人教版七年级上册数学4.3.3 余角和补角 (3)

合集下载

人教版数学七年级上册4.3.3余角与补角教案

人教版数学七年级上册4.3.3余角与补角教案
2.教学难点
-理解“互补”概念:学生可能难以理解互补的两角和为180°这一性质,需要通过直观的图形演示和实例说明。
-余角和补角的性质推导:推导同角(等角)的余角相等,互补的两角和为180°等性质,需要学生具备一定的逻辑推理能力。
-在复杂图形中识别和应用余角与补角:在实际问题中,学生可能难以在复杂的几何图形中识别出需求解的余角或补角。
还有一个值得注意的问题是,在总结回顾环节,部分学生表示对于某些知识点仍然存在疑问。我意识到,可能是在课堂中没有给予他们足够的提问机会,或者讲解得不够细致。因此,我打算在接下来的课程中,增加课堂互动环节,鼓励学生大胆提问,并及时给予解答。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了余角与补角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对余角与补角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.通过实例和练习,让学生感受余角与补角在实际生活中的应用,提高学生的数学应用能力。
二、核心素养目标
1.培养学生几何直观和空间想象能力,通过余角与补角的学习,让学生能够直观感知几何图形的特征,形成空间想象力。
2.发展学生的逻辑推理能力,通过余角和补角的性质推导和应用,提高学生分析问题和解决问题的逻辑思维能力。
3.重点难点解析:在讲授过程中,我会特别强调余角和补角的概念,以及它们的应用。对于难点部分,如互补性质的推导,我会通过画图和具体例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余角与补角相关的实际问题,如如何利用补角性质求解多边形内角和。

人教版数学七 年级上册4.3.3余角、补角的概念和性质ppt(共17张ppt)

人教版数学七 年级上册4.3.3余角、补角的概念和性质ppt(共17张ppt)

A
动动脑
C
B O
练一练
1、一个角的补角是它的余角的4倍,求这个 角的余角是多少度?
解另:解设:这设个这角个的角度的数余为角x的,度则数依为题x意,得
1则80它的x补角4(可90设为x()x 90) . x x 9060 4x
90 6x0=3300
答答::这这个个角角的的余余角角的的度度数数为为3300。。
余角与补角
学习目标
1、掌握余角与补角的概念和性质,并能熟 练应用性质进行求值运算。 2、会利用方位角来描述物体的方位。
观赏意大利名胜比萨斜塔
1和 2有什么关系?
1
2
1和 2有什么关系?
1
2
3和 4有什么关系?
43
3和 4有什么关系?
43
2 1
4 3
如果两个角的 和为90 ,就说这两个角互为余角。
互余的互角余是的否两一个定角是一锐定角都?是锐角。
3
1
2
4
如果两个角的 和为180 ,就说这两个角互为补角。
一个角的补角是否一定是钝角?
帮找朋友 的余角 的补角
80
10
100
45
70 39'
45
19 21'
90
135
109 2个角AOB ,但人不能进入围 墙,我们如何去测量这个角的大小呢?
B
CB
1 O
2 1
AO 3
A
D
2 3
2和 3都是1的余角,它们有什么关系?
同角的余角相等
例1 1与2互余,3与4互余,如果2=4, 那么1与3相等吗?为什么?
1 2
3 4
等角的余角相等

数学:4.3-第3课时《余角和补角》课件(人教版七年级上)

