理论力学(胡运康)第七章作业答案
1-8章的习题答案理论力学.doc
第一章静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A, B两处约束力的方向如图所示60°第二章平面力系一、选择题与填空题■1. B; D。
2. B。
3. F;向上。
4. B。
5. 4^M;方向与水平线成60角,指向 23L右下。
6. 10kN; 10kN ; 5kN; 5kN。
7. 100kN;水平向右。
二•计算题1. F B - -70 KN F AX =70 KN ,F Ay =120 KN , M A二-30KN m2. F AX - -qa F BX二 F qa F Ay =qa F F By 二 qa - F3. F= -5kN F Dy = 4.33kN F E-4.33kN F C =24.41kND xF B^ -17.08kN F AX=F BX = -5kN l^y = -14.08kN M A=T4.66kN mF AX =10N FAy =20N M A =15N mF CD =14.1N6F Ax=2.5kN F Ay=—2.16kN M A=」kN ,m F c =20.33kN7 F B=40kNF AX = —10kNFA ^-20kN M -50kN m F cx = 40kNF ey = 0F HX =300N F Hy =100N第三章空间力系少2(-8. F A ^ = -100N F Ay 二-300N F Ex 二-300N F Ey =100N F °y 二 200N整=一一A > X Y m 一:J E £c X一、选择题与填空题f—- - Fa 6 Fa 1.B。
2.B。
3. M x(F)=O ; M y(F) —H2 44.F x=-40.2N; F y=30-2N; M z=240.2 N m。
5.F z= F sin :;F y= F cos :cos :;M x(F)二 F(ccos'cos : bsin )。
理论力学习题解答(8-13章)
对于一个物体,如果受到的合力为零,则该物体处于力的平衡状态。
力的平衡与运动状态
力的平衡状态下,物体的运动状态保持不变,即速度和方向都不发生变化。
力矩是力和力臂的乘积,表示力对物体转动作用的物理量。
力矩概念
力矩的方向
力矩的几何意义
力矩的方向按照右手定则确定,即右手四指从转动轴指向力的方向,大拇指指向转动方向。
动量定理,描述了物体加速度与其所受合外力之间的线性关系。
详细描述
牛顿第二定律,也被称为动量定理,表述为F=ma,其中F代表合外力,m代表质量,a代表加速度。该定律揭示了物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
牛顿第二定律
作用与反作用定律,描述了作用力和反作用力大小相等、方向相反的特性。
伯努利方程
层流与湍流,定常流动与非定常流动,一维、二维、三维流动。
流体流动的分类
流体质量守恒,流量连续,无质量亏损或增加。
连续性方程
流体动力学基础
03
拉格朗日法
追踪流体质点运动的方法,描述流场中质点位置随时间变化。
01
微元体分析法
对流场中微小体积元进行分析,列出流体运动和力的平衡方程。
02
欧拉法
描述流体运动随时间变化的方法,基于流体质点运动观点。
天体运动的计算方法
天体运动的计算方法通常涉及到对万有引力定律的应用,以及运用运动学和动力学原理。
总结词
在计算天体运动时,首先需要确定天体的质量、位置和速度等参数,然后根据万有引力定律计算出天体之间的相互作用力。接着,运用牛顿第二定律和运动学原理,可以求解出天体的加速度、速度和位移等参数。最后,通过比较理论计算结果和观测数据,可以对天体运动的规律进行验证和预测。
14理论力学讲义-第十四讲第七章习题
B
v0
A
θ
退出
O
7-1: v0=1m/s, : ,
R=8cm;杆A点的 ; 点的 运动方程和t=4s时 运动方程和 时 速度和加速度。 速度和加速度。
y
y B
B
v
v0
R A
θ
vr ve
v0
x
ve
R
Aa
θ
O O’
θ
O
va
vr
x
取坐标系O’xy 解: (1)取坐标系 取坐标系
y = R − (v0t ) & & vy = y a y = v y = && y
