结构的极限荷载
结构力学结构的极限荷载
![结构力学结构的极限荷载](https://img.taocdn.com/s3/m/5a0dbc9f84868762caaed589.png)
P
C
B
M u 5Pl / 32 Pl / 4
将P 代入,得
A
5Pl / 32
P
C
B
5 16 M u M u l Pl / 4 32 3l
P 2M u / 3l Pu P P 6 M u / l
P l / 4
逐渐加载法(增量法)
从受力情况,可判断出塑性铰发生的位置应为A、C。利用极限状态的 Pu 平衡可直接求出极限荷载。 Mu A B 1 l C Mu MA 0 RB ( Pu M u ) l 2 2 RB P l Pu l M u A MC 0 M u RB B 2 4 2 C
Ms s M A ydA A ydAe A s ydA p [3 ( )2 ] 2 Ms s M ——弯矩与曲率关系(非线性关系) M [3 ( )2 ] 或 s 3 2 2 Ms
e p
塑性极限状态: 截面上各点应力均达到屈服 s
§9-4
单跨超静定梁的极限荷载
超静定梁有多余约束,出现一个塑性铰后仍是几何不变体系。 A 截面先出现塑性铰,这时 M A 3Pl / 16 M u
A
P
C
B
P 16 M u / 3l
再增加荷载 l/2
3Pl / 16
A
l/2
M C 5Pl / 32 Pl / 4
令 MC Mu
只能出现一个塑性铰,所以
9M u Pu l
2 Pl 9
讨论: M C Pl / 9 1 Pl Mu Mu 9 Mu
M D 2 Pl / 9 1 Pl Mu 4M u 18 M u
结构力学(二)第4版龙驭球第17章结构的极限荷载
![结构力学(二)第4版龙驭球第17章结构的极限荷载](https://img.taocdn.com/s3/m/98f04d05a417866fb94a8e48.png)
第17章 极限荷载【17-1】 验证:(a )工字形截面的极限弯矩为)41(212δδδσb hbh M s u +=。
(b )圆形截面的极限弯矩为63D M s u σ=。
(c )环形截面的极限弯矩为⎥⎦⎤⎢⎣⎡--=33)21(16D D M su δσ。
【解】(a )工字形截面的等面积轴位于中间。
静距计算公式:2021d xy y xy S y ==⎰考虑上半部分面积对等面积轴的静距(大矩形静距减两个小矩形静距):)41(21)4(21)2)((21)2(21211212222121122222212bhb b h h bh h h b bh hb h b S δδδδδδδδδδδδδδδδ+-+-=+-+-=---= 去除高阶小量后)41(21212δδδb h bh S +=因此极限弯矩为)41()(212δδδσσb h bh S S M s s u +=+= (b )静距计算公式:2021d xy y xy S y==⎰ 6322d 2))2(d(21)2(4d )2(43)2(023)2(0202222202222D uu u y D y D y y y D S D DDD =⋅=⋅=-⋅-=⋅-=⎰⎰⎰关/注;公,众。
号:倾听细雨因此极限弯矩为63D S M s s u σσ==(c )圆的静距为63D S =则圆环的静距为⎥⎦⎤⎢⎣⎡--=-=3333)21(166)2(-6D D D D S δδ 因此极限弯矩为⎥⎦⎤⎢⎣⎡--==33)21(16D D S M ss u δσσ 【17-2】 试求图示两角钢截面的极限弯矩u M 。
设材料的屈服应力为s σ。
【解】设等面积轴距上顶面距离为xmm 。
