的推导和证明方法不等式是数学中不可或缺的一个概念,它用于表示数值之间的关系。

不等式的形式可以很简单,例如$x>2$,也可以非常复杂,例如 $\sqrt{x^2+y^2}>\frac{x+y}{2}$。

在解决各类数学问题时,推导和证明不等式的方法是非常重要的一步。

本文将介绍一些常见的不等式的推导和证明方法。

一、数学归纳法数学归纳法是一种证明数学命题的通用方法。

若要证明某个命题对于自然数 $n$ 成立,则需要证明该命题在 $n=1$ 时成立,并证明若该命题在 $n=k$ 时成立,则该命题在 $n=k+1$ 时也成立。

不等式的证明中,归纳法常常被用于证明柯西不等式、阿贝尔不等式等一些数列不等式。

例如,考虑柯西不等式:$(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b _1+a_2b_2+\cdots+a_nb_n)^2$。

对于 $n=1$,该不等式显然成立。

假设对于 $n=k$ 时该不等式成立,即$$(a_1^2+a_2^2+\cdots+a_k^2)(b_1^2+b_2^2+\cdots+b_k^2)\geq(a_1b_1+a_2b_2+\cdots+a_kb_k)^2$$现在考虑 $n=k+1$ 时该不等式是否成立。

根据柯西不等式,有\begin{align*}&(a_1^2+a_2^2+\cdots+a_{k+1}^2)(b_1^2+b_2^2+\cdots+b_{k+1 }^2)\\=&[(a_1^2+a_2^2+\cdots+a_k^2)+a_{k+1}^2][(b_1^2+b_2^2+\cd ots+b_k^2)+b_{k+1}^2]\\\geq&(a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1})^2\end{align*}因此,该命题对于 $n=k+1$ 成立,由数学归纳法可知对于所有$n\in\mathbb{N}$,柯西不等式成立。

柯西—布尼雅可夫斯基不等式的证明方法

柯西—布尼雅可夫斯基不等式的证明方法

柯西—布尼雅可夫斯基不等式的证明方法
柯西不等式证明可以用构造法、数形结合法等。

柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。

柯西不等式:ai,bi∈r,求
证:(a1^2+a2^2+...+an^2)*(b1^2+b2^2+...+bn^2)≥(a1*b1+a2*b2+...+an*bn)^2。

结构法,结构n佩向量:α=(a1,a2,...,an),β=(b1,b2,...,bn),

√(a1^2+a2^2+...+an^2)*√(b1^2+b2^2+...+bn^2)=|α|*|β|≥|α|*|β|*cos\ucα,β\ue=α*β=a1*b1+a2*b2+...+an*bn,
两边同时平方得:
(a1^2+a2^2+...+an^2)*(b1^2+b2^2+...+bn^2)≥(a1*b1+a2*b2+...+an*bn)^2。

还有其他方法:数形结合法:
柯西不等式的公理化读法就是:记两列数分别就是ai, bi,则存有
(∑ai^2) * (∑bi^2) ≥ (∑ai * bi)^2
我们令f(x) = ∑(ai + x * bi)^2
= (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)
则我们晓得恒存有
f(x) ≥ 0
用二次函数并无实根或只有一个实根的条件,就存有
δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0
移项获得结论。

高等数学中不等式证明的方法示例

高等数学中不等式证明的方法示例

高等数学中不等式证明的方法示例作者:杨雪来源:《科技风》2020年第18期摘要:不等式证明问题是高等数学中的重要内容,针对不等式的证明问题,本文分析并总结了高等数学中证明不等式的主要方法及其解题思路,并辅以典型例题,使学生能够系统地掌握不等式的证明方法。

关键词:高等数学;不等式;证明不等式是研究数学问题的重要工具,也是高等数学中的重要内容。

不等式的证明也是考研试题中的重要考点,也是难点。

很多学生对不等式问题缺乏系统的思考和总结。

本文举例说明了不等式证明的常用方法及适用情况,使学生更好地掌握不等式的证明技巧。

1 利用函数的单调性利用函数的单调性证明不等式,常将不等式进行恒等变形以便于构造辅助函数f(x),在判断辅助函数f(x)的单调性时,若判断f′(x)的符号困难,则可考虑求f″(x)甚至f(x)来递推确定。

