模拟线性调制系统实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟线性调制系统实验报告
实验项目名称:模拟线性调制系统实验
一、实验目的
1. 研究模拟连续信号在(AM、DSB、SSB、VSB、QAM)几种线性调制中的信号波形与频谱,了解调制信号是如何搬移到载波附近。
2. 加深对模拟线性调制(AM、DSB、SSB、VSB、QAM)的工作原理的理解。
3. 了解产生调幅波(AM)和抑制载波双边带波(DSB—SC)的调制方式,以及两种波之间的关系。
4. 了解用滤波法产生单边带SSB—SC的信号的方式和上下边带信号的不同。
5. 研究在相干解调中存在同步误差(频率误差、相位误差)对解调信号的影响从而了解使用同频同相的相干载波在相干解调中的重要性。
6. 熟悉正交调幅QAM传输系统的原理及作用。
二、实验内容
1常规调幅(AM)
Amplitude modulation and demodulation(AM)[sim]
2抑制载波双边带(DSB—SC)调制与解调
DSB—SC modulation and demodulation [sim]
3抑制载波单边带(SSB—SC)调制与解调
SSB modulation and demodulation [sim]
4残留边带(VSB)调制与解调
5正交幅度调制(QAM)与解调
Quadure amplitude modulation and demodulation IQ
三、实验设施
本实验系统是采用Analog Signal System应用最广泛的PC机和Windows操作系统作为软硬件平台,使用MATLAB软件的SIMULINK的集成开发工具实现对AM、DSB、SSB、VSB及QAM系统的调制与解调的仿真。
每个子系统都是由各个模块组成,实验时,可以在系统上进行参数的设置与更改。
可对上述调制与解调各种参数进行更为深入的研究。
四、实验原理
模拟带通传输系统,是将基带信号经过线性调制后形成的已调波送入信道传输,在接收端经过反调制,再从已调波中将基带信号恢复出来。
常用的线性调制包括调幅(AM),双边带调制(DSB),单边带调制(SSB),残留边带调制(VSB),正交调幅(QAM)等五种方式。
这些方式是通过基带信号与单一角频率
的余弦载波相乘后再经过适当滤波实现。
在时域上,就是用基带信号m(t)去控制载波f c
(t)的幅度参数,使其m(t)的规律而变化;它的频域解释是把基带信号的频谱范围搬迁到载波附近的频谱范围上的搬移过程。
在接收端,如果采用相干解调,在本地载波保持同步关系时,都能正确的解调。
但是当本地载波存在相位误差或频率误差时,不同的调制方式受到的影响是不同的,当只有相位误差时,SSB制式的输出
不受影响,AM 和DSB 制式的输出幅度有所下降,而QAM 制式则产生路间窜扰。
在本地载波有频率误差时,SSB 制式的输出使频谱有所偏移,对于话音信号传输而言,频差在20Hz 以内时,人耳可以容忍;而对于其他制式,输出会产生严重失真。
本实验利用平衡调制方式进行模拟连续波的调制与解调。
可分别组成AM 、DSB 、SSB 、VSB 、QAM 五种调制方式的产生原理。
1. 调幅(AM )信号
调幅的原理是基带信号()m t 去控制高频载波的幅度,使已调信号()Sam t 的包络随基本信号成正比例的变化。
设正弦载波:()cos c f t t ω= 调制信号:0()'()m t m m t =+
则已调制信号:00()['()]cos cos '()cos AM c c c S t m m t t m t m t t ωωω=+=+ 其中:m 0代表外加直流分量, '()m t 代表基带信号。
()AM S t 便是有载波分量的双边带调制信号。
0cos c m t ω代表载波项。
'()cos c m t t ω代表DSB 项。
调幅信号的包络应与基带信号成比例变化。
显然AM 调制不产生过调制的条件是
0max |'()|m m t >,若这个条件不满足,那么AM 信号的包络就与基带信号'()m t 不同而产生过调失真。
2. 双边带(DSB —SC )信号
常规调幅波含载波分量,而载波分量不携带任何有用信息,因而AM 波调制的效率较低。
如果我们抑制掉基带信号的直流分量,得到的响应S DSB (t )便是无载波分量的双边带调制信号(DSB —SC ),在常规线性调幅(AM )中,令00m =,也就是将载波分量抑制掉,就可得到DSB —SC 信号,
DSB S ()'()cos c t m t t ω=。
3. 单边带(SSB —SC )信号
双边带调制信号频谱中含有携带同一信息的上、下两个边带。
因此,我们只需传送一个边带信号就可以达到信息传输的目的,以节省传输带宽、提高信道利用率。
这就是单边带调制(SSB —SC )。
产生SSB 信号有移相法和滤波法。
本实验采用滤波法,即,将已产生的双边带信号通过一个带通滤波器,根据该滤波器传递函数的不同,可分别得到下边带信号和上边带信号。
SSB 信号可表示为:
^()()cos ()sin SSB c c S t m t t m t t ωω=+
式中:^()m t 是m (t )的所有频率成分移相/2π-的信号,称为()m t 的希尔伯特信号。
式中符号取“—”产生上边带,取“+”产生下边带。
4. 残留边带(V DSB )信号
SSB 信号与AM 和DSB 信号比较,具有带宽窄的优点,但工程上实现却比较困难,为了克服这种困难,提出了残留边带调制方式。
5. 正交幅度调制(QAM )信号
用同一载频但相位正交的两个载波分别对两路独立的信号进行DSB —SC 调制,两个已调信号可以同时在同一信道的同一频带内传输。
到了接收端,分别用相位正交的载波进行同步解调。
这种方法称为正交幅度调制,平均每路占用的带宽与SSB 方式相当。