数学:4.3-第3课时《余角和补角》课件(人教版七年级上)
网络给我们带来了方便,更加需要我们会鉴别真伪,只有多了解才能产生信任,作为办公家具来讲,一定要言行一致,网络能带来利润,也能被淘汰掉。 QQ刷赞 https:/// QQ刷赞
1.如果∠β=20°,那°
C.110° D.160°
2.一个角的补角是( D )
A.锐角
B.直角
C.钝角
D.以上三种情况都有可能
3.如果∠1 与∠2 互余,∠2 与∠3 互余,那么∠1 与∠3
的关系是( B ) A.∠1>∠3
B.∠1=∠3
C.∠1<∠3
D.不能确定
解析:同角的余角相等.
4.如果∠1+∠2=180°,∠2+∠3=180°,那么∠1 与∠3 的关系是_∠__1_=__∠__3,根据是___同__角__的__补__角__相__等____________.
5.甲看乙的方向是北偏西 25°,那么乙看甲的方向是
__南__偏__东___2_5_°_.
6.按逆时针方向从西北转到西南所转过的度数是( B )
A.45° C.135°
B.90° D.180°
余角、补角的性质(重难点) 例题:如图 1,A、O、E 三点在同一条直线上,且∠AOC =∠BOD=90°.
图1 (1)指出图中∠BOC 的所有余角; (2)∠DOC 与∠AOB 有什么关系?为什么?
思路导引:关键看∠BOC 与哪些角的和为 90°. 解:(1)∠BOC 的余角有∠AOB 和∠COD. (2)∠DOC=∠AOB. 因为∠DOC 和∠AOB 都是∠BOC 的余角, 所以它们相等.
如何通过网络选择办公家具公司 办公家具都建立了官方网站,作为对外宣传的窗口,通过互联网将企业的优势更快捷和直接地展现,为提供更多的选择机会,为了引起的重视断上升,就是为了能排在同行的前面,当您搜“武汉办公家具”在首页做推广的就有16家,每家都说自己是首选,看得是眼花缭乱,不知如何选择,我 几点来分析。

人教版数学七年级上册4.3.3《 余角和补角》教学设计

人教版数学七年级上册4.3.3《 余角和补角》教学设计

人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4章第3节的内容,这部分内容是在学生已经掌握了角的分类、垂线的性质等基础知识的基础上进行学习的。

本节课主要让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。

教材通过生动的图片和实际问题引出余角和补角的概念,让学生在解决实际问题的过程中感受数学与生活的联系。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于角的分类和垂线的性质等基础知识有一定的掌握。

但是,对于抽象的数学概念,学生的理解可能还需要通过具体的实例来辅助。

因此,在教学过程中,教师需要结合学生的实际情况,通过生活实例和直观的图形,引导学生理解余角和补角的概念,并能够运用到实际问题中。

三. 教学目标1.知识与技能目标:让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.情感态度与价值观目标:让学生感受数学与生活的联系,增强学生对数学的兴趣。

四. 教学重难点1.教学重点:余角和补角的概念,判断两个角之间的关系。

2.教学难点:理解余角和补角的概念,能够运用到实际问题中。

五. 教学方法1.情境教学法:通过生活实例和直观的图形,引导学生理解余角和补角的概念。

2.活动教学法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.启发式教学法:引导学生通过自主学习、合作学习,发现和总结余角和补角的概念和性质。

六. 教学准备1.教学素材:准备一些生活实例和图形,用于引导学生理解和运用余角和补角的概念。

2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容。

例如,展示一幅画,画中有两条直线相交,问学生这两条直线之间的角是什么关系。

人教版七年级数学上册《余角和补角》课件

人教版七年级数学上册《余角和补角》课件
那么∠2=∠4吗?
因为∠1+∠2= 90° ,
°
∠3+∠4= 90 ,
且∠1=∠3,
所以∠2=∠4.
等角的余角相等.
探索新知
如果∠1与∠2互补,∠3与∠4互补,且∠1=∠3,那
么∠2=∠4吗?
∠2=∠4.
如何证明?
探索新知
已知:∠1与∠2互补,∠3与∠4互补,且∠1=∠3,
求证:∠2=∠4.
证明:因为∠1与∠2互补,
如果两个角的和等于180º(平角),就说这
两个角互为补角,即其中一个角是另一个角的补角.
性质:同角(等角)的余角相等.
同角(等角)的补角相等.
作业:
1. 完成习题4.3中第8,
9题;
2.完成练习册本课时的
习题。
谢谢
21世纪教育网(www.21cnjyX)
中小学教育资源网站
兼职招聘:
https://www.21cnjyX/recruitment/home/admin
方向上,同时,在它北偏东40°、南偏西10°、西北(即北偏西
45°)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔
方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.
D
西
北40° B
45°
O


60°
10°

A
巩固练习
练习1. 已知∠α=53°27′, ∠α与∠β互为余角,求∠β​​的度数
.
解: 因为∠与∠互为余角(已知),
所以∠ + ∠ = 90°(余角定义),
所以∠ = 90°-∠.
因为∠=53°27′,

