材料力学性能优秀课件
合集下载
材料力学材料的力学性能优质课件
结论与讨 论
卸载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
再加载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
将卸载再加载曲线与原来旳应力-应变曲线进行比较(图 中曲线OAKDE上旳虚线所示),能够看出:K点旳应力数值远 远高于A点旳应力数值,即百分比极限有所提升;而断裂时旳 塑性变形却有所降低。这种现象称为应变硬化。工程上常利 用应变硬化来提升某些构件在弹性范围内旳承载能力。
延伸率和截面收缩率旳数值越大,表白材料旳韧性越 好。工程上一般以为δ>5%者为韧性材料; δ<5%者为脆 性材料。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
材料压缩试验,一般采用短试样。低碳钢压 缩时旳应力-应变曲线。与拉伸时旳应力-应变曲 线相比较,拉伸和压缩屈服前旳曲线基本重叠, 即拉伸、压缩时旳弹性模量及屈服应力相同,但 屈服后,因为试样愈压愈扁,应力-应变曲线不断 上升,试样不会发生破坏。
试样旳变形将随之消失。
这表白这一阶段内旳变形都是
弹性变形,因而涉及线性弹性阶段
在内,统称为弹性阶段。弹性阶段 旳应力最高限
第3章 轴向载荷作用下材料旳力学性能
弹性力学性能
百分比极限与弹性极 限
大部分韧性材料百分比极限与弹性 极限极为接近,只有经过精密测量才干 加以区别。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
第3章 轴向载荷作用下材料旳力学性能
结论与讨论
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
卸载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
再加载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
将卸载再加载曲线与原来旳应力-应变曲线进行比较(图 中曲线OAKDE上旳虚线所示),能够看出:K点旳应力数值远 远高于A点旳应力数值,即百分比极限有所提升;而断裂时旳 塑性变形却有所降低。这种现象称为应变硬化。工程上常利 用应变硬化来提升某些构件在弹性范围内旳承载能力。
延伸率和截面收缩率旳数值越大,表白材料旳韧性越 好。工程上一般以为δ>5%者为韧性材料; δ<5%者为脆 性材料。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
材料压缩试验,一般采用短试样。低碳钢压 缩时旳应力-应变曲线。与拉伸时旳应力-应变曲 线相比较,拉伸和压缩屈服前旳曲线基本重叠, 即拉伸、压缩时旳弹性模量及屈服应力相同,但 屈服后,因为试样愈压愈扁,应力-应变曲线不断 上升,试样不会发生破坏。
试样旳变形将随之消失。
这表白这一阶段内旳变形都是
弹性变形,因而涉及线性弹性阶段
在内,统称为弹性阶段。弹性阶段 旳应力最高限
第3章 轴向载荷作用下材料旳力学性能
弹性力学性能
百分比极限与弹性极 限
大部分韧性材料百分比极限与弹性 极限极为接近,只有经过精密测量才干 加以区别。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
第3章 轴向载荷作用下材料旳力学性能
结论与讨论
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
材料的力学性能最新课件
形成原因:纤维状是由于塑性变形过程中,众多微细裂 纹不断扩展和相互连接造成的,而暗灰色是纤维断口表 面对光的反射能力很弱所致。
举例:一些塑性较好的金属材料及高分子材料在室温 下的静拉伸断裂具有典型的韧性断裂特征。
脆性断裂定义:是材料断裂前基本上不产生明显的宏观塑性变 形,没有明显预兆,往往表现为突然发生的快速断裂过程,因 而具有很大的危险性。
图 3.21 压痕相似原理图
F1 D12
D F222
D F2
常数
材料物理与性能
洛氏硬度试验
HR k h 0.002
HRA、HRB、 HRC
图 3.22 洛氏硬度试验过程示意图 a) 加初始实验力 b) 加主实验力 c) 卸除试验力
材料物理与性能
0.20F4 s in 136
HV 0.10F2
20.189 F1
(6)应变速率与应力状态:应变速率对金属材料的屈服强 度有明显的影响。应变速率高,金属材料的屈服应力显著提高; 应力状态对金属材料屈服强度的影响规律是:切应力分量越大, 越有利于塑性变形,屈服强度就越低。
应变硬化应变硬化源自变硬化应变硬化抗拉强度
抗拉强度:拉伸实验时,试样拉断过程中最大实验力所对应的 应力。其值等于最大拉力Fb除以试样的原始横截面面积A0, 抗拉强度用σb表示,即 σb=Fb/A0
剪切断裂与解理断裂是两种不同的微观断裂方式,是材料 断裂的两种重要微观机理。
剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离 而造成的断裂。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起 的沿特定晶面发生的脆性穿晶断裂称为解理断裂。
材料物理与性能
剪切断裂的另一种形式为微孔 聚集型断裂,微孔聚集型断裂 是材料韧性断裂的普通方式, 其断口在宏观上常呈现暗灰色、 纤维状,微观断口特征花样则 是断口上分布大量“韧窝”, 如图1-26所示,微孔聚集断裂 过程包括微孔形核、长大、聚 合直至断裂。
举例:一些塑性较好的金属材料及高分子材料在室温 下的静拉伸断裂具有典型的韧性断裂特征。
脆性断裂定义:是材料断裂前基本上不产生明显的宏观塑性变 形,没有明显预兆,往往表现为突然发生的快速断裂过程,因 而具有很大的危险性。
图 3.21 压痕相似原理图
F1 D12
D F222
D F2
常数
材料物理与性能
洛氏硬度试验
HR k h 0.002
HRA、HRB、 HRC
图 3.22 洛氏硬度试验过程示意图 a) 加初始实验力 b) 加主实验力 c) 卸除试验力
材料物理与性能
0.20F4 s in 136
HV 0.10F2
20.189 F1
(6)应变速率与应力状态:应变速率对金属材料的屈服强 度有明显的影响。应变速率高,金属材料的屈服应力显著提高; 应力状态对金属材料屈服强度的影响规律是:切应力分量越大, 越有利于塑性变形,屈服强度就越低。
应变硬化应变硬化源自变硬化应变硬化抗拉强度
抗拉强度:拉伸实验时,试样拉断过程中最大实验力所对应的 应力。其值等于最大拉力Fb除以试样的原始横截面面积A0, 抗拉强度用σb表示,即 σb=Fb/A0