由面积轴两侧面积相等,也即面积轴以上面积等于总面积的一半,得405550))50(21(22⨯+⨯=-+x x x ,解得mm x 723.4=。
单个角钢上下截面面积矩:32323232233214879mm ])723.440(20)723.440(31)723.445(20)723.445(31[)723.445(521723.431723.4)723.445(21540mm 723.431723.4)723.450(21=+⨯++⨯-+⨯-+⨯-+⨯⨯+⨯-⨯-⨯==⨯+⨯-⨯=S S由此得截面极限弯矩s s s u S S M σσσ10838)4879540(2)(221=+⨯=+=【17-3】 试求图示各梁的极限荷载。
11 结构力学—— 结构的极限荷载
![11 结构力学—— 结构的极限荷载](https://img.taocdn.com/s3/m/b4c18308b52acfc789ebc90b.png)
MC
哈工大 土木工程学院
25 / 46
17
结构的塑性分析和极限荷载
A B C FP D
破坏机构实现的条件:
(1)B、C 点出现塑性铰 则:
M C Mu
M A Mu
M B Mu
3
A
Mu
Mu
Mu FP B
Mu
D
9Mu F l
P1
Mu C Mu
Mu
M A 3Mu
哈工大 土木工程学院
哈工大 土木工程学院
12 / 46
17
结构的塑性分析和极限荷载
限弯矩。
80 mm
例题:已知材料的屈服极限σs =240MPa,求图示截面的极 解:
A 0.0036 2 m
g
A1 A2 A / 2 0.0018 2 m
A1 形心距离下端0.045m A2 形心距离上端0.01167m A1与A2的形心距离为0.0633m
哈工大 土木工程学院
7 / 46
17
结构的塑性分析和极限荷载
s
y 弹性阶段 结束的标志是最外纤维某 处应力达到屈服极限应力σs ,此时的弯 矩称屈服弯矩 Ms。 s 2 bh M s dA. y s W s W 弹性抗弯截面系数 6
弹塑性阶段 截面上既有塑性区又 有弹性区(弹性核 y0)。随弯矩 增大,弹性核逐渐减小。
Mu
FP u
6Mu l
20 / 46
哈工大 土木工程学院
17
结构的塑性分析和极限荷载
q
例题:试求图示结构的极限荷载 qu 解: 由梁的弯矩图可 A 知:第一个塑性 铰必出现在固定 支座处; 1 2 ql 8 首先求当出现第一 个塑性铰时支座B 的 约束反力FRB
李廉锟《结构力学》(第5版)(下册)课后习题-第14章 结构的极限荷载【圣才出品】
![李廉锟《结构力学》(第5版)(下册)课后习题-第14章 结构的极限荷载【圣才出品】](https://img.taocdn.com/s3/m/e735fa91376baf1ffd4fada7.png)
第14章 结构的极限荷载复习思考题1.什么叫极限状态和极限荷载?什么叫极限弯矩、塑性铰和破坏机构?答:(1)极限状态和极限荷载的含义:①极限状态是指整个结构或结构的一部分超过某一状态就不能满足设计规定的某一功能要求时所对应的特定状态;②极限荷载是指结构在极限状态时所能承受的荷载。
(2)极限弯矩、塑性铰和破坏机构的含义:①极限弯矩是指某一截面所能承受的弯矩的最大数值;②塑性铰是指弯矩不能再增大,但弯曲变形则可任意增长的截面;③破坏机构是指出现若干塑性铰而成为几何可变或瞬变体系的结构。
2.静定结构出现一个塑性铰时是否一定成为破坏机构?n次超静定结构是否必须出现n+1个塑性铰才能成为破坏机构?答:(1)静定结构出现一个塑性铰时一定成为破坏机构。
因为根据几何组成分析,当静定结构出现一个塑性铰时,结构由几何不变变成几何可变或几何瞬变体系,此时该结构一定成为了破坏机构。