所以∠​​ = 90°-​∠​=90°-53°27

人教版数学七年级上册4.余角和补角课件

人教版数学七年级上册4.余角和补角课件

16 . (8 分 ) 如 图 , 已 知 直 线 AB 和 CD 相 交 于 点 O , OM 平 分 ∠ BOD , ON⊥OM,∠AOC=50°. (1)求∠AON的度数; (2)写出∠DON的余角.
解:(1)65° (2)∠DOM,∠MOB
17.(10分)如图,AB是一条直线,OC是一条射线,∠AOC=2∠AOF, ∠BOC=2∠BOE. (1)∠1与∠2互余吗?
解:如图:
19.(12分)如图甲所示,∠AOB,∠COD都是直角. (1)试猜想∠AOD与∠COB在数量上是相等、互余、还是互补的关 系,你能用推理的方法说明你的猜想是否成立吗? (2)当∠COD绕点O旋转到图乙的位置时,你本来的猜想还成立吗?
方位的表示方法
在表示方向时,要先在观测点画出方位图,然后测量出角度并在图 上表示出来,注意表示时要先写北还是南,再写偏东或偏西,偏多
少度,如图4-3-28,OA是表示北偏东30°的 一条射线,OB是表示南偏西50°的一条射线; 特别地,射线OC表示北偏西45°可写成西北 方向,OD表示东南方向.
例题
小结
1. 余角和补角的定义:
如果两个角的和等于
,就说这两个角互为余角;如果两个
角的和为
,就说这两个角互为补角.
2. 余角和补角的性质: 同角(等角)的补角________,同角(等角)的余角_________.
3. 如图,O是直线AB上的点,OC是∠AOB的平分线. (1)∠AOD的补角是__∠__B_O__D___,余角是__∠__C_O__D__; (2)∠DOB的补角是__∠__A__O_D_____. 4. 已 知 ∠ α = 20° , 则 ∠ α 的 余 角 为 _______70,° ∠ α 的 补 角 为 ______1_6_0.° 5. ∠A的补角为130°,则∠A的余角为________4.0°

4.3.3余角和补角3课件人教版数学七年级上册

4.3.3余角和补角3课件人教版数学七年级上册
70°
E
O
射线OE的方向: 北偏东70°
射线OF的方向:
射线OP的方向:
南偏西25°
北偏西40°

西


O
(1)正北,正南,正西,正东
(2)西北方向:_________ 西南方向:_________ 东南方向:__________ 东北方向:__________
教科书第139页习题4.3第8题。
A地和B地都是海上观测站,从A地发现它的北偏东600方向上有一艘船,同时从B地发现这艘船在它的北偏东300方向,试在图中确定这艘船的位置。
A
B


600
300
C
则这艘船在点C处。
解:
甲地
乙地
乙地甲地在的 。
观测点
被观测点
500
北偏东50°
甲地在乙地的的 。
射线OD
A
B
C
D
OC
OB
OA
45°
45°
45°
45°
北偏西45°
南偏西45°
南偏东45°
北ห้องสมุดไป่ตู้东45°
(1)射线OA:北偏西40°
提示:以 为顶点,表示
方向的射线为角的一边,
另一边落在 与 之间。
O


西

(2)射线OB:南偏西30°
(3)射线OC:南偏东35°
OA
OC
OB
2、下面说法中不正确的是( )。 A、射线OA表示北偏东35° B、射线OB表示西偏北50° C、射线OC表示西南方向 D、射线OD表示南偏东65°
B
3、在茫茫大海上,我缉私艇正在执行任务,

初中数学七年级上册《余角和补角》课件

初中数学七年级上册《余角和补角》课件

知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为的两角一定相等.( × ) (2)两个小于90°的角一定互余.( × ) (3)若∠1<90°,则∠1的补角大于90°( √ ) (4)相等且互补的两个角分别等于90°.( √ ) (5)东南方向在东和南之间的任意一条射线上.( × )
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
数学人教版七年级上册
4.3.3 余角和补角
1.掌握余角和补角的定义和性质,并能熟练应用. 2.正确地根据方位角确定方向.