剪切断裂与解理断裂是两种不同的微观断裂方式,是材料 断裂的两种重要微观机理。
剪切断裂:剪切断裂是材料在切应力作用下沿滑移面滑移分离 而造成的断裂。
解理断裂:在正应力作用下,由于原子间结合键的破坏引起 的沿特定晶面发生的脆性穿晶断裂称为解理断裂。
材料物理与性能
剪切断裂的另一种形式为微孔 聚集型断裂,微孔聚集型断裂 是材料韧性断裂的普通方式, 其断口在宏观上常呈现暗灰色、 纤维状,微观断口特征花样则 是断口上分布大量“韧窝”, 如图1-26所示,微孔聚集断裂 过程包括微孔形核、长大、聚 合直至断裂。
材料力学性能课件
温度与环境因素
应变速率与加载路径
应变速率和加载路径对材料的力学响 应具有重要影响,特别是在动态加载 条件下。
温度、湿度、腐蚀等环境因素对材料 的强度和塑性也有影响。
03 材料的硬度与韧性
硬度定义与分类
硬度定义
硬度是指材料抵抗被压入或刻划的能力。它是材料表面局部区域抵抗变形或破裂 的能力。
硬度分类
塑性ห้องสมุดไป่ตู้类
根据塑性变形的性质,可分为延性、 展性、韧性等。
强度与塑性的关系
01
强度与塑性相互关联,塑性好的 材料通常强度也较高,但两者之 间并非完全正相关。
02
在一定条件下,材料的强度和塑 性可能存在此消彼长的关系。
强度与塑性的影响因素
材料成分与组织结构
材料的化学成分和微观组织结构对其 力学性能有显著影响。
冲击试验
通过冲击试样来测定材料的冲击韧性、断裂 韧性等参数,适用于评估材料的韧性和脆性 断裂行为。
D
02 材料的强度与塑性
强度定义与分类
强度定义
材料抵抗外力而不发生失效的能力。
强度分类
根据外力类型,可分为抗拉强度、抗压强度、抗剪强度等。
塑性定义与分类
塑性定义
材料在外力作用下发生不可逆变形的 能力。
材料力学性能的测试方法
A
拉伸试验
通过拉伸试样来测定材料的弹性模量、屈服强 度、抗拉强度等参数,是最常用的力学性能测 试方法之一。
压缩试验
通过压缩试样来测定材料的抗压强度、弹 性模量等参数,适用于脆性材料和塑性材 料的测试。
B
C
弯曲试验
通过弯曲试样来测定材料的抗弯强度、挠度 等参数,适用于评估材料的弯曲性能和稳定 性。
《材料力学性能》PPT课件
反向加载,规定残余伸长应力降低的现象。
注:所有退火状态和高温回火的金属与合金都有包辛格效应。 可用来研究材料加工硬化的机制。
精选ppt
19
精选ppt
20
消除包申格效应的方法:
(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶
温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。
如果施加交变载荷,且最大应力低于宏观弹性极限,加载速率比较大, 则也得到弹性滞后环(图b) 。
如果交变载荷中最大应力超过宏观弹性极限,就会得到塑性滞后环(图 c) 。
精选ppt
16
金属的循环韧性
定义:
金属材料在交变载荷(或振动)下吸收不可逆变形功 的能力,也称为金属的内耗或消振性。
意义:
材料力学性能指标具体数值的高低表示材料 抵抗变形和断裂能力的大小,是评定材料质 量的主要依据。
精选ppt
3
第1章 静载荷下材料的力学性能
1.1 应力-应变曲线
拉伸试验是工业上应用最广泛的基本力学性能试 验方法之一。本章将详细讨论金属材料在单向拉 伸静载荷作用下的基本力学性能指标如:屈服强 度、抗拉强度、断后伸长率和断面伸长率等。
循环韧性越高,机件依靠自身的消振能力越好,所以 高循环韧性对于降低机器的噪声,抑制高速机械的振 动,防止共振导致疲劳断裂意义重大。
精选ppt
17
1.2.4、包申格效应(Bauschinger)
精选ppt
18
包申格效应的定义:
金属材料经过预先加载产生少量塑性变形,残 余应变约1-4%,卸载后再同向加载,规定残余 伸长应力(弹性极限或屈服强度)增加;
精选ppt
24
注:所有退火状态和高温回火的金属与合金都有包辛格效应。 可用来研究材料加工硬化的机制。
精选ppt
19
精选ppt
20
消除包申格效应的方法:
(1) 预先进行较大的塑性变形; (2) 在第二次反向受力前先使金属材料于回复或再结晶
温度下退火,如钢在400-500℃,铜合金在250-270℃退 火。
如果施加交变载荷,且最大应力低于宏观弹性极限,加载速率比较大, 则也得到弹性滞后环(图b) 。
如果交变载荷中最大应力超过宏观弹性极限,就会得到塑性滞后环(图 c) 。
精选ppt
16
金属的循环韧性
定义:
金属材料在交变载荷(或振动)下吸收不可逆变形功 的能力,也称为金属的内耗或消振性。
意义:
材料力学性能指标具体数值的高低表示材料 抵抗变形和断裂能力的大小,是评定材料质 量的主要依据。
精选ppt
3
第1章 静载荷下材料的力学性能
1.1 应力-应变曲线
拉伸试验是工业上应用最广泛的基本力学性能试 验方法之一。本章将详细讨论金属材料在单向拉 伸静载荷作用下的基本力学性能指标如:屈服强 度、抗拉强度、断后伸长率和断面伸长率等。
循环韧性越高,机件依靠自身的消振能力越好,所以 高循环韧性对于降低机器的噪声,抑制高速机械的振 动,防止共振导致疲劳断裂意义重大。
精选ppt
17
1.2.4、包申格效应(Bauschinger)
精选ppt
18
包申格效应的定义:
金属材料经过预先加载产生少量塑性变形,残 余应变约1-4%,卸载后再同向加载,规定残余 伸长应力(弹性极限或屈服强度)增加;
精选ppt
24
复合材料力学性能ppt课件
低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
.
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
应变硬化
E D A
D A
O A
B
y
图2.4 非晶态聚合物的应力. -应变曲线(玻璃态)
20
2.2 高分子材料的力学性能
.
21
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量
高
高
高
低
低
拉伸强度
中
高
高
中
低
断裂伸长率 小
中
大
很大
中
断裂能
小
中
大
大
小
F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
扭转
F
.
17
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试
样
实验条件:一定拉伸速率和温度
.
电子万能材料试验机
18
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
.