当然,若此时无法确定导数符号,则说明此方法失效,应改用其他方法。

3 利用拉格朗日中值定理利用拉格朗日中值定理证明不等式的关键在于满足定理的两个条件,通过观察不等式经过恒等变形可以化成函数值之差的形式,可考虑用拉格朗日中值定理,并合理设定f(x),再根据ξ的取值范围对f′(ξ)进行估计,进而推导出所证不等式。

4 利用泰勒公式这种方法适合于题中所给(或能推导出)条件f″(x)存在且>0(或<0)的命题,此时只能利用带拉格朗日余项的泰勒公式证明不等式,关键是在哪一个点将函数用泰勒公式展开,通常展开点一般选取已知导数信息最多的点。

然后根据题设对展开式的余项进行适当的放缩,导出所证不等式。

种方法是高等数学中证明不等式的常用方法,不等式的证法因题而异,灵活多变,我们应该具体问题具体分析。

要想熟练掌握其中的技巧,我们要多思考多总结,才能快捷地解决不等式的证明问题。

参考文献:[1]同济大学数学教研室.高等数学(第七版)[M].北京:高等教育出版社,2014.[2]夏靜.高等数学中不等式证明的常用方法[J].赤峰学院学报(自然科学版),2015(10):19-20.[3]李永乐,王式安,武忠祥,季文铎.2019考研数学复习全书[M].北京:国家行政学院出版社,2017.12.作者简介:杨雪(1982-),女,吉林长春人,长春工业大学硕士研究生,吉林工商学院助教,研究方向:最优化理论与应用。

[全]高等数学之微积分中不等式的证明方法总结[下载全]

[全]高等数学之微积分中不等式的证明方法总结[下载全]

高等数学之微积分中不等式的证明方法总结
不等式的证明题作为微分的应用经常出现在考研题中。

利用函数的单调性证明不等式是不等式证明的基本方法。

有时需要两次甚至三次连续使用该方法,其他方法可作为该方法的补充,辅助函数的构造仍是解决问题的关键。

证明方法总结:
(1)利用函数单调性证明不等式
若在(a,b)上总有f(x)的导数大于零,则函数f(x)在区间(a,b)上单调增加;若在(a,b)上总有f(x)的导数小于零,则函数f(x)在区间(a,b)上单调减少。

(2)利用拉格朗日中值定理证明不等式
对于不等式中含有f(b)-f(a)的因子,可考虑用拉格朗日中值定理先处理一下。

(3)利用函数的最值证明不等式
若函数f(x)在闭区间[a,b]上连续,则f(x)在区间[a,b]上存在最大值M和最小值m.
(4)利用泰勒公式证明不等式
如果要证明的不等式中,含有函数的二阶或二阶以上的导数,一般通过泰勒公式证明不等式。

不等式证明的难点也是辅助函数的构造,一般可以通过要证明的不等式分析得出要构造的辅助函数。

题型一:利用函数的单调性证明不等式
分析:对要证明的不等式进行如下化简:
解:
备注:构造适当的辅助函数是解决问题的基础,有时需要两次利用函数的单调性证明不等式,有时需要对区间(a,b)进行分割,分别在小区间上讨论。

题型二:利用拉格朗日中值定理证明不等式
例2:
分析:
解:
备注:对于不等式中含有f(b)-f(a)的因子,可以考虑使用拉格朗日公式先处理一下。

高等数学中不等式证明的方法示例

高等数学中不等式证明的方法示例

高等数学中不等式证明的方法示例在高等数学中,不等式证明是一个十分重要的概念,它可以用来证明或者反证某个数学命题是否正确。

研究不等式的证明方法,至关重要,下面就来介绍一些不等式证明的方法示例。

一、集合与集合之间的不等式证明1. 左边≦右边:证明A∪B⊆C;首先,因为A⊆C及B⊆C,那么A∪B也是⊆C。

因此,A∪B⊆C证毕。

2. 左边>右边:证明A∩B≠A;首先,因为A∩B的元素满足A的全部条件及B的全部条件,那么A∩B的元素定小于A。

因此,A∩B≠A,证毕。

二、集合和标量之间的不等式证明1. 左边>右边:证明x∈A,x>c;首先,如果x∈A,那么x满足A的全部条件,那么x一定大于c。

因此,x∈A,x>c,证毕。

2. 左边≦右边:证明x∈A,x≤b;首先,如果x∈A,那么x满足A的全部条件,那么x一定小于等于b。

因此,x∈A,x≤b,证毕。

三、定义的不等式证明1. 左边>右边:证明x⋅y≠0;首先,由x⋅y=0的定义我们知道,x⋅y等于零只有在两个值a、b均为零时才成立。

但是,如果其中一个值不等于零,那么x⋅y一定不等于零。

因此,x⋅y≠0,证毕。

2. 左边≦右边:证明x⋅y≤0;首先,由x⋅y=0的定义我们知道,x⋅y等于零只有在两个值a、b均为零时才成立,当其中一个值不等于零时,则x⋅y一定小于等于零。