人教版数学七年级上册4.3.3余角和补角说课稿

人教版数学七年级上册4.3.3余角和补角说课稿
人教版数学七年级上册4.3.3余角和补角说课稿
一、教材分析
(一)内容概述
人教版数学七年级上册4.3.3余角和补角是初中数学的基础知识之一,它位于七年级上册的第四章“角的计算”这一章节中。在整个课程体系中,这一节内容是对角度概念的进一步拓展和深化,为后续学习更高级的数学知识打下基础。主要知识点包括余角和补角的定义、性质以及如何求一个角的余角和补角。
(四)总结反馈
在总结反馈阶段,我将引导学生自我评价,并提供有效的反馈和建议:
1.学生自我评价:让学生对自己在本节课的学习进行自我评价,反思自己的学习成果和存在的不足。
2.同伴评价:鼓励学生互相评价,分享彼此的学习心得和经验,互相提供反馈和建议。
3.教师评价:教师对学生的学习情况进行评价,针对学生的优点和不足提供具体的反馈和建议,帮助学生进一步提高。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.练习题:设计一些相关的练习题,让学生独立完成,巩固对余角和补角的理解和运用。
2.小组讨论:让学生围绕一些实际问题进行小组讨论,运用余角和补角的知识解决问题,培养学生的合作和交流能力。
3.数学日记:鼓励学生写一篇关于本节课的数学日记,总结和反思自己对本节课内容的理解和应用。
(三)教学重难点
1.教学重点:余角和补角的定义和性质,求一个角的余角和补角的方法。
2.教学难点:理解并掌握余角和补角的求法,能够灵活运用余角和补角的知识解决实际问题。
二、学情分析导
(一)学生特点
面对人教版数学七年级上册的学生,他们正处于青少年时期,具有较强的好奇心和探索欲望,但同时注意力容易分散,需要教师巧妙设计教学活动来维持学习兴趣。他们的认知水平正处于从具体形象思维向抽象逻辑思维过渡的阶段,因此需要通过具体实例来帮助他们理解和掌握抽象的概念。在学习习惯上,他们已经逐渐适应了初中数学的学习方式,但仍有部分学生对主动学习和合作学习不够积极。

人教版初中数学七年级上册第四章4.3.3余角和补角

人教版初中数学七年级上册第四章4.3.3余角和补角

O
60°
上发现了客轮B.仿照表示灯塔方位的方法,
A
画出表示客轮B方向的射线.并说出你是怎样画出的.
②同时在它南偏西10°、西北(北偏西45°)方向上又分 别发现了货轮C和海岛D.请再画出表示货轮C和海岛D方向的射 线.
如图,A地和B地都是海上观测站,从A地发现它的北偏东 60°方向有一艘船,同时,从B地发现这艘船 在它的北偏东30°方向,你能从图中确定这艘船的位置吗?
练习 : 看谁答得快:
∠α
∠α 的余角
∠α 的补角
30° 54° 90°
62°23′

60 °
150 °
36 °
126 °
00
另 比余外角:大同,(等并9)且0 °角大的90补°角
27 ° 37 ′
117 ° 37 ′
90 x
同一个角的余角和补角什么关系?
1、动手画一画:
1)已知∠α(如图),请利用三角板画的∠α的余角
样的角称为方位角.
方位角的表示习惯上以正北、正南方向为基准来描述物体 的方向. 即用“北偏东多少度”“北偏西多少度” 或者“南偏东多少度”“南偏西多少度”来表示方向.
北 西北
西 O
西南 南
东北 东 东南

30°
西

O 60°

北例4:如图,货轮O在航行过程中,发现灯塔A
在它南偏东60°方向上. ①在它北偏东40°方向
性质3:等角的补角相等
如图,∠1与∠2互余, ∠3与∠4互余,并且∠1= ∠3,
2
1
3
4
请问:∠ 2与∠4相等吗?为什么?你还能得出什么结论?
答:相等。
∵∠1与∠2互余,可得∠2=90°- ∠1 ; 又∠3与∠4互余,可得∠4=90°- ∠3; 且∠1= ∠3,所以90°- ∠1=90°- ∠3 ; ∴∠2= ∠4

人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件

人教版七年级数学上  4.3.3《余角和补角》课件(共18张PPT)课件

理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m

最新人教版七年级数学上册《4.3.3 余角和补角》精品教学课件

最新人教版七年级数学上册《4.3.3 余角和补角》精品教学课件

点 C 的___D___方向上.