理 论 力 学
第七章习题7-2,3,7
第二部分 运动学
2 2
第七章
点的运动
点的运动方程、速度、加速度数学描述
第九章
点(刚体上)的运动合成 刚体上)
相对运动、绝对运动、 相对运动、绝对运动、牵连运动的速度合成
退出
第七章习题
3 3
7-1: 凸轮机构中的凸轮外形为半圆形,顶杆 沿垂 : 凸轮机构中的凸轮外形为半圆形,顶杆AB沿垂
三种运动:绝对运动、 一般针对滑块、 三种运动:绝对运动、相对运动 1. 一般针对滑块、套筒问题
、牵连运动
动点、动系的选取原则: 2. 动点、动系的选取原则:动 三个速度:绝对速度、 三个速度:绝对速度、相对速度 点通常是两构件的不变接触 、牵连速度 点,动点与动系一定在两个 构件上, 构件上,动点与动系之间有 点的运动合成的解体思路步骤: 点的运动合成的解体思路步骤: 相对运动, 相对运动,而且相对运动关 系明确。 系明确。动系相对静系有运 1. 机构组成分析 动;
《理论力学》第7章作业
第七章 作业解答参考7-7 在图a 和图b 所示的两种机构中,已知O 1O 2 = a =200 mm ,ω1 = 3 rad /s 。
求图示位置时杆O 2A 的角速度。
a 解:取套筒A 为动点,动系固结于杆O 2A 上,其绝对运动为绕O 1 点的圆周运动、相对运动为沿O 2A 杆的直线运动、牵连运动为绕O 2 的定轴转动,设O 2A 杆的转动角速度为ω,则动点A 的速度矢量合成分析如右图a '所示。
由题图a 可知,ΔO 1O 2A 为等腰三角形故: O 1A = O 1O 2 = a 、O 2A = 2 a cos30°a 111e 2=2cos30v O A a v O A a ωωωω=⋅=⋅=︒、 又由图a '可知: e a =cos30v v ︒所以,有:12cos30cos30a a ωω︒=⋅︒即: ()1 1.5rad/s 2ωω==故:在图示位置时,杆O 2A 的角速度为1.5 rad/s ,逆时针方向转。
*b 解:取套筒A 为动点,动系固结于杆O 1A 上,其绝对运动为绕O 2 点的圆周运动、相对运动为沿O 1A 杆的直线运动、牵连运动为绕O 1 的定轴转动,设O 2A杆的转动角速度为ω,则动点A 的速度矢量合成分析如右图b '所示。
由题图b 可知,ΔO 1O 2A 为等腰三角形故: O 1A = O 1O 2 = a 、O 2A = 2 a cos30°a 2e 1112cos30=v O A a v O A a ωωωω=⋅=︒=⋅、 又由图b '可知: e a =cos30v v ︒所以,有: 132cos30cos302a a a ωωω=︒⋅︒= 即: ()122rad/s 3ωω== ab a 'b '故:在图示位置时,杆O 2A 的角速度为2 rad/s ,逆时针方向转。
*7-8 图示曲柄滑道机构中,曲柄长OA = r ,并以等角速度ω 绕O 轴转动。
理论力学第七版答案、高等教育出版社出版
仅供个人学习参考哈工大理论力学(I )第7版部分习题答案1-2两个老师都有布置的题目2-3?2-6?2-14?2-?20?2-30?6-2?6-4?7-9??7-10?7-17?7-21?8-5?8-8?8-16?8-24?10-4?10-6?11-5?11-15?10-3以下题为老师布置必做题目1-1(i,j ),1-2(e,k)2-3,2-6,2-14,2-20,2-306-2,6-47-9,7-10,7-17,7-21,7-268-5,8-8(瞬心后留),8-16,8-2410-3,10-410-611-5,11-1512-10,12-15,综4,15,16,1813-11,13-15,13-166-2图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5m 在铅垂面内转动,杆AB=0.8m ,A 端为铰链,B 端有放置工件的框架。
在机构运动时,工件的速度恒为0.05m/s ,杆AB 始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B 的轨迹方程。