因此,x⋅y≤0,证毕。

四、映射的不等式证明1. 左边>右边:证明f(x)>f(y);首先,如果x>y ,根据函数f的定义,我们知道f(x)满足y的全部条件及x超出了y,那么f(x)肯定大于f(y)。

因此,f(x)>f(y),证毕。

2. 左边≦右边:证明f(x)≤f(y);首先,如果x≤y,根据函数f的定义,我们知道f(x)满足y的全部条件及x的全部条件,那么f(x)肯定小于等于f(y)。

因此,f(x)≤f(y),证毕。

以上就是高等数学中不等式证明的方法示例。

通过以上介绍,我们可以看出,不等式证明是高等数学中一个十分重要的概念,熟捻这种证明方法对于我们正确理解不等式非常有利,正确使用它们可以让我们更轻松地证明不等式的正确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学中不等式的证明方法摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此,不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为专门的研究对象。

高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解决不等式证明的问题。

我们可以通过这些方法解决有关的问题,培养我们的创新精神,创新思维,使一些较难的题目简单化、方便化。

关键词:高等数学;不等式;极值;单调性;积分中值定理Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function byderivative, using extreme or the most value and Integral Mean Value Theorem . We canresolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient,Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean ValueTheorem文章来自:<a target='_blank' href=''>全刊杂志赏析网()</a> 原文地址:/16be7113-df3a-4524-a9c3-4ba707524e72.htm【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的不等式试题,对一些常用的不等式证明方法进行总结。

【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西凹凸性在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公式法、函数的凹凸性法、柯西1 中值定理定理法利用中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)的方法来证明不等式首先要熟记各个中值定理的应用条件,可将原不等式通过变形找到一个辅助函数,使其在所给区间上满足中值定理的条件,证明的关键是处理好ξ点,分析函数或其导数在该点的性质即可得到所要结论,在证明过程中也会出现反复应用同一定理或同时应用几个定理进行证明的情况。

例1 设e4e2(b-a)。

解:对函数ln2x在[a,b]上应用拉格朗日中值定理,得ln2b-ln2a=2lnξξ(b-a),a<ξ设φ(x)=lnxx,φ′(x)=1-lnxx2当x>e时,φ′(x)<0,所以φ(x)单调减少,从而φ(ξ)>φ(e2),即lnξξ>lne2e2=2e2,故ln2b-ln2a>4e2(b-a)。

也可利用函数的单调性证明,可设φ(x)=ln2x-4e2x例2 设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),证明在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

解:因f(x)不恒为常数且f(a)≠f(b),故至少存在一点c∈(a,b),使得f(c)≠f(a)=f(b)。

若f(c)>f(a)则在[a,c]上f(x)满足拉格朗日中值定理条件,因此至少存在一点ξ∈(a,c)(a,b),使得f′(ξ)=1c-a[f(c)-f(a)]>0。

若f(c)2 利用辅助函数的单调性证明辅助函数方法比较常用,其主要思想是将不等式通过等价变形,找到一个辅助函数,通过求导确定函数在所给区间上的单调性,即可证明出结论。

常用的方法是,直接将不等号右端项移到不等号左端,另不等号右端为零,左端即为所求辅助函数。

例3 试证:当x>0时,(x2-1)lnx≥(x-1)2。

解:设f(x)=(x2-1)lnx-(x-1)2,易知f(1)=0。

又f′(x)=2xlnx-x+2-1x,f′(1)=0, f′(x)=2lnx+1+1x2,f′(1)=2>0f(x)=2(x2-1)x3可见,当00,因此有当00。

又由f′(1)=0及f′(x)是单调增加的函数推知,当00,因此进一步有f(x)≥f(1)=0(00时,(x2-1)lnx≥(x-1)2。

文章来自:<a target='_blank' href=''>全刊杂志赏析网()</a> 原文地址:/16be7113-df3a-4524-a9c3-4ba707524e72.htm例4 设b>a>e,证明ab>ba。