19
金属材料的力学性能ppt课件.ppt
为塑性变形。
F F F
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拉伸试验
d0
F
F
l0
L 拉伸前
dk
lk
拉伸后
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
标准冲击试样有两种,一种是U形缺口试样,另一种是V
形缺口试样。它们的冲击韧度值分别以a KU和a KV。
材料的a K值愈大,韧性就愈好;材料的a K值愈小,材料
的脆性愈大
通常把a K值小的材料称为脆性材料 研究表明,材料的a K值随试验温度的降低而降低。
加载速度越快,温度越低,表面及冶金质量越差, a K在值
Fe
e
k
4、s’b曲线:弹性变形+均匀塑性变
形
5、b点出现缩颈现象,即试样局部
o
截面明显缩小试样承载能力降低,
拉伸力达到最大值,而后降低,但
变形量增大,K点时试样发生断裂。
F S0 拉伸曲线
l l0
应力—应变曲线
l
e — 弹性极限点 S — 屈服点 b — 极限载荷点
K — 断裂点
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3) 维氏硬度
维氏硬度试验原理
维氏硬度压痕
维氏硬度计
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
F F F
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拉伸试验
d0
F
F
l0
L 拉伸前
dk
lk
拉伸后
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
标准冲击试样有两种,一种是U形缺口试样,另一种是V
形缺口试样。它们的冲击韧度值分别以a KU和a KV。
材料的a K值愈大,韧性就愈好;材料的a K值愈小,材料
的脆性愈大
通常把a K值小的材料称为脆性材料 研究表明,材料的a K值随试验温度的降低而降低。
加载速度越快,温度越低,表面及冶金质量越差, a K在值
Fe
e
k
4、s’b曲线:弹性变形+均匀塑性变
形
5、b点出现缩颈现象,即试样局部
o
截面明显缩小试样承载能力降低,
拉伸力达到最大值,而后降低,但
变形量增大,K点时试样发生断裂。
F S0 拉伸曲线
l l0
应力—应变曲线
l
e — 弹性极限点 S — 屈服点 b — 极限载荷点
K — 断裂点
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3) 维氏硬度
维氏硬度试验原理
维氏硬度压痕
维氏硬度计
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
金属材料的力学性能-课件
❖ 金属材料旳力学性能是指在承受多种外加载荷(拉 伸、压缩、弯曲、扭转、冲击、交变应力等)时, 对变形与断裂旳抵抗能力及发生变形旳能力。
强度与塑性
❖ 强度是指金属材料在静载荷作用下,抵抗塑性 变形和断裂旳能力。
❖ 塑性是指金属材料在静载荷作用下产生塑性变 形而不致引起破坏旳能力。
❖ 金属材料旳强度和塑性旳判据可经过拉伸试验 测定。
断后伸长率( δ )
l1-l0
δ=
×100%
l0
l1——试样拉断后旳标距,mm; l0——试样旳原始标距,mm。
断面收缩率(ψ)
ψ= S0-S1 ×100% S0
S0——试样原始横截面积,mm2; S1——颈缩处旳横截面积,mm2 。
屈服现象
❖ 在金属拉伸试验过程中, 当应力超出弹性极限后, 变形增长较快,此时除 了弹性变形外,还产生 部分塑性变形。当外力 增长到一定数值时忽然 下降,随即,在外力不 增长或上下波动情况下, 试样继续伸长变形,在 力-伸长曲线出现一种 波动旳小平台,这便是 屈服现象。
强度
屈服点
在伸长过程中力不增长(保持恒定),试样仍能继续
伸长时旳应力,单位为MPa,即:
S
FS Ao
式中:Fs——材料屈服时旳拉伸力,( N ); Ao——试样原始截面积,( mm2 )。
要求残余延伸强度
❖ 对于高碳淬火钢、铸铁等材料,在拉伸试验 中没有明显旳屈服现象,无法拟定其屈服强 度。
❖ 国标GB228-2023要求,一般要求以试样到 达一定残余伸长率相应旳应力作为材料旳屈 服强度,称为要求残余延伸强度,一般记作 Rr。例如Rr0.2表达残余伸长率为0.2%时旳 应力。
要求残余延伸应力
F0.2 A0
强度与塑性
❖ 强度是指金属材料在静载荷作用下,抵抗塑性 变形和断裂旳能力。
❖ 塑性是指金属材料在静载荷作用下产生塑性变 形而不致引起破坏旳能力。
❖ 金属材料旳强度和塑性旳判据可经过拉伸试验 测定。
断后伸长率( δ )
l1-l0
δ=
×100%
l0
l1——试样拉断后旳标距,mm; l0——试样旳原始标距,mm。
断面收缩率(ψ)
ψ= S0-S1 ×100% S0
S0——试样原始横截面积,mm2; S1——颈缩处旳横截面积,mm2 。
屈服现象
❖ 在金属拉伸试验过程中, 当应力超出弹性极限后, 变形增长较快,此时除 了弹性变形外,还产生 部分塑性变形。当外力 增长到一定数值时忽然 下降,随即,在外力不 增长或上下波动情况下, 试样继续伸长变形,在 力-伸长曲线出现一种 波动旳小平台,这便是 屈服现象。
强度
屈服点
在伸长过程中力不增长(保持恒定),试样仍能继续
伸长时旳应力,单位为MPa,即:
S
FS Ao
式中:Fs——材料屈服时旳拉伸力,( N ); Ao——试样原始截面积,( mm2 )。
要求残余延伸强度
❖ 对于高碳淬火钢、铸铁等材料,在拉伸试验 中没有明显旳屈服现象,无法拟定其屈服强 度。
❖ 国标GB228-2023要求,一般要求以试样到 达一定残余伸长率相应旳应力作为材料旳屈 服强度,称为要求残余延伸强度,一般记作 Rr。例如Rr0.2表达残余伸长率为0.2%时旳 应力。
要求残余延伸应力
F0.2 A0
《材料的力学性能》课件
《材料的力学性能》PPT 课件
# 材料的力学性能 材料力学性能的概念以及其重要性。
简介
材料力学性能是指材料在受力或变形时所表现出的力学行为。具体包括弹性模量、硬度、抗拉强度和延伸率、 疲劳性能以及韧性等多个方面。
弹性模量