A. 南偏东30° B. 南偏西30° C. 南偏东60° D. 南偏西60°
北 60°
A
C 60°
北 30°
B
课堂小结
互余
两角间的 ∠1+∠2=90° 数量关系 ∠1=90°-∠2
互补
∠1+∠2=180° ∠1=180°-∠2
对应图形
性质
同角或等角的 余角相等
同角或等角的 补角相等
x + ( 3x+30 ) = 90. 解得 x=15. 故 ∠B 的度数为15°.
探究新知
素养考点 2 余角、补角、角平分线相结合的题目
例2 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,
ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求
∠AOC与∠AOB的度数.
M C
B
N
探究新知
知识点 1 余角和补角的概念
2 1
如果两个角的和等于90°( 直角 ),就说这两个角 互为余角 ( 简称为两个角互余 ).
如图,可以说∠1 是∠2 的余角,或∠2 是∠1的余角, 或∠1和∠2互余.
探究新知 图中给出的各角,哪些互为余角?
15o
24o
46.2o
75o
66o
43.8o
探究新知

远望一号

远望二号
巩固练习

60°

远望一号
30°

远望二号
链接中考
1.若一个角为65°,则它的补角的度数为( C )
A.25°
B.35°
C.115° D.125°

人教版数学七年级上册4.3.3《余角和补角》教学设计

人教版数学七年级上册4.3.3《余角和补角》教学设计

人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4.3.3节的内容,本节主要介绍余角和补角的概念、性质及其应用。

通过本节的学习,使学生掌握余角和补角的概念,了解它们之间的关系,能运用余角和补角解决一些实际问题。

二. 学情分析七年级的学生已经学习了角的初步知识,对角的概念有一定的了解。

但是,对于余角和补角这样的概念性知识,还需要通过实例来加深理解。

此外,学生的空间想象能力和逻辑思维能力仍在发展阶段,需要通过大量的练习来巩固所学知识。

三. 教学目标1.了解余角和补角的概念,掌握它们的性质。

2.能够运用余角和补角解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.余角和补角的概念。

2.余角和补角的性质。

3.运用余角和补角解决实际问题。

五. 教学方法采用讲授法、实例分析法、小组讨论法、练习法等多种教学方法,引导学生通过观察、思考、讨论、练习,从而掌握余角和补角的知识。

六. 教学准备1.PPT课件。

2.相关练习题。

3.黑板、粉笔。

七. 教学过程导入(5分钟)利用PPT展示一些生活中的图片,如一副画、一座建筑等,让学生观察其中的角,并提出问题:“这些角之间有什么关系?”引导学生思考,引出余角和补角的概念。

呈现(10分钟)1.讲解余角和补角的概念。

2.通过实例展示余角和补角的性质。

操练(10分钟)学生在课堂上完成PPT上的练习题,教师巡回指导。

巩固(10分钟)学生分组讨论,总结余角和补角的性质,并用它们解决实际问题。

拓展(10分钟)引导学生思考:在实际生活中,除了余角和补角,还有哪些角的概念?它们有什么作用?小结(5分钟)教师总结本节课的主要内容,强调余角和补角的概念和性质。

家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。

板书(5分钟)教师在黑板上板书本节课的主要内容,包括余角和补角的概念、性质等。

教学过程总结:本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,使学生掌握了余角和补角的知识。

七年级(人教版)集体备课教案:4.3.3 《余角和补角》

七年级(人教版)集体备课教案:4.3.3 《余角和补角》

七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。

本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。

教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。

二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。

但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。

此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。

三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。

同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。

四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。

难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。

五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。

通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。

六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。

此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。

例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。

人教版数学七年级上册 4.3.3 余角、补角的概念和性质 课件

人教版数学七年级上册 4.3.3 余角、补角的概念和性质 课件
知识回顾 三角板中的两个锐角有什么关系?
4.3.1余角和补角
学习目标 理解互为余角和互为补角
的概念,掌握互为余角及互为 补角的性质,会求一个角的余 角或补角。
自学指导
1、自学课本P127---P129的内容。 2、弄清如下问题: (1)什么叫两个角互为余角? (2)什么叫两个角互为补角? (3)同一个角的余角相等吗?如 两个角相等,它们的余角相等吗?
1
2
3
4
如图∠1 与∠2互余,∠3 与∠4 互余 ,如果∠1=∠3,那么∠2与 ∠4相等吗?为什么?
1
2
3
4
余角性质:
同角或等角的余角相等
互为余角
互为补角
对应图形
1 2
21
数量关系 ∠1+ ∠2 = 90 ° ∠1+ ∠2 = 180 °