(2)n次超静定结构不必出现n+1个塑性铰才能成为破坏机构。
因为n次超静定结构出现n个塑性铰时,如果塑性铰的位置不合适,也可能使原结构变成几何瞬变的体系,此时的结构也成为了破坏机构。
3.结构处于极限状态时应满足哪些条件?答:结构处于极限状态时应满足如下三个条件:(1)机构条件机构条件是指在极限状态中,结构必须出现足够数目的塑性铰而成为机构(几何可变或瞬变体系),可沿荷载作正功的方向发生单向运动。
(2)内力局限条件内力局限条件是指在极限状态中,任一截面的弯矩绝对值都不超过其极限弯矩。
(3)平衡条件平衡条件是指在极限状态中,结构的整体或任一局部仍维持平衡。
4.什么叫可破坏荷载和可接受荷载?它们与极限荷载的关系如何?答:(1)可破坏荷载和可接受荷载的含义:可破坏荷载是指满足机构条件和平衡条件的荷载(不一定满足内力局限条件);可接受荷载是指满足内力局限条件和平衡条件的荷载(不一定满足机构条件)。
(2)与极限荷载的关系极限荷载是所有可破坏荷载中的最小者,是所有可接受荷载中的最大者。
第十七章结构的极限荷载
![第十七章结构的极限荷载](https://img.taocdn.com/s3/m/b7353238f46527d3250ce022.png)
2. MU S S1 S2
其中:S1为A/2对等面积轴的静矩(面积矩) S2为A/2对等面积轴的静矩(面积矩)
20 15
20 40
已知: S
求:MU MS
20
80
MU 30000 S
IZ 64 104 M S 16000 S
4R
3
已知:大圆半径为R1 小圆半径为R2
M
U
,
8M l2
U
,
11
.66 l2
M
U
m in
2MU
qu
27.86MU l2
MU 2MU
0.464l
2FP
A
MU
l
l
l2
l2
FP
B
2MU
l
l
l2
l2
FP
C MU
l
2M l
U
, 6MU l
,
MU l
m in
q
A
MMU U
l
3ql
B
M2MU U
C
3ll
3ll
22
22
16 M
l2
U
,
FP
A MU B
C
l
l
2
2
FPU
8MU l
q
A MU
B
l
qU
16M l2
U
FP
A MU B
C
l
l
2
2
FPU
4MU l
FP
FP
A
B MU C
D
l
l
l
3
3
3
5M l
结构力学专题十五(结构的极限荷载)
![结构力学专题十五(结构的极限荷载)](https://img.taocdn.com/s3/m/829ae874ce2f0066f4332240.png)
Ms W
称为截面形状系数,其值与截面形状有关。
例:已知材料的屈服极限 s 240 MPa ,
求图示截面的极限弯矩。
80mm
Mu s (S1 S2 ) 27.36kN.m
20mm
2、塑性较 当截面弯矩达到极限弯矩时,在保持弯矩不变的前
提下,截面纤维将无限地伸长和缩短,因此在该小段内, 两个无限靠近的截面可以发生相对转动,这种情况与带 铰截面相似,称这种截面为“塑性铰”。
A
(1)平衡弯矩法
(2)机动法
(3)增量法
F
B
l/2
l/2
例5:求图示等截面梁的极限荷载。 已知梁的极限弯矩为Mu。
A
q
B
l
例6:求图示结构的极限荷载, 材料极限弯矩为Mu。
M
AC
B
1m
3m
三、变截面超静定梁
例7:求图示结构的极限荷载,
已知 Mu Mu
A Mu
Mu F
D
BC
l ll
作业:
思考题 16—2 、16—4、16—5; 习题: 16—1。
塑性铰与普通铰的区别:
(1)普通铰不能承受弯矩,而塑性铰能承受弯矩Mu。 (2)普通铰是双向铰,而塑性铰是单向铰。
3、弹性极限荷载、极限荷载、破坏机构(极限状态)