弹性模量是衡量材料在受力后恢复原状的能力。它的测量方法有多种,如张拉试验、压缩试验等。弹性模量的 应用广泛,可以用于材料的设计和优化。
硬度
硬度是材料抵抗外界物体对其表面产生塑性变形的能力。硬度的测量方法有 多种,如洛氏硬度、布氏硬度等。不同硬度对应不同材料类型,可以用于材 料的鉴定。
抗拉强度和延伸率
抗拉强度是材料抵抗外界拉伸力量的能力,延伸率表示材料在被拉伸后能够 变长的程度。抗拉强度和延伸率的测量方法有多种,广泛应用于材料的性能 评估和周期性荷载作用时的抗性能。疲劳性能的测量方法有多种,影响因素包括材料的 应力集中、引入缺陷等。预测和评估疲劳寿命对材料的可靠性设计至关重要。
韧性
韧性是材料在受力时能够吸收大量能量而不断变形的能力。韧性的测量方法 有多种,如冲击试验等。韧性的应用广泛,特别适用于需要抵抗冲击的工程 材料。
总结
材料力学性能是衡量材料质量和可靠性的重要指标。通过评估材料的弹性、 硬度、抗拉强度和延伸率、疲劳性能以及韧性等性能指标,可以为材料的选 择、设计和优化提供指导。展望未来,材料力学性能的发展趋势包括多功能 材料的设计和制备,以及对环境和能源的可持续性要求。
# 材料的力学性能 材料力学性能的概念以及其重要性。
简介
材料力学性能是指材料在受力或变形时所表现出的力学行为。具体包括弹性模量、硬度、抗拉强度和延伸率、 疲劳性能以及韧性等多个方面。
弹性模量
弹性模量是衡量材料在受力后恢复原状的能力。它的测量方法有多种,如张拉试验、压缩试验等。弹性模量的 应用广泛,可以用于材料的设计和优化。
硬度
硬度是材料抵抗外界物体对其表面产生塑性变形的能力。硬度的测量方法有 多种,如洛氏硬度、布氏硬度等。不同硬度对应不同材料类型,可以用于材 料的鉴定。
抗拉强度和延伸率
抗拉强度是材料抵抗外界拉伸力量的能力,延伸率表示材料在被拉伸后能够 变长的程度。抗拉强度和延伸率的测量方法有多种,广泛应用于材料的性能 评估和周期性荷载作用时的抗性能。疲劳性能的测量方法有多种,影响因素包括材料的 应力集中、引入缺陷等。预测和评估疲劳寿命对材料的可靠性设计至关重要。
韧性
韧性是材料在受力时能够吸收大量能量而不断变形的能力。韧性的测量方法 有多种,如冲击试验等。韧性的应用广泛,特别适用于需要抵抗冲击的工程 材料。
总结
材料力学性能是衡量材料质量和可靠性的重要指标。通过评估材料的弹性、 硬度、抗拉强度和延伸率、疲劳性能以及韧性等性能指标,可以为材料的选 择、设计和优化提供指导。展望未来,材料力学性能的发展趋势包括多功能 材料的设计和制备,以及对环境和能源的可持续性要求。
金属材料的力学性能PPT精选文档
上一页 返回
第三节 冲击韧度
一、冲击韧度试验方法及原理
一次冲击弯曲试验通常是在摆锤式冲击试验机上进行的,其 试验原理如图1-7所示。
试验时将带有缺口的标准试样(按GB/T 229-1994规定,冲击 试样有V型缺口试样和U型缺口试样两种。两种试样的尺寸及加工 要求如图1一8所示)。背向摆锤方向放在试验机两支座上,将质量 为m的摆锤抬到规定高度H,使摆锤具有的势能为m Hg。摆锤落 下冲断试样后升至h高度,这时摆锤具有的势能为mHg。根据功能 原理可知:摆锤冲断试样所消耗的功AK=mg (H-h),AK称为冲击吸 收功。
上一页 下一页 返回
第二节 硬 度
洛氏硬度试验测量硬度范围大,操作简便、迅速,效率高, 可直接从硬度计上读出硬度值。由于压痕小,不会损伤试件表面, 故可直接测量成品或较薄工件。但因压痕小,对内部组织和硬度 不均匀的材料,所测结果不够准确。因此,需在试件不同部位测 定数次(一般为3处以上),取其平均值作为该材料的硬度值。
下一页 返回
第一节 强度与塑性
—伸长曲线 在拉伸试验过程中,试验机可自动记录载荷与伸长量之间的
关系,并得出以载荷为纵坐标、伸长量为横坐标的图形,即力- 伸长曲线。如图1-2所示为退火后的低碳钢力—伸长曲线。
由图可看出,低碳钢在拉伸过程中,其载荷与伸长量关系可 分为以下几个阶段: (1)弹性变形阶段 (2)微量塑性变形阶段 (3)屈服阶段 (4)均匀塑性变形阶段 (5)局部塑性变形及断裂阶段
试验原理如图1-5所示。用顶角为120°的金刚石圆锥体 或直径为φ1.588mm的淬火钢球做压头,以规定的试验力使 其压入试样表面。试验时,先加初试验力,然后加主试验力。在 保留初试验力的情况下,根据试样表面压痕深度,确定被测金属 材料的洛氏硬度值。
第三节 冲击韧度
一、冲击韧度试验方法及原理
一次冲击弯曲试验通常是在摆锤式冲击试验机上进行的,其 试验原理如图1-7所示。
试验时将带有缺口的标准试样(按GB/T 229-1994规定,冲击 试样有V型缺口试样和U型缺口试样两种。两种试样的尺寸及加工 要求如图1一8所示)。背向摆锤方向放在试验机两支座上,将质量 为m的摆锤抬到规定高度H,使摆锤具有的势能为m Hg。摆锤落 下冲断试样后升至h高度,这时摆锤具有的势能为mHg。根据功能 原理可知:摆锤冲断试样所消耗的功AK=mg (H-h),AK称为冲击吸 收功。
上一页 下一页 返回
第二节 硬 度
洛氏硬度试验测量硬度范围大,操作简便、迅速,效率高, 可直接从硬度计上读出硬度值。由于压痕小,不会损伤试件表面, 故可直接测量成品或较薄工件。但因压痕小,对内部组织和硬度 不均匀的材料,所测结果不够准确。因此,需在试件不同部位测 定数次(一般为3处以上),取其平均值作为该材料的硬度值。
下一页 返回
第一节 强度与塑性
—伸长曲线 在拉伸试验过程中,试验机可自动记录载荷与伸长量之间的
关系,并得出以载荷为纵坐标、伸长量为横坐标的图形,即力- 伸长曲线。如图1-2所示为退火后的低碳钢力—伸长曲线。
由图可看出,低碳钢在拉伸过程中,其载荷与伸长量关系可 分为以下几个阶段: (1)弹性变形阶段 (2)微量塑性变形阶段 (3)屈服阶段 (4)均匀塑性变形阶段 (5)局部塑性变形及断裂阶段
试验原理如图1-5所示。用顶角为120°的金刚石圆锥体 或直径为φ1.588mm的淬火钢球做压头,以规定的试验力使 其压入试样表面。试验时,先加初试验力,然后加主试验力。在 保留初试验力的情况下,根据试样表面压痕深度,确定被测金属 材料的洛氏硬度值。
材料力学性能 ppt课件
3、应力-应变曲线的类型
典型的应力-应变曲线
(d)弹性-不均匀塑性型:形变强化过程中出现多次局部失稳, 其塑性变形方式通常是孪生而不是滑移。当孪生速率超过试验 机夹头运动速度时,载荷会突然松弛而呈现锯齿形的曲线。某 些低溶质固溶体铝合金及含杂质的铁合金具有此行为。