10-3如图所示水平面上放1均质三棱柱A ,在其斜面上又放1均质三棱柱B 。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA 三棱柱B 质量mB 的3倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A 、B 两三棱柱组成1质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统 质心位置在水平方向守恒。
设A 、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c 所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4如图所示,均质杆AB ,长l ,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A 相对图b 所示坐标系的轨迹。
理论力学第7章答案
x′
a
n A
sin
θ
−
aAτ
cosθ= NhomakorabeaaBx
cos
θ
−
aBy
sin
θ
aAτ
=
−aBx
+
(a
n A
+ aBy )tgθ
=
−1cm/s 2
α OA
=
a
τ A
/ OA
=
−(1/ 40)rad/s2
7.13 滚压机构的滚子沿水平面作纯滚动如图示 曲柄 OA 长 r 连杆 AB 长 l 滚子 半径为 R 若曲柄以匀角速度 ω 绕固定轴 O 转动 计算连杆 AB 和滚子的角加速度
向
v A
垂直于
OA
杆
因此瞬心为 C
不难看出 C 点相对
AB 杆和定系的位置可分别以 (2r, ϕ) 和 (r,2ϕ) 表示 则动 定瞬心迹线分别是半径为 2r 和 r 的圆
7.9 图示反平行四边形机构中 AB = CD = 2a AC = BD = 2c a > c 求杆 BD
的动瞬心轨迹和定瞬心轨迹
b
杆速度瞬心在 点 vC = 0
∴ ωBC = vB / a = ω ωCD = 0
基点
aCτ = aBn + aCτ B + aCnB
x′ acτ cos θ = −aBn − aCnB
Q cos θ = sin ϕ = 7 / 4
aBn = ω2a
aCnB = ω2a
∴ aCτ = −8ω2a / 7
上二式中消去 ψ 得 (ρsin ϕ)2 + (2c − ρ cos ϕ)2 = (2a − ρ)2
(彩色版第七版)理论力学哈工大课后题答案
第1章 静力学公理和物体的受力分析1-1 画出下列各图中物体A ,ABC 或构件AB ,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
2F(a)(a1)(b) (b1)2N F 3N(c) (c1)Ax(d) (d1)B(e) (e1)Bq(f) (f1)(g)1F 2(h)(h1)Ax(i)(i1)(j)(j1)F(k) (k1)BA F FF ′ (l) (l2) (l3)图1-11-2画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。
22N(a1)2AxFAx(a2)3N(b)(b1)N3′(b2) (b3)1N2AxF(c)(c1)1N2N2Ax(c2)(c3)(d) (d1)CDy(d2)(d3)CxBxByF By′(e) (e1)(e2) (e3)ByBxAx(f) (f1)AxBx F′(f2)(f3)FB(g) (g1)BCx′F(g3)(h)(h1)FFAxC(i) (i1) (i2)F(i3)(i4)AyFFFCy (j) (j1)(j2) 2TFDx3TEyFCyEx′(j3) (j4) (j5)BBDECyF(k)(k1)BBCx (k2) (k3) DEA1F(l) (l1) (l2)A C E(l3) (l4)或CDxFEyFEy(l2)’(l3)’ (l4)’F′(m)(m1)EADFH2FAD′(m2) (m3)BN(n)q3N(n2)G(o)(o1)BADB(o2) (o3) (o4)图1-2第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心A ,B 和C 处受3个力作用,如图2-1a 所示。
N 1001=F ,沿铅直方向;N 503=F ,沿水平方向,并通过点A ;N 502=F ,力的作用线也通过点A ,尺寸如图。