(1)对弹于性特阶定段的结构,随着荷载的逐渐增加:
各截面弯矩不超过 “屈服弯矩”Ms ;
(2)弹性阶段终止
当某个截面弯矩首先达到“屈服弯矩”Ms时,弹性阶段终止, 此时的荷载称为“弹性极限荷载”Fps;
加载
E S
S
S
弹性
塑性 s
卸载 E
弹性
s
结构的极限荷载和例题讲解
![结构的极限荷载和例题讲解](https://img.taocdn.com/s3/m/26bea54aa8114431b80dd807.png)
简化计算: 假设材料为理想弹塑性材料,其应力~应变关系下图所示。
§12-2 极限弯矩和塑性铰 破坏机构 静定梁的计算
一、弹塑性阶段工作情况
理想弹塑性材料T形截面梁处于纯弯曲状态时
弹性状态:
图b:截面处于弹性阶段,σ<σs (屈服极限) 图c:截面最外边缘处σ=σs (达到屈服极限) 屈服弯矩(弹性极限弯矩)MS = Wσs(W:弯曲截面系数) 图d:截面处于弹塑性阶段。 靠外部分形成塑性区,其应力为常数,σ=σs , 靠内部分仍为弹性区,称弹性核,其应力直线分布 图e:截面全部达到塑性——极限情形, 这时的弯矩是该截面所能承受的最大弯矩 ——极限弯矩,以Mu 表示。
等截面超静定梁(图a) (各截面Mu相同) 弹性——弹塑性阶段——极限状态过程:
(1)弹性阶段弯矩图:P≤Ps (2首)先弹在塑A性端阶形段成M并图扩:大荷,载然超后过CP截s,面塑也性形区成
塑性性铰区。。A端首先达到Mu并出现第一个塑
(3)极限状态M图:荷载再增加,A端弯矩 增量为零,当荷载增加到使跨中截面的弯矩达 到Mu时,在该截面形成第二个塑性铰,于是梁 即变为机构,而梁的承载力即达到极限值。此 时的荷载称为极限荷载Pu——极限状态(e)。
破坏机构——极限状态: 结构出现若干塑性铰而成为几何可变或瞬变体系时 ——结构丧失承载能力
三、静定梁的计算
静定梁由于没有多余联系,因此,出现一个塑性铰时,即 成为破坏机构。
对于等截面梁,在弯矩绝对值最大截面处达到极限弯矩, 该截面形成塑性铰。
由塑性铰处的弯矩等于极限弯矩和平衡条件,就可求出静 定梁的极限荷载。
结构的极限荷载和例题 讲解
§12-1 概述
结构设计方法:
1、容许应力法(弹性分析法):
结构力学第16章---结构的极限荷载
![结构力学第16章---结构的极限荷载](https://img.taocdn.com/s3/m/6c58932430b765ce0508763231126edb6f1a76f7.png)
(1)基本定理: 可破坏荷载 FP 恒不小于可接受荷载 FP ,即 FP FP
(2)唯一性定理: 极限荷载值是唯一确定的。
(3)上限定理(极小定理):可破坏荷载是极限荷载的上限; 即极限荷载是可破坏荷载中的极小值。 FPu FP
qu
6.4
Mu l2
§16-4 比例加载时判定极限荷载的一般定理
比例加载: 所有荷载变化时都彼此保持固定的比例,可用一个 参数FP表示; 荷载参数FP只是单调增大,不出现卸载现象。
假设条件: 材料是理想弹塑性的; 截面的正极限弯矩与负极限弯矩的绝对值相等; 忽略轴力和剪力对极限弯矩的影响。
结构的极限受力状态应满足的条件: (1)平衡条件: 结构的整体或任一局部都能维持平衡; (2)内力局限条件: 任一截面弯矩绝对值都不超过其极限弯矩; (3)单向机构条件: 结构成为机构能够沿荷载方向作单向运动。
11.7
Mu l2
§16-5 刚架的极限荷载
基本假设: (1)当出现塑性铰时,塑性区退化为一个截面(塑性铰处的
截面),其余部分仍为弹性区。 (2)荷载按比例增加,且为结点荷载,塑性铰只出现在结点
处。 (3)每个杆件的极限弯矩为常数,各杆的极限弯矩可不同。 (4)忽略轴力和剪力对极限弯矩的影响。