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
低碳钢典型的应力-应变曲线
均匀塑性变形阶段:屈服后, 欲继续变形,必须不断增加载 荷,此阶段的变形是均匀的, 直到曲线达到最高点,均匀变 形结束,如图中的bc段。
形变硬化:随塑性变形增大, 变形抗力不断增加的现象。 不均匀塑性变形阶段:从试 样承受的最大应力点开始直到 断裂点为止,如图中的cd段。 在此阶段,随变形增大,载荷 不断下降,产生大量不均匀变 形,且集中在颈缩处,最后载 荷达到断裂载荷时 ,试样断裂 Company Logo 。
载荷卸除后,变形消失)
Company Logo
1-2 弹性变形
1、弹性变形及其实质
在没有外加载荷作用时,金属
中的原子N1、N2在平衡位置附近振
动,相邻原子间的作用力由引力和
斥力叠加而成。
当原子间相互平衡力受外力而
受到破坏时,原子位置相应调整,
产生位移。而位移总和在宏观上表 曲线1:两原子间的引力
现为变形。
l0 5d0或 l0 10d0
试样加载速率:
常用的拉伸试样几何
1 0 1/s
一般采用圆形或板形二种试样。可分为三个部分,即
工作部分、过渡部分和夹持部分。
其中工作部分必须表面光滑,以保证材料表面也是单
典型的应力-应变曲线
(d)弹性-不均匀塑性型:形变强化过程中出现多次局部失稳, 其塑性变形方式通常是孪生而不是滑移。当孪生速率超过试验 机夹头运动速度时,载荷会突然松弛而呈现锯齿形的曲线。某 些低溶质固溶体铝合金及含杂质的铁合金具有此行为。
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
Company Logo
1-1 拉伸力-伸长曲线和应力-应变曲线
低碳钢典型的应力-应变曲线
均匀塑性变形阶段:屈服后, 欲继续变形,必须不断增加载 荷,此阶段的变形是均匀的, 直到曲线达到最高点,均匀变 形结束,如图中的bc段。
形变硬化:随塑性变形增大, 变形抗力不断增加的现象。 不均匀塑性变形阶段:从试 样承受的最大应力点开始直到 断裂点为止,如图中的cd段。 在此阶段,随变形增大,载荷 不断下降,产生大量不均匀变 形,且集中在颈缩处,最后载 荷达到断裂载荷时 ,试样断裂 Company Logo 。
载荷卸除后,变形消失)
Company Logo
1-2 弹性变形
1、弹性变形及其实质
在没有外加载荷作用时,金属
中的原子N1、N2在平衡位置附近振
动,相邻原子间的作用力由引力和
斥力叠加而成。
当原子间相互平衡力受外力而
受到破坏时,原子位置相应调整,
产生位移。而位移总和在宏观上表 曲线1:两原子间的引力
现为变形。
l0 5d0或 l0 10d0
试样加载速率:
常用的拉伸试样几何
1 0 1/s
一般采用圆形或板形二种试样。可分为三个部分,即
工作部分、过渡部分和夹持部分。
其中工作部分必须表面光滑,以保证材料表面也是单
材料性能力学性能_PPT课件
的降低; b:溶质原子可能阻碍位错弯曲和运动使弹性模量增大; c:当溶质和溶剂原子间结合力比溶剂原子间结合力大时,
引起合金模量的增加,反之合金模量降低。
由点阵类型相同,价电子数和原子半径相近的两种金属组 成无限固溶体时,如Cu-Ni,Cu-Pt,Cu-Au,Ag-Au合金,弹性模 量和溶质浓度之间呈直线关系。
Cl ,C 分别代表纵向和横向弹性波的传播速度,它取决于相
应的弹性模量和密度
Cl
E
C
G
德拜特征温度和弹性波传播的速度成正比关系,金属的弹性 模量越大,德拜特征温度也越高。
弹性模量与熔点的关系
金属的熔点Tm也是原子间结合力有关。原子间结合力越强, 金属的熔点也越高。 弹性模量与熔点关系:
EkTmacb
低熔点金属的e值较大,高熔点金属和难熔化合物的e值较 小,合金的模量随温度升高而下降的趋势与纯金属大致相同。
二、相变的影响
材料内部的相变(多晶型转变,有序化转变,铁磁性转变及 超导体转变等)都会对弹性模量产生明显的影响。有些转变的 影响在比较宽的温度范围内完成,而另一些转变则在比较窄的 温度范围内完成,这是由于原子在晶体学上的重构和磁的重构 所造成的。
声频法测定弹性模量基础: E K1fl2
超声波法测定弹性模量基础:
Cl
E
GK2 f2
C
G
第四节 滞弹性与内耗
固体材料在真空中作弹性振动,它的振幅将逐渐衰弱, 最后停下来,振动能逐渐消耗了。固体材料这种内在的能量 损耗称为内耗。
研究内耗,一是用内耗值评价金属的阻尼本领:二是 确定内耗与金属成分,组织和结构之间的关系。
对于铁磁性金属,其弹 性模量除产生正常的弹性伸 长外,还由于应力作用感生 磁化,同时产生磁致伸缩效 应,即产生补充伸长。其弹 性模量比正常模量低,
引起合金模量的增加,反之合金模量降低。
由点阵类型相同,价电子数和原子半径相近的两种金属组 成无限固溶体时,如Cu-Ni,Cu-Pt,Cu-Au,Ag-Au合金,弹性模 量和溶质浓度之间呈直线关系。
Cl ,C 分别代表纵向和横向弹性波的传播速度,它取决于相
应的弹性模量和密度
Cl
E
C
G
德拜特征温度和弹性波传播的速度成正比关系,金属的弹性 模量越大,德拜特征温度也越高。
弹性模量与熔点的关系
金属的熔点Tm也是原子间结合力有关。原子间结合力越强, 金属的熔点也越高。 弹性模量与熔点关系:
EkTmacb
低熔点金属的e值较大,高熔点金属和难熔化合物的e值较 小,合金的模量随温度升高而下降的趋势与纯金属大致相同。
二、相变的影响
材料内部的相变(多晶型转变,有序化转变,铁磁性转变及 超导体转变等)都会对弹性模量产生明显的影响。有些转变的 影响在比较宽的温度范围内完成,而另一些转变则在比较窄的 温度范围内完成,这是由于原子在晶体学上的重构和磁的重构 所造成的。
声频法测定弹性模量基础: E K1fl2
超声波法测定弹性模量基础:
Cl
E
GK2 f2
C
G
第四节 滞弹性与内耗
固体材料在真空中作弹性振动,它的振幅将逐渐衰弱, 最后停下来,振动能逐渐消耗了。固体材料这种内在的能量 损耗称为内耗。
研究内耗,一是用内耗值评价金属的阻尼本领:二是 确定内耗与金属成分,组织和结构之间的关系。
对于铁磁性金属,其弹 性模量除产生正常的弹性伸 长外,还由于应力作用感生 磁化,同时产生磁致伸缩效 应,即产生补充伸长。其弹 性模量比正常模量低,