同角或等角的 余角相等
同角或等角的 补角相等
检测
D E
(4)同一个角的补角相等吗?如 两个角相等,它们的补角相等吗?
什么叫两 个角互为 余角?
2
1
2
1
互为余角 如果两个角的和是一
个直角,那么这两个角叫 做互为余角,其中一个角 是另一个角的余角。
2
1
图中给出的各角,那些互为余角?
10o
30o
50o
60o
40o
80o
什么叫两
个角互为
4
补角?
3
4
答:这个角的度数是60 °。
探究:余角和补角的性质
如图∠1 与∠2互补,∠3 与∠4 互补 ,如果∠1=∠3,那么∠2与∠ 4相等吗?为什么?
2143来自如图∠1 与∠2互补,∠3 与∠4互补 ,如果∠1=∠3, 那么∠2与∠4相等吗?为什 么?

人教七年级数学上册4.3.3《余角和补角》课件

人教七年级数学上册4.3.3《余角和补角》课件

知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【解题探究】1.C在A的北偏东30°是绕点A以什么方向为基准, 沿什么方向旋转30°. 提示:以正北方向为基准,沿顺时针方向旋转30°. 2.C在B南偏东45°是绕点B以什么方向为基准,沿什么方向旋 转45°. 提示:以正南方向为基准,沿逆时针方向旋转45°.
3.点C与以上两个方向线有什么关系? 提示:以上两个方向线的交点就是点C.如图:
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为基准,描述物体运动方向的角.

七年级数学人教版(上册)4.3.3余角和补角课件

七年级数学人教版(上册)4.3.3余角和补角课件

巩固训练
5.M地是海上观测站,从M地发现两艘船A,B的方位如图所示,下列说法 中正确的是( C ) A.船A在M的南偏东30°方向 B.船A在M的南偏西30°方向 C.船B在M的北偏东40°方向 D.船B在M的北偏东50°方向
6.如图,一艘轮船行驶在B处,同时测得小岛A,C的方向分别为北偏西
30°和西南方向,则∠ABC的度数是( C )
通过表格, 细心的你有 什么惊人的 发现吗?
思考探究
1.若1与2、3都互为补角, 那么2、3的大小有什么关系? 2.若1与2、3都互为余角, 那么2、3的大小有什么关系?
补角和余角的性质
如图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,求 证:∠2=∠4
证明:∵∠1与∠2互补
∴∠2=180°- _∠_1 _
A.135° B.115°C.105°D.95°
拓展提升
7.如图,点A,O,B在同一条直线上,射线OD和射
线OE分别平分∠AOC和∠BOC,图中互为余角
的是∠_C_O__D_ 和∠_C_O_E__ , ∠_C__O_D__ 和 ∠_B_O_E___,
∠A__O_D_ 和_∠_C_O__E_, ∠_A__O_D__ 和 _∠_B_O__E_.
DC E
AO
B
拓展提升
8.如图,直线BC与MN相交于点O,∠AOB=90°. (1)分别写出图中与∠AOM互余和互补的角; (2)已知OE平分∠BON,且∠EON=20°,求∠AOM的度数.
解:(1)与∠AOM互余的角是∠COM,∠BON; 与∠AOM互补的角是∠AON. (2)因为OE平分∠BON,∠EON=20°, 所以∠BON=2∠EON=40°. 因为∠AOB=90°, 所以∠AOM=180°-∠BON-∠AOB