1. 增量变刚度法的基本思路: 把非线性问题转化为分阶段的几
0 0
k
e 1
2
0 EA
l 0
0 0 0
0 0 0
0 EA
l 0
0 0 0 0 0 0
0 0 0 0 0 0
3. 计算步骤-求刚架极限荷载(比例加载, 荷载用荷载参数FP表示)
结构力学 第12章结构的极限荷载
![结构力学 第12章结构的极限荷载](https://img.taocdn.com/s3/m/a0b51f96dd88d0d233d46a65.png)
§12-5 计算极限荷载的穷举法和试算法
1、穷举法:也称机构法或机动法。列举所有可能的破坏机构, 、穷举法:也称机构法或机动法。列举所有可能的破坏机构, 求出相应的荷载,取其最小者即为极限荷载。 最小者即为极限荷载 求出相应的荷载,取其最小者即为极限荷载。 2、试算法:任选一种破坏机构,求出相应荷载,并作弯矩图, 、试算法:任选一种破坏机构,求出相应荷载,并作弯矩图, 若满足内力局限条件,则该荷载即为极限荷载; 若满足内力局限条件,则该荷载即为极限荷载; 如 不满足,则另选一机构再试算……,直至满足。 不满足,则另选一机构再试算 ,直至满足。 试求图a所示变截面梁的极限荷载 所示变截面梁的极限荷载。 例12-3 试求图 所示变截面梁的极限荷载。 解:此梁出现两个塑性铰即成为破坏 机构。 机构。除最大负弯矩和最大正弯 截面外, 矩所在的A、 截面外 矩所在的 、C截面外,截面突 变处D右侧也可能出现塑性铰 右侧也可能出现塑性铰。 变处 右侧也可能出现塑性铰。
静定结构出现一个塑性铰即成为 静定结构出现一个塑性铰即成为 破坏机构。对等截面梁,塑性铰出现 破坏机构。对等截面梁, 在|M|max处。 所示截面简支梁, 图a所示截面简支梁,跨中截面弯 所示截面简支梁 矩最大, 矩最大,该处出现塑性铰时梁成为机 构如图b。 构如图 。同时该截面弯矩达到极限弯 矩Mu。 由平衡条件作 图如 。 由平衡条件作M图如 图如c。 由
qu = 11.66Mu l2
§12-4比例加载时有关极限荷载的几个定理
比例加载:作用于结构上的各个荷载增加时, 比例加载:作用于结构上的各个荷载增加时,始终保持它们 之间原有的固定比例关系,且不出现卸载现象。 之间原有的固定比例关系,且不出现卸载现象。 荷载参数F:所有荷载都包含的一个公共参数。 荷载参数 :所有荷载都包含的一个公共参数。确定极限荷 载 实际上就是确定极限状态时的荷载参数Fu。 实际上就是确定极限状态时的荷载参数 结构处于极限状态时应同时满足: 结构处于极限状态时应同时满足: (1)机构条件。结构出现足够数目的塑性铰而成为机构。 )机构条件。结构出现足够数目的塑性铰而成为机构。 (2)内力局限条件。任一截面的弯矩绝对值 )内力局限条件。任一截面的弯矩绝对值|M|≤ Mu。 (3)平衡条件。结构的整体或任一局部仍维持平衡。 )平衡条件。结构的整体或任一局部仍维持平衡。
结构力学极限荷载
![结构力学极限荷载](https://img.taocdn.com/s3/m/dd1e36cc0066f5335b8121af.png)
结构力学(2)
浙大宁波理工学院土建学院
2)虚功法(作破坏机构图)
FP
红线为变形后的杆件,兰点为塑性铰
A
C
Mu
1
Mu
2
1B1源自l/22l
2
21
4
l
令机构产生虚位移,使C截面竖向
位移和荷载FP同向,大小为δ
外力虚功: We FP
内力虚功:
Wi
M u1
Mu2
2
Mu( l
4
l
)
6Mu
l
由
We=Wi 得: FPu
Fpu
=
(a+b)M ab
u
2Fp Fp
l/2
l/2
7 Fpl 16
5 Fpl 8
M图
5 M max 8 Fpl M u