材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
工程材料学-材料的力学性能培训课件(共77张PPT)
变形的极限外力。ab段为弹性变形的非线性阶
段,此阶段很短,一般不容易观察到。
1.2.1 拉伸试验
2.屈服阶段(曲线cd段)
当拉力超过Fe后继续增加,达到Fs(即曲线上
c点)时,试样的伸长突然增加。在拉伸曲线上 表现为一横平线段 cd 。它说明此时拉力虽然没 有增加,但试样好象屈服于外力而自行伸长, 这种现象称为屈服现象。 cd 段称为屈服阶段, 它所对应的外力称为屈服力,以Fs表示。
静载荷:
是指大小不变或变化过程缓慢的载荷。
材料的静载力学性能指标:
主要有强度、塑性、硬度等。
1.2.1 拉伸试验
1.2.1 拉伸试验
GB/T228-2002
标
准
拉
伸
试
样
1.2.1 拉伸试验
拉伸曲线 应力-应变曲线
应力σ=F / S0
应变ε=Δl / l0
1.2.1 拉伸试验
试样在拉伸时的伸长和断裂过程 a)试样 b)伸长 c)产生缩颈 d)断裂
上升。
1.2.1 拉伸试验
3.均匀塑形变形阶段(曲线de段) 在此阶段中,试样的一部分产生塑性变形,虽 然这一部分截面减小,使此处承受负荷能力下 降。但由续发展,使变形推移到试样的其它部位。
这样、变形和强化交替进行,就使试样各部位
产生了宏观上均匀的塑性变形。曲线上的d点是
互关系以及应用场合。
§1-1 材料的力学性能
1.1.1 概念与定义
材料的性能:材料在外界因素作用下所表现 出来的行为。
力学性能 物理性能 化学性能 工艺性能
1.1.1 概念与定义
材料的力学性能: 材料在一定环境因素下承受外加
载荷所表现出来的行为,通常表现
段,此阶段很短,一般不容易观察到。
1.2.1 拉伸试验
2.屈服阶段(曲线cd段)
当拉力超过Fe后继续增加,达到Fs(即曲线上
c点)时,试样的伸长突然增加。在拉伸曲线上 表现为一横平线段 cd 。它说明此时拉力虽然没 有增加,但试样好象屈服于外力而自行伸长, 这种现象称为屈服现象。 cd 段称为屈服阶段, 它所对应的外力称为屈服力,以Fs表示。
静载荷:
是指大小不变或变化过程缓慢的载荷。
材料的静载力学性能指标:
主要有强度、塑性、硬度等。
1.2.1 拉伸试验
1.2.1 拉伸试验
GB/T228-2002
标
准
拉
伸
试
样
1.2.1 拉伸试验
拉伸曲线 应力-应变曲线
应力σ=F / S0
应变ε=Δl / l0
1.2.1 拉伸试验
试样在拉伸时的伸长和断裂过程 a)试样 b)伸长 c)产生缩颈 d)断裂
上升。
1.2.1 拉伸试验
3.均匀塑形变形阶段(曲线de段) 在此阶段中,试样的一部分产生塑性变形,虽 然这一部分截面减小,使此处承受负荷能力下 降。但由续发展,使变形推移到试样的其它部位。
这样、变形和强化交替进行,就使试样各部位
产生了宏观上均匀的塑性变形。曲线上的d点是
互关系以及应用场合。
§1-1 材料的力学性能
1.1.1 概念与定义
材料的性能:材料在外界因素作用下所表现 出来的行为。
力学性能 物理性能 化学性能 工艺性能
1.1.1 概念与定义
材料的力学性能: 材料在一定环境因素下承受外加
载荷所表现出来的行为,通常表现
《金属材料力学性能》课件
《金属材料力学性能》PPT课件
• 金属材料力学性能概述 • 金属材料的拉伸性能 • 金属材料的冲击韧性 • 金属材料的硬度与耐磨性 • 金属材料的疲劳性能 • 金属材料的断裂韧性
01
金属材料力学性能概述
定义与分类
定义
金属材料的力学性能是指金属材料在受到外力作用时所表现出来的性能,包括 弹性、塑性、韧性、强度等。
屈服阶段
屈服阶段是金属材料在受到外力作用后发生屈服现象的阶段,此时金属材料开始 发生塑性变形,应力与应变不再呈线性关系。
屈服强度是描述金属材料在屈服阶段的力学性能指标,反映了金属材料抵抗屈服 现象的能力。
强化阶段
强化阶段是金属材料在屈服阶段之后发生强度增高的阶段, 此时金属材料的应力与应变关系呈上升趋势。
通过改变材料的内部结构来提高韧性,如通过退火或淬火处理。
提高金属材料断裂韧性的方法
冷加工
通过塑性变形提高材料的韧性,如轧 制、拉拔或挤压。
提高金属材料断裂韧性的方法
表面处理
VS
通过喷丸、碾压或渗碳淬火等表面处 理技术提高材料的韧性。
THANKS
感谢观看
金属材料的力学性能与经济发展密切 相关,高性能的金属材料能够推动产 业升级和经济发展。
科学研究
金属材料的力学性能是科学研究的重 要领域之一,对于深入了解金属材料 的本质特性和发展新型金属材料具有 重要意义。
02
金属材料的拉伸性能
拉伸试验与拉伸曲线
拉伸试验
通过拉伸试验可以测定金属材料的拉 伸性能,包括抗拉强度、屈服强度、 延伸率等指标。
冲击试验与冲击韧性指标
冲击试验
通过在试样上施加冲击负荷,测定材 料抵抗冲击断裂的能力。
冲击韧性指标
• 金属材料力学性能概述 • 金属材料的拉伸性能 • 金属材料的冲击韧性 • 金属材料的硬度与耐磨性 • 金属材料的疲劳性能 • 金属材料的断裂韧性
01
金属材料力学性能概述
定义与分类
定义
金属材料的力学性能是指金属材料在受到外力作用时所表现出来的性能,包括 弹性、塑性、韧性、强度等。
屈服阶段
屈服阶段是金属材料在受到外力作用后发生屈服现象的阶段,此时金属材料开始 发生塑性变形,应力与应变不再呈线性关系。
屈服强度是描述金属材料在屈服阶段的力学性能指标,反映了金属材料抵抗屈服 现象的能力。
强化阶段
强化阶段是金属材料在屈服阶段之后发生强度增高的阶段, 此时金属材料的应力与应变关系呈上升趋势。
通过改变材料的内部结构来提高韧性,如通过退火或淬火处理。
提高金属材料断裂韧性的方法
冷加工
通过塑性变形提高材料的韧性,如轧 制、拉拔或挤压。
提高金属材料断裂韧性的方法
表面处理
VS
通过喷丸、碾压或渗碳淬火等表面处 理技术提高材料的韧性。
THANKS
感谢观看
金属材料的力学性能与经济发展密切 相关,高性能的金属材料能够推动产 业升级和经济发展。
科学研究
金属材料的力学性能是科学研究的重 要领域之一,对于深入了解金属材料 的本质特性和发展新型金属材料具有 重要意义。
02
金属材料的拉伸性能
拉伸试验与拉伸曲线
拉伸试验
通过拉伸试验可以测定金属材料的拉 伸性能,包括抗拉强度、屈服强度、 延伸率等指标。