求此力系的合力。
(a)(b)图2-1解 (1) 几何法作力多边形abcd ,其封闭边ad 即确定了合力F R 的大小和方向。
理论力学1-7章答案【精选】
习题7-1图Oυ(a)υυ(b)习题7-3图第7章 点的复合运动7-1 图示车A 沿半径R 的圆弧轨道运动,其速度为v A 。
车B 沿直线轨道行驶,其速度为v B 。
试问坐在车A 中的观察者所看到车B 的相对速度v B /A ,与坐在车B 中的观察者看到车A 的相对速度v A /B ,是否有B A A B //v v -=?(试用矢量三角形加以分析。
)答:B A A B //v v -≠1.以A 为动系,B 为动点,此时绝对运动:直线;相对运动:平面曲线;牵连运动:定轴转动。
为了定量举例,设R OB 3=,v v v B A ==,则v v 3e =∴ ⎩⎨⎧︒==6021/θv v A B2.以B 为动系,A 为动点。
牵连运动为:平移;绝对运动:圆周运动;相对运动:平面曲线。
此时⎪⎩⎪⎨⎧︒==4522/θv v B A ∴ B A A B //v v -≠7-3 图示记录装置中的鼓轮以等角速度0ω转动,鼓轮的半径为r 。
自动记录笔连接在沿铅垂方向并按)sin(1t a y ω=规律运动的构件上。
试求记录笔在纸带上所画曲线的方程。
解:t r x 0ω= (1) )sin(1t a y ω=(2)由(1)0ωr xt =代入(2),得)sin(01r xa y ωω=7-5 图示铰接四边形机构中,O 1A = O 2B = 100mm ,O 1O 2 = AB ,杆O 1A 以等角速度ω= 2rad/s 绕轴O 1转动。
AB 杆上有一套筒C ,此套筒与杆CD 相铰接,机构的各部件都在同一铅垂面内。
试求当ϕ= ︒60,CD 杆的速度和加速度。
解:1.动点:C (CD 上),动系:AB ,绝对:直线,相对:直线,牵连:平移。
2.r e a v v v +=(图a ) v e = v A01.02121.0cos e a =⨯⨯==ϕv v m/s (↑)3. r e a a a a +=(图b )4.021.022e =⨯==ωr a m/s 2 346.030cos e a =︒=a a m/s 2(↑)习题7-5图习题7-7图习题7-9图υ(a) (b)(a)7-7 图示瓦特离心调速器以角速度ω绕铅垂轴转动。
理论力学课后习题答案
第7章 点的合成运动一、是非题(正确的在括号内打“√”、错误的打“×”)1.点的速度和加速度合成定理建立了两个不同物体上两点之间的速度和加速度之间的 关系。
( √ ) 2.根据速度合成定理,动点的绝对速度一定大于其相对速度。
( × )3.应用速度合成定理,在选取动点和动系时,若动点是某刚体上的一点,则动系不可以固结在这个刚体上。
( √ )4.从地球上观察到的太阳轨迹与同时在月球上观察到的轨迹相同。
( × ) 5.在合成运动中,当牵连运动为转动时,科氏加速度一定不为零。
( × ) 6.科氏加速度是由于牵连运动改变了相对速度的方向而产生的加速度。
( √ ) 7.在图中,动点M 以常速度r v 相对圆盘在圆盘直径上运动,圆盘以匀角速度ω绕定轴O 转动,则无论动点运动到圆盘上的什么位置,其科氏加速度都相等。
( √ )二、填空题1.已知r 234=++v i j k ,e 63=-ωi k ,则k =a 18 i + -60 j + 36 k 。
2.在图中,两个机构的斜杆绕O 2的角速度均为2ω,O 1O 2的距离为l ,斜杆与竖直方向的夹角为θ,则图(a)中直杆的角速度=1ωθθωcos sin 2,图(b)中直杆的角速度=1ω2ω。
图 图3.科氏加速度为零的条件有:动参考系作平动、0=r v 和r e v ω//。
4.绝对运动和相对运动是指动点分别相对于定系和动系的运动,而牵连运动是指牵连点相对于定系的运动。
牵连点是指某瞬时动系上和动点相重合的点,相应的牵连速度和加速度是指牵连点相对于定系的速度和加速度。
5.如图所示的系统,以''Ax y 为动参考系,Ax'总在水平轴上运动,AB l =。
则点B 的相对轨迹是圆周,若kt ϕ= (k 为常量),点B 的相对速度为lk ,相对加速度为2lk 。