Fpu
=
8M 5l
u
M max 2Fpl M u
Fpu
=
Mu 2l
结构力学(2)
浙大宁波理工学院土建学院
例 求静定梁的比例加载时的极限荷载Fpu
2Fp Fp
弯矩图法
A
3Mu
极限荷载(P266)
结构破坏时所能承担的的荷载。
结构力学(2)
浙大宁波理工学院土建学院
§17-2 极限弯矩、塑性铰、极限荷载 、极限状态
基本假设(一般针对钢材料) 1、材料为“理想弹塑性材料” 。 2、材料均匀,各向同性。 3、平面假定。即无论弹、塑性阶段,都保持平截面不变。
s A
塑性流动状态
C
o
C Mu
B Mu D
l
l/2
l/2
Fpl
解:作弯矩图
A
结构力学-第17章-结构的塑性分析与极限荷载
![结构力学-第17章-结构的塑性分析与极限荷载](https://img.taocdn.com/s3/m/746ecd89a48da0116c175f0e7cd184254b351bc5.png)
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
AB跨破坏时
ql
(a) A
B
0.5l 0.5l
q 1.5ql
C
D
l 0.75l 0.75l
1.2M u
(b)
Mu
ql 1.2MuB Mu ( A B )
1.2M
u
0.5l
M
u
( 0.5l
0.5l
)
q1
6.4 l2
M
u
BC跨破坏时
ql
(a) A
B
0.5l 0.5l
q 1.5ql
C
D
l 0.75l 0.75l
A1 A2 A / 2 1800mm2
A2
等面积轴
90mm
A1
A1的面积形心距等面积轴45mm, A2的面积形心距等
M u S (S S ) S [ A A .]
S
A
[
.]
S
A
.
26.79KN m
塑性铰、极限荷载
1、静定结构只要产生一个塑性铰即发生塑性破坏,n次超 静定结构一定要产生n +1个塑性铰才产生塑性破坏。
答案:错误
2、塑性铰与普通铰不同,它是一种单向铰,只能沿弯矩增 大的方向发生相对转动。
结构力学 第17章 结构的塑性分析与极限荷载
![结构力学 第17章 结构的塑性分析与极限荷载](https://img.taocdn.com/s3/m/905de0a72af90242a895e5d8.png)
可见,塑性流动阶段的中性轴应等分截面面积。
由此,极限弯矩的计算方法: M u s (S S )
S、S 分别为面积A、A 对等面积轴的静矩。
可见,极限弯矩与外力无关,只与材料、截面几何形状 和尺寸有关。
6
[例]已知材料的屈服极限 s 240MPa ,试求图示截面的
极限弯矩。
80mm
解: A 3600mm2
荷载只是单调增大,不出现卸载现象。
2.结构的极限状态应当满足的条件
1)平衡条件:在极限受力状态下,结构的整体或任一 局部都保持平衡。
2)内力局限条件(屈服条件):在极限受力状态下,
结构任一截面的弯矩绝对值都不大于其极限弯矩,即
︱M︱≤Mu 。 3)单向机构条件:在极限状态,结构中已经出现足够
数量的塑性铰,使结构成为机构,该机构能够沿荷载
FP
FPu
l/2
l/2
Mu
①图中简支梁随着荷载的增大,梁跨中弯矩达到极限弯矩Mu。
②跨中截面达到塑性流动阶段,跨中两个无限靠近的截面可以产生有
限的相对转角,因此,当某截面弯矩达到极限弯矩Mu时,就称该截面
产生了“塑性铰”。
③这时简支梁已成为机构,这种状态称为“极限状态”,此时的荷载
称为“极限荷载”,记作FPu。
35
1、静定结构只要产生一个塑性铰即发生塑性破坏,n次超 静定结构一定要产生n +1个塑性铰才产生塑性破坏。
答案:错误