冲击试验与冲击韧性指标
冲击试验
通过在试样上施加冲击负荷,测定材 料抵抗冲击断裂的能力。
冲击韧性指标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
号称“不沉之城”。
载有2224名乘客和船 员,首航沉没于冰海, 除了登上救生艇的711 人幸存外,共有1513 人葬身冰海。
绪论
2. 材料力学性能研究对象;
力学性能研究主要包括:
1)建立适当的模型和给出定量的处 理方法;
2)借助微观分析,探讨材料力学性 能的实质,以便能动地改造和提高材料 的力学性能。
2021/3/1
材料力学性能
4
2021/3/1
材料力学性能
1)力学性能是工程结构 或部件设计中最重要的 数据来源。
5
Service Conditions of Turbine Blades and Vanes in a Jet Engine
Turbofan GP7000 for Airbus 380
材料力学性能
课程简介
• 专业基础核心课之一 • 与《材料力学》的区别 • 学时:54学时,学分:3学分 • 参考书:郑修麟,《材料的力学性能》
束德林,《金属力学性能》 《金属力学性能》,黄明志,石德珂,金
志浩
2021/3/1
材料力学性能
2
绪论
1. 材料的力学性能在材料科学与工程中的 地位;
2. 材料力学性能研究对象; 3. 材料力学性能的分类; 4. 力学性能与材料科学的发展。
2021/3/1
材料力学性能
33
பைடு நூலகம் 弹性-均匀塑性
金属及合金、 部分陶瓷及非晶 态高聚物。
2021/3/1
材料力学性能
34
2021/3/1
弹性-不均匀塑性
低温和高应变速 率下的面心立方金 属(孪生)。某些 含碳原子的体心立 方铁合金以及铝合 金低溶质固溶体。
2021/3/1
材料力学性能
26
b s e
1.弹性( elasticity ):金属材料受外力作 用时产生变形,当外力去掉后能恢复 到原来形状及尺寸的性能。
2.弹性变形( elastic deformation ): 随载荷撤除而消失的变形。
3.弹性极限( elastic limit ):
Fe 弹性极限载荷( N )
2021/3/1
材料力学性能
15
绪论
2. 材料力学性能研究对象; 力学性能涉及的内容: 1)材料在各种服役条件下的失效机理; 2)各种力学性能指标的物理概念、实用 意义以及它们之间可能的相互联系; 3)影响材料力学性能的因素以及提高力 学性能的方向和途径; 4)各种力学性能测试方法。
2021/3/1
σe =
( M pa )
S0 试样原始横截面积( mm2)
4.强度(strength): 材料在载荷作用下抵抗 变形和破坏的能力。
(1)种类: 抗拉强度、 抗压强度、 抗弯强 度 、 抗剪强度 、 抗扭强度等。
(2)屈服强度( yield strength): 屈服点 S
Fs σs =
S0
试样屈服时的载荷( N )
( M pa ) 试样原始横截面积( mm2)
(3)条件屈服强度( 塑性应变量为0.2%)
F0.2 σ0.2 =
S0
试样产生0.2%残余塑性变 ( M pa ) 形时的载荷(N) 试样原始横截面( mm2)
(4)抗拉强度( tensile strength ): 试样在断裂前所能承受的最大应力。
Fb σb =
2021/3/1
2)力学性能通常是新 材料能否由研制状态 进入工程应用的基本 考核指标。
材料力学性能
11
3)失效分析中应用
2021/3/1
材料力学性能
13
What Really Sank The Titanic ?
1912年4月15日, 20世纪初最大最豪华的 远洋客轮“泰坦尼克” 号,4.6万吨载重量, 长269米,16个密封舱, 双重钢壳,牢固无比,
2021/3/1
材料力学性能
18
绪论
4)材料在不同的应力状态下有不同 的响应。
受载物体的任何一点的应力分 为切应力τ和正应力σ。
α= τ max / σmax
2021/3/1
材料力学性能
19
绪论
4. 力学性能与材料科学的发展。
低碳钢-高强钢及高耐热材料。
随着航空航天海洋工程技术发展,要 求材料具有高强度、高刚度、高韧度和 低密度等更好的综合性能,而且还要经 受各种极端环境的考验——>两种或两种 以上材料的复合——>各向异性。
2021/3/1
材料力学性能
3
绪论
1. 材料的力学性能在材料科学与工程中的
地位; 用途
Mechanical Properties of
Materials
工艺过程
组织 结构
性能 Mechanical Behavior of Materials
Mechanical Performance
成分
of Materials
S0 - S k
ψ=
× 100%
S0
(2)伸长率(延伸率) specific elongation: 是指试样拉断后的标距L k的伸长量与
原始标距L 0之比。
Lk– L0
δ=
× 100%
L0
δ < 2 ~ 5% 属脆性材科 δ ≈ 5 ~ 10% 属韧性材料 δ > 10% 属塑性材料
纯弹性型
玻璃、陶瓷、岩 石、横向交联很好 的聚合物及一些低 温下的金属
S0
试样断裂前的最大载荷(N)
( M pa )
试样原始横截面积( mm2)
5.塑性(plasticity):是指材料在载荷作用下 产生塑性变形而不被破坏的能力。
(1)断面收缩率(percentage reduction in area): 是指试样拉断处横截面积S k 的收缩量与原始横截面积S0之比。
材料力学性能
16
绪论
2. 材料力学性能研究对象;
力学性能主要指材料的弹性、塑性和 强度、断裂韧性等。
弹性--材料在外力作用下保持固有 形状和尺寸的能力。
塑性--材料在外力作用下发生不可 逆的永久变形的能力。
强度--对塑性变形和断裂的抗力。
2021/3/1
材料力学性能
17
绪论
3. 材料力学性能的分类; 1)按服役温度分--低、室、高温; 2)按加载速度分--静、动载; 3)按有无腐蚀环境分; 4)材料在不同的应力状态下有不同 的响应。
2021/3/1
材料力学性能
20
第一章 静拉伸下的力学性能
第一节 拉伸曲线和应力-应变曲线
1、拉伸试样 2、拉伸曲线和应力-应变曲线 3、真应力-真应变曲线
2021/3/1
材料力学性能
21
圆形试样
板状试样