设同相滤波()c f t 为:()cos c c f t t ω= 正交载波为0()f t 为:()sin Q c f t t ω=
两路独立的信号分别为12()()m t m t 和,分别进行DSB 调制,得到
1122()()cos ()()cos c c S t m t t S t m t t
ωω==
相加后得到总信号()QAM S t 为:1212()()()()cos ()sin QAM c c S t S t S t m t t m t t ωω=+=+
五、实验操作
在PC 机上以windows 操作系统作为软件平台,启动windows 后,双击MATLAB 图标,进入界面菜单,它是系统所实现的实验功能选择框图。
它的功能:选择实验类型,并给出该类型实验的信息内容,同时列出该类型中的实验项目。
在选择了具体实验项目之后,可利用按钮Run 来运行实验。
选择Analog Signal System (模拟信号系统),就进入了实验系统。
在选择要具体实验的项目之后按Run 按钮,进入AM 仿真实验窗口。
(一)、常规幅度调制(AM )图略。
AM 仿真参数值框图。
表1-1 AM 仿真参数
名称 幅度(伏) 频率(Hz ) 波形 相位 调制信号 f (t ) 1 400 正弦
载波信号 carrier 1 32000 正弦 /2π
直流分量 A
2
本地载波 local carrier 1 32000 正弦 /2π
低通滤波器 butter
0~6000
按Simulation 按钮,再按start 钮,系统便开始进行仿真运行。
1. 从Scopel 可观察到已调制(AM )波与调制f (t )波的对比图形。
观察并记录之。
单击,
便可激活对全波、x 轴、y 轴的放大,鼠标左键放大,右键还原。
由Scope2可观察到解调波形与调波
形的对比波形,观察并记录之。
2. 由FFTScope1、FFTScope2可分别观察到调制信号、已调信号的频谱,观测并记录。
3. 调整直流分量(双击直流分量图标,将原值A=2,改为A=0.5,按Apply 按钮),其他参数不变。
(观测后请返回原值)
表1-2按钮功能 按钮 功 能 Apply 将当时的参数值体现即将开始的仿真过程中 Revert 参数值返回到改变前时刻的值
再观测Scope1,将波形记录下来。
调节本地载波的频率或相位(双击本地载波图标,将原值频率或相位进行改动)使其相位为/6π,或频率为32020。
步骤同上。
再从Scope2上观测解调结果,并记录。
(二)、抑制载波双边带调制(DSB —SC )
关闭上述仿真实验窗口,选择DSB —SC modulation and demodulation[sim]按Run 按钮,进入DSB 仿真实验窗口。
图略。
表1-3 DSB 仿真框图参数值
仿真步骤同上
1. 从Scope1可获得抑制载波双边带调幅波形与载波波形的对比,在时间范围0.0015—0.00135s内放大Scope1,在0.00125s处可观看到翻现象。
2. 从FFT Scope1、FFT Scope2可分别观测到调制信号,已调制信号的频谱。
3. 从Scpoe2可观测到解调波形与调制波形的对比情况;(DSB未经过高斯信道)FFT Scope3可观测到解调信号的频谱。
观测上述波形与频谱并记录。
4. 从Scope2观测DSB经过高斯信道后调制与解调波形的对比。
5. 调整本地载波信号的相位,使其为/6
π,其他不变,(步骤同上)。
从Scope2观测解调波形的幅度变化。
6. 调整本地载波的频率,±20Hz,其它不变,从Scope2观测解调波形。
(三)、单边带调制(SSB)
关闭上述仿真实验窗口返回到界面菜单。
选择SSB modulation and demodulation [sim]按Run按钮,进入SSB仿真窗口。
图略。
实验步骤同上
1. 从Scope1可获得上下边带波形与载波波形的对比。
2. 从FFT Scope1、FFT Scope2可分别观测到调制信号、单边带信号的频谱。
3. 从Scpoe2可观测到解调波形与调制波形的对比图形。
从Scope3可观察到下边带解调波形与调制波形的对比图形。
4. 调整本地载波频率1000Hz,其它不变,从Scope2观测解调信号的频偏。
5. 调整本地载波的相位,使其偏移/6
π,其他不变,从Scope2、Scope3观测解调信号的附加相移。
(四)、残留边带调制(VSB )
关闭SSB 仿真实验窗口,从界面菜单中选择VSB modulation and demodulation [sim]按Run 按钮进入VSB 仿真窗口。
图略
1. 从FFT Scope1观测双边带信号的频谱,从FFT Scope2观测VSB 调制波形的频谱。
从FFT Scope3观测未经低通滤波器滤波的解调信号频。
2. 从Scope1观测VSB 的波形,从Scope2观测调制信号与解调信号的对比波形。
观测上述波形与频谱并记录。
(五)、正交幅调制(QAM )
关闭VSB 仿真实验窗口,进入界面菜单,选择Quadure amplitude modulation and demodulation IQ ,按Run 按钮进入QAM 仿真窗口。
QAM 仿真框图参数值 步骤同上仿真开始
1. 从Scope1、Scope2可观测到两种调制波形。
2. 从Scope3、Scope4可分别观测到两个调制解调波形的对比情况。
记录上述调制与解调波形。
一、实验记录 (一)、常规幅度调制(AM )
名称 幅度(伏) 频率(Hz ) 波形 相位 调制信号 Source 1 4000 正弦
载波信号 carrier 2 32000 正弦 /2π 本地载波 Local carrier 2 32000 正弦 /2π
低通滤波器 LPF1 0~34000 低通滤波器 LPF2
0~20000
、
(二)、抑制载波双边带调制(DSB—SC)
(三)、单边带调制(SSB)
(四)、残留边带调制(VSB)(五)、正交幅调制(QAM)。