2、塑性铰与普通铰不同,它是一种单向铰,只能沿弯矩增 大的方向发生相对转动。
答案:正确
3、超静定结构的极限荷载不受温度变化、支座移动等因素 影响。
答案:正确
4、结构极限荷载是结构形成最容易产生的破坏机构时的荷 载。
第十一章结构的极限荷载详解
![第十一章结构的极限荷载详解](https://img.taocdn.com/s3/m/6d029787eefdc8d376ee32df.png)
强调:
塑性铰——能承受弯矩并能单方向转动的铰。 塑性铰与普通铰的区别:
1)普通铰不能承受弯矩,塑性铰能承受 M u
2)普通铰为双向铰,塑性铰为单向铰。
破坏机构— 结构由于出现塑性铰而变成
? 若梁的左半瞬部变分或截可面变高时度的增体加系一。倍(变截
面静梁定)梁,,塑塑性性铰铰出出现现在在何弯处矩?(绝对值)最大处。
Ms W
矩形 圆形
=1.5 =1.7
工字形
1.15
薄壁圆环形 1.3
历程: 加载初期 → 弹性极限荷载 →塑性区扩大→ 形成塑性铰(机构)→ 极限荷载
下面介绍一下塑性铰的概念:
第十一章 结构的极限荷载
当截面达到塑性流动阶段,在极限弯矩保持不变的情况下,两 个无限靠近的相邻截面可以产生相对转角,类似带铰的截面, 称此截面为塑性铰。在简化分析中认为塑性区仅集中在塑性铰 截面,杆件的其它区段都是弹性的。
极限弯矩: Fx 0 s A1 s A2 0
S
M0 0
A1
A2
A 2
中性轴等 分截面积
Mu s y dA
(对中性轴的矩 )
或M u
2 S
A 2
h 4
S
bh2 4
2b
h
2
0
s
ydy
1 4
bh2 s
sWs
(Ws 塑性抗弯截面系数)
第十一章 结构的极限荷载
截面形状系数: M u Ws
塑性铰只能沿极限弯矩方向发生转动;由理想弹塑性假设知, 一旦截面弯矩减小,截面立即恢复弹塑性或弹性状态,塑性铰
即告消失,因此,塑性铰是单向铰。
普通铰和塑性铰的异同:都可产生绕铰的相对转动;普通铰在 转动过程中不能传递、承受弯矩,而塑性铰能承受对应截面的 极限弯矩;普通铰为双向铰,塑性铰为单向铰。 破坏机构:当结构出现若干塑性铰而成为几何可变或瞬变体系
结构力学 结构的塑性分析与极限荷载
![结构力学 结构的塑性分析与极限荷载](https://img.taocdn.com/s3/m/80602bb73186bceb18e8bb02.png)
A l/3
FPu
B
DC
Mu
B
Mu
D
l/3
l/3
B
3 l
D
6 l
此时M图如图,MA=3Mu
3M u
Mu
A
B
l/3 l/6
FPu
D
C
Mu
当3M u M u,此破坏可实现。
由虚功方程可得: FPu MuB MuD
FPu
Mu
(3 l
6) l
FPu
M u l
2 当截面D和A出现塑性铰时的破坏机构
FPu Mu' A MuD
极限荷载
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11
.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s
c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s
c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
结构的极限荷载
![结构的极限荷载](https://img.taocdn.com/s3/m/114f1bf3ad51f01dc281f156.png)
第11章 结构的极限荷载前面各章所讨论的结构计算均是以线弹性结构为基础的,即限定结构在弹性范围内工作。