2021/3/1
材料力学性能
22
2021/3/1
材料力学性能
23
拉伸试样
拉伸试验机
拉 伸 试 样 的 颈 缩 现 象
载有2224名乘客和船 员,首航沉没于冰海, 除了登上救生艇的711 人幸存外,共有1513 人葬身冰海。
绪论
2. 材料力学性能研究对象;
力学性能研究主要包括:
1)建立适当的模型和给出定量的处 理方法;
2)借助微观分析,探讨材料力学性 能的实质,以便能动地改造和提高材料 的力学性能。
2021/3/1
材料力学性能
4
2021/3/1
材料力学性能
1)力学性能是工程结构 或部件设计中最重要的 数据来源。
5
Service Conditions of Turbine Blades and Vanes in a Jet Engine
Turbofan GP7000 for Airbus 380
材料力学性能
课程简介
• 专业基础核心课之一 • 与《材料力学》的区别 • 学时:54学时,学分:3学分 • 参考书:郑修麟,《材料的力学性能》
束德林,《金属力学性能》 《金属力学性能》,黄明志,石德珂,金
志浩
2021/3/1
材料力学性能
2
绪论
1. 材料的力学性能在材料科学与工程中的 地位;
2. 材料力学性能研究对象; 3. 材料力学性能的分类; 4. 力学性能与材料科学的发展。
2021/3/1
材料力学性能
33
பைடு நூலகம் 弹性-均匀塑性
金属及合金、 部分陶瓷及非晶 态高聚物。
2021/3/1
材料力学性能
34
2021/3/1
弹性-不均匀塑性
低温和高应变速 率下的面心立方金 属(孪生)。某些 含碳原子的体心立 方铁合金以及铝合 金低溶质固溶体。
2021/3/1
材料力学性能
26
b s e
1.弹性( elasticity ):金属材料受外力作 用时产生变形,当外力去掉后能恢复 到原来形状及尺寸的性能。
2.弹性变形( elastic deformation ): 随载荷撤除而消失的变形。
3.弹性极限( elastic limit ):
Fe 弹性极限载荷( N )
2021/3/1
材料力学性能
15
绪论
2. 材料力学性能研究对象; 力学性能涉及的内容: 1)材料在各种服役条件下的失效机理; 2)各种力学性能指标的物理概念、实用 意义以及它们之间可能的相互联系; 3)影响材料力学性能的因素以及提高力 学性能的方向和途径; 4)各种力学性能测试方法。
2021/3/1
σe =
( M pa )
S0 试样原始横截面积( mm2)
4.强度(strength): 材料在载荷作用下抵抗 变形和破坏的能力。
(1)种类: 抗拉强度、 抗压强度、 抗弯强 度 、 抗剪强度 、 抗扭强度等。
(2)屈服强度( yield strength): 屈服点 S
Fs σs =
S0
试样屈服时的载荷( N )
( M pa ) 试样原始横截面积( mm2)
(3)条件屈服强度( 塑性应变量为0.2%)
F0.2 σ0.2 =
S0
试样产生0.2%残余塑性变 ( M pa ) 形时的载荷(N) 试样原始横截面( mm2)
(4)抗拉强度( tensile strength ): 试样在断裂前所能承受的最大应力。
Fb σb =
2021/3/1
2)力学性能通常是新 材料能否由研制状态 进入工程应用的基本 考核指标。
材料力学性能
11
3)失效分析中应用
2021/3/1
材料力学性能
13
What Really Sank The Titanic ?
1912年4月15日, 20世纪初最大最豪华的 远洋客轮“泰坦尼克” 号,4.6万吨载重量, 长269米,16个密封舱, 双重钢壳,牢固无比,
2021/3/1
材料力学性能
18
绪论
4)材料在不同的应力状态下有不同 的响应。
受载物体的任何一点的应力分 为切应力τ和正应力σ。
α= τ max / σmax
2021/3/1
材料力学性能
19
绪论
4. 力学性能与材料科学的发展。
低碳钢-高强钢及高耐热材料。
随着航空航天海洋工程技术发展,要 求材料具有高强度、高刚度、高韧度和 低密度等更好的综合性能,而且还要经 受各种极端环境的考验——>两种或两种 以上材料的复合——>各向异性。
2021/3/1
材料力学性能
3
绪论
1. 材料的力学性能在材料科学与工程中的
地位; 用途
Mechanical Properties of
Materials
工艺过程
组织 结构
性能 Mechanical Behavior of Materials
Mechanical Performance
成分
of Materials
S0 - S k
ψ=
× 100%
S0
(2)伸长率(延伸率) specific elongation: 是指试样拉断后的标距L k的伸长量与
原始标距L 0之比。
Lk– L0
δ=
× 100%
L0
δ < 2 ~ 5% 属脆性材科 δ ≈ 5 ~ 10% 属韧性材料 δ > 10% 属塑性材料
纯弹性型
玻璃、陶瓷、岩 石、横向交联很好 的聚合物及一些低 温下的金属
S0
试样断裂前的最大载荷(N)
( M pa )
试样原始横截面积( mm2)
5.塑性(plasticity):是指材料在载荷作用下 产生塑性变形而不被破坏的能力。
(1)断面收缩率(percentage reduction in area): 是指试样拉断处横截面积S k 的收缩量与原始横截面积S0之比。
材料力学性能
16
绪论
2. 材料力学性能研究对象;
力学性能主要指材料的弹性、塑性和 强度、断裂韧性等。
弹性--材料在外力作用下保持固有 形状和尺寸的能力。
塑性--材料在外力作用下发生不可 逆的永久变形的能力。
强度--对塑性变形和断裂的抗力。
2021/3/1
材料力学性能
17
绪论
3. 材料力学性能的分类; 1)按服役温度分--低、室、高温; 2)按加载速度分--静、动载; 3)按有无腐蚀环境分; 4)材料在不同的应力状态下有不同 的响应。
2021/3/1
材料力学性能
20
第一章 静拉伸下的力学性能
第一节 拉伸曲线和应力-应变曲线
1、拉伸试样 2、拉伸曲线和应力-应变曲线 3、真应力-真应变曲线
2021/3/1
材料力学性能
21
圆形试样
板状试样
2021/3/1
材料力学性能
22
2021/3/1
材料力学性能
23
拉伸试样
拉伸试验机
拉 伸 试 样 的 颈 缩 现 象