分析:要证ab>ba,只需证blna>alnb或lnaa>lnbb解一:令f(x)=xlna-alnx(x≥a),因为f′(x)=lna-ax>1-ax≥0(x≥a)所以f(x)在x≥a时单调增加。

因此当bφa时,有f(b)>f(a)=0,即有blna>alnb,也即ab>ba 。

解二:令f(x)=lnxx,x>e,则有f′(x)=1-lnxx2<0(x>e),因此f(x)单调减少,故当b>a>e时,有lnaa>lnbb即ab>ba。

3 利用泰勒展开式证明泰勒展开式的证明常用的是将函数f(x)在所给区间端点或一些特定点(如区间的中点,零点)进行展开,通过分析余项在ξ点的性质,而得出不等式。

另外若余项在所给区间上不变号,也可将余项舍去而得到不等式。

例5 设f(x)在[0,1]上具有二阶可导函数,且满足条件|f(x)|≤a,|f(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明|f′(x)|≤2a+b2 。

分析: 已知f(x)二阶可导,应考虑用二阶泰勒展开式。

本题涉及证明|f′(x)|≤2a+b2,应在特定点x=c处将f(x)按泰勒公式展开。

解:对f(x)在x=c处用泰勒公式展开,得f(x)=f(c)+f′(c)(x-c)+f′(ξ)2!(x-c)2(1)其中ξ=c+θ(x-c),0<θ<1,在(1)式中令x=0,有f(0)=f(c)+f′(c)(0-c)+f′(ξ)2!c2, 0<ξ 1在(1)式中令x=1,有f(1)=f(c)+f′(c)(1-c)+f′(ξ)2!c2, 0上述两式相减得f(1)-f(0)=f′(c)12! [f′(ξ2)(1-c)2-f′(ξ1)c2], 于是|f′(c)|=|f(1)-f(0)-12 [f′(ξ2)(1-c)2-f′(ξ1)c2]|≤|f(1)|+|f(0)|+12|f′(ξ2)| (1-c)2+12 |f′(ξ1)|c2≤2a+b2[(1-c)2+c2], 又因当c∈(0,1)时,有(1-c)2+c2≤1 故|f′(c)|≤2a+b2因这里ξ与x有关,可将其记为ξ(x),那么当令x分别取0和1时,对应的ξ可分别用ξ1和ξ2表示。

4 柯西(〖jf(z〗baf(x)g(x)dx)2〖jf)〗≤〖jf(z〗baf2(x)dx〖jf)〗·〖jf(z〗bag2(x)dx〖jf)〗柯西进行证明,即方便又快捷。

例6 设f(x)在区间[a,b]上连续,且f(x)>0,证明〖jf(z〗baf(x)dx〖jf)〗·〖jf(z〗ba1f(x)dx ≥(b-a)2 。

〖jf)〗证明:(〖jf(z〗baf(x)1f(x)dx)2〖jf)〗≤〖jf(z〗baf(x))2 dx〖jf)〗·〖jf(z〗ba(1f(x))2dx 〖jf)〗即得〖jf(z〗baf(x)dx〖jf)〗·〖jf(z〗ba1f(x)dx≥(b-a)2〖jf)〗5 利用函数图形的凹凸性进行证明函数的凹凸性证明方法首要是找到辅助函数f(x),利用函数f(x)在所给区间[a,b]的二阶导数确定函数的凹凸性。

f′(x)>0 函数为凹的,则f(a)+f(b)>2f(a+b2);f′(x)<0 函数为凸的,则f(a)+f(b)<2f(a+b2),从而证明出结论。

例7 xlnx+ylny>(x+y)lnx+y2,(x>0,y>0,x≠y)令f(t)=tlnt(t>0), f′(t)=lnt+1, f′(t)=1t>0, 故f(t)=tlnt在(x,y)或(y,x),x>0,y>0是凹的,于是12[f(x)+f(y)]>f(x+y2)即12[f(x)+f(y)]>x+y2ln x+y2即xlnx+ylny>(x+y)lnx+y2类似的如:证明ex+ey2>ex+y2, (x≠y)。

文章来自:<a target='_blank' href=''>全刊杂志赏析网()</a> 原文地址:/16be7113-df3a-4524-a9c3-4ba707524e72_3.htm。

相关文档
最新文档