当结构的最大应力达到材料的极限应力n σ时,结构将会破坏,故强度条件为[]max nKσσσ=≤ 式中,max σ为结构的最大工作应力;[]σ为材料的许用应力;n σ为材料的极限应力,对于脆性材料为其强度极限b σ,对于塑性材料为其屈服极限s σ;K 为安全系数。
基于这种假定的结构分析称为弹性分析。
从结构强度角度来看,弹性分析具有一定的缺点。
对于塑性材料的结构,尤其是超静定结构,在某一截面的最大应力达到屈服应力,某一局部已进入塑性阶段时,结构并不破坏,还能承受更大的荷载继续工作,因此按弹性分析设计是不够经济合理的。
另外,弹性分析无法考虑材料超过屈服极限以后,结构的这一部分的承载能力。
塑性分析方法就是为了弥补弹性分析的不足而提出和发展起来的。
它充分地考虑了材料的塑性性质,以结构完全丧失承载能力时的极限状态作为结构破坏的标志。
此时的荷载是结构所能承受荷载的极限,称为极限荷载,记为u F 。
结构的强度条件可表示为u F F K≤ 式中F 为结构工作荷载,K 为安全系数。
显然,塑性分析的强度条件比弹性分析更切合实际。
塑性分析方法只适用于延展性较好的塑性材料的结构,对于脆性材料的结构或对变形有较大限制的结构应慎用这种方法。
对结构进行塑性分析时,平衡条件和几何条件与弹性分析时相同,如平截面假设仍然成立,所不同的是物理条件。
为了简化计算,对于所用的材料,常用如图11.1所示的应力—应变曲线。
当应力达到屈服极限以前,材料处于弹性阶段,应力与应变成正比;当应力达到屈服极限s σ时,材料开始进入塑性变形阶段,应力保持不变,应变可无限增加;卸载时,材料恢复弹性但存在残余变形。
凡符合这种应力—应变关系的材料,称为理想弹塑性材料。
实际钢结构一般可视为理想弹塑性材料。
对于钢筋混凝土受弯构件,在混凝土受拉区出现裂缝后,拉力完全由钢筋承受,故也可采用这种简化的应力—应变曲线进行塑性分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限荷载
一、选择题:(将选中答案的字母填入括弧内)
1、图示等截面梁发生塑性极限破坏时,梁中最大弯矩发生在:( ) A .梁中点a 处; B .弹性阶段剪力等于零的b 点处; C .a 与b 之间的c 点处; D .a 左侧的d 点处。
q
2、图示单跨变截面梁,已知M u2>3M u1,其极限状态为:( )
a
a
a
M u1
3、图示四种同材料、同截面型式的单跨梁中,其极限荷载值最大的为:( )
A
.
P/l
l
B .
/2l /2
l
C ./2
l /2
l
D .l
4、图示等截面梁的截面极限弯矩M u kN m =⋅120,则其极限荷载为( )。
A .120kN ; B .100kN ; C .80kN ; D .40kN 。
3m
3m
5、塑性截面系数W s 和弹性截面系数W 的关系为: A .W W s =; B .W W s ≥;
C .W W s ≤;
D .W s 可能大于,也可能小于W 。
三、填充题:(将答案写在空格内)
1、对图示工字形截面来说,极限弯矩是屈服弯矩的_________倍。
已知b =30cm ,t =10cm 。
b
t
t
2、图示简支梁,截面为宽b 高h 的矩形,材料屈服极限y σ。
则梁的极限荷载__________=u P 。
l l l /3/3/3
四、计算题:
1、图示梁各截面M u 相同。
求P 的最不利位置,亦即x 为何值时,P u 最小。
2、用静力法求图示结构的极限荷载P u 。
12m
2m
3、试计算图示结构在给定荷载作用下达到极限状态时,其所需的截面极限弯矩值M u 。
4、画出下列变截面梁的极限状态的破坏机构图(即标出以下三种情况塑性铰的位置和相应的变位图)。
(a)
(b)
(c)。