人教版数学七年级上4.3.3《余角和补角》教案

人教版数学七年级上4.3.3《余角和补角》教案
-余角和补角的性质:包括互为余角或补角的两个角相等,以及一个角的补角比它的余角大90°等性质。这些性质是解决相关数学问题的关键。
-实际应用:学会将余角和补角的概念应用到解决实际问题中,如计算角的补角或余角,以及利用这些知识简化计算过程。
举例:在讲解余角时,可以通过一个具体的例子,如两个角的度数分别为30°和60°,它们互为余角,因为30°+60°=90°。强调这种关系在几何证明和计算中的应用。
关于学生小组讨论,我觉得整体效果还是不错的,学生们能够围绕主题展开讨论,并提出自己的观点。但在讨论过程中,我发现有些学生过于依赖课本,缺乏独立思考。因此,我需要在教学中更加注重培养学生的创新意识和解决问题的能力。
最后,在总结回顾环节,学生对余角和补角的知识点有了较为全面的掌握,但仍有个别学生在提问时表现出对某些部分的理解不够深入。在今后的教学中,我需要关注这部分学生,及时解答他们的疑问,确保他们能够跟上教学进度。
其次,在新课讲授环节,我发现学生在理解余角和补角的定义及性质时,存在一定的难度。尽管我通过举例和比较来进行解释,但仍有部分学生表示理解不够透彻。在以后的教学中,我可以尝试使用更生动的例子,或者结合生活实际,让学生在具体情境中感受余角和补角的概念,以便更好地理解。
在实践活动环节,学生们分组讨论和实验操作的过程较为顺利,但我注意到有些小组在讨论时,成员之间的交流并不充分。为了提高学生的团队合作能力,我可以在今后的教学中加强引导,鼓励他们多发表自己的观点,学会倾听和尊重他人的意见。
今天的学习,我们了解了余角和补角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对余角和补角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版七年级数学上册:4.3.3余角和补角说课稿

人教版七年级数学上册:4.3.3余角和补角说课稿
本节课的主要知识点包括:余角的定义、性质和计算;补角的定义、性质和计算。通过本节课的学习,学生能够理解并掌握余角和补角的概念,能够运用它们解决实际问题。
(二)教学目标
知识与技能:
1.理解并掌握余角和补角的概念。
2.能够运用余角和补角的性质进行计算。
3.能够运用余角和补角的知识解决实际问题。
过程与方法:
3.对于小组讨论,设计更具吸引力的讨论题目,并适时给予指导和激励。
课后,我将通过以下方式评估教学效果:
1.收集和分析学生的练习和作业,评估知识掌握情况。
2.与学生交流,了解他们对课堂内容的理解和感受。
3.自我反思,记录教学过程中的亮点和不足。
反思和改进措施:
1.根据学生的反馈调整教学方法和节奏。
2.对课堂活动进行优化,提高学生的参与度。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.个人练习:设计具有代表性的练习题,让学生独立完成,检验学习效果。
2.小组讨论:将学生分成小组,针对实际问题进行讨论,共同解决。
3.数学游戏:设计余角和补角相关的数学游戏,让学生在游戏中巩固知识。
4.实践活动:让学生在课后寻找生活中的余角和补角实例,并进行记录和分享。
这些教具和多媒体资源在教学中的作用是:直观展示知识点,激发学生学习兴趣,提高课堂互动性,帮助学生更好地理解和掌握知识。
(三)互动方式
为促进学生的参与和合作,我计划设计以题进行提问,引导学生积极思考,检验学习效果。
2.小组讨论:将学生分成小组,针对实际问题进行讨论,鼓励他们发表见解,共同解决问题。
3.课堂游戏:设计余角和补角相关的数学游戏,让学生在游戏中互动,提高学习兴趣。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

45︒
30︒
60︒
68︒O


西

第四章 几何图形初步
4.3 角
4.3.3 余角和补角
1.如图所示,∠1是锐角,则∠1的余角是( ).
A .1212
∠-∠ B .13212
2
∠-∠ C .1(21)2
∠-∠ D .1(21)3
∠+∠
2、(1)A 看B 的方向是北偏东21°,那么B 看A 的方向( )
A:南偏东69° B:南偏西69° C:南偏东21° D:南偏西21°
(2)如图,下列说法中错误的是( )
A: OC 的方向是北偏东60° B: OC 的方向是南偏东60° C: OB 的方向是西南方向 D: OA 的方向是北偏西22°
(3)在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( )
A:100° B:70° C:180° D:140°

西
3、若一个角的补角等于它的余角4倍,求这个角的度数。

4、如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?
5、如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表
示客轮B,货轮C 和海岛D。

相关文档
最新文档