图6.当点的绝对运动轨迹和相对运动轨迹都是曲线时,牵连运动是直线平动时的加速度合成定理表达式是a e r =+a a a ;牵连运动是曲线平动时的加速度合成定理表达式是 a e r =+a a a ;牵连运动是转动时的加速度合成定理表达式是a e r k =++a a a a 。
理论力学第七版课后习题答案(共9篇)
理论力学第七版课后习题答案(共9篇)理论力学第七版课后习题答案(一): 求理论力学第七版课后习题答案1、很高兴为您回答,但我没有题目内容啊!2、自己亲自做吧.网上(如:百度文库)可能查找到一些答案,一般不全.对搞不懂的题目,可以上传题目内容,以方便为你回答.理论力学第七版课后习题答案(二): 理论力学第六版(哈尔滨工业大学理论力学教研室)高等教育出版社课后习题答案 [email protected]【理论力学第七版课后习题答案】已发送注意查收理论力学第七版课后习题答案(三): 理论力学第七版高等教育出版社PDF 要《理论力学》(I)(第7版),《理论力学》(II)(第7版),《简明理论力学》(第2版)高等教育出版社,理论力学解题指导及习题集(第3版)高等教育出版社,理论力学思考题集高等教育出版社,这些书的PDF 非常谢谢必有重赏在下载了一会上传附件,望等待!!!理论力学第七版课后习题答案(四): 有几道力学题,.理论力学第一题选择题(基本概念和公理)1 理论力学包括()A、静力学、运动力学和动力学.B、运动学和材料力学.C、静动力学和流体力学.D、结构力学和断裂力学.2 静力学是研究()A、物体破坏的规律B、物体平衡的一般规律.C、物体运动的一般规律..D、物体振动的规律..3 关于刚体的说法是()A、很硬的物体.B、刚体内任意两点间的距离可以微小改变..C、刚体内任意两点间的距离保存不变.D、刚体内任意两点间的距离可以改变.4 关于平衡的概念是()A、物体相对于惯性参考系静止.B、物体做加速运动.C、物体相对于惯性参考系运动.D、物体做减速运动5 力是物体间的()A、相互化学作用..B、相互机械作用.C、相互遗传作用.D、相互联接作用.6 力对物体作用的效应取决于力的三要素,三要素是指()A、力的大小、方向和坐标B、力的大小、量纲和作用点.C、力的大小、方向和作用点.D、产生力的原因、方向和作用点.7 在国际单位制中,力的单位是()A、米(m).B、牛顿.米(N.m).C、牛顿.秒(m).D、牛顿(N).8 关于约束的说法是()A、限制物体运动的装置B、物体和物体的链接.C、物体运动的装置.D、使物体破坏的装置.ABCAD CDA理论力学第七版课后习题答案(五): 第七课答案【理论力学第七版课后习题答案】七年级上语文期末复习复习提要 1、语言积累和运用.2、现代文阅读.3、文言文、古诗词阅读.4、作文复习.5、专题训练及总测试.重点 1、注意辨别字形、正字音、释词义,理解语句在具体语境中的含义.2、整体感知课文,理解文章内容和写作特色,领悟作者的思想感情.3、学习文言文,生在朗读、背诵.掌握积累一些文言词语,理解文章大意,学会翻译文言文.4、学会审题,并结合学习生活实际,选取典型的材料进行作文,学会运用学过的词语及写作技巧.难点:1、关键词语的揣摩.2、理解一些重要语句的深刻含义.3、理解诗歌的意境.4、作文的选材立意.课时划分:1、积累与运用(4课时).A、拼音汉字、改正错别字.B、古诗、名句的默写.C、仿写句子、广告标语、综合性学习.D、对对子、名著导读.2、现代文阅读(4课时).A、课内阅读(2课时).B、课外阅读(2课时) 3、文言文阅读(2课时).4、作文(2课时).附:专题练习分工:积累与运用:张桂芬、钟国珍,现代文阅读(课内:王安华、黄卓苗,课外:郑小坚、范远填),文言文阅读:方焕章,作文:王文捷复习教案第一课时复习内容 1、复习本册学过的生字生词,掌握音、形、义.2、熟练运用学过的生字词.一、复习本册学过的生字生词,掌握音、形、义.1、教师指导学生掌握关键词语,让学生读、抄一遍,掌握正确的读音和拼写规则,特别注意平常容易读错的字音和多音多义字的读音.如:A、给下列加点的字注音或根据拼音写汉字.痴()想隐秘()诱惑()xuān( )腾一shùn( )间yùn( )含 B、请你找出并改正词语中的错别字.惊荒失措 _____改为_____ 昂首铤立_____改为_____ 二、进行逐单元进行听写训练.(一般分开在课前进行)三、完成试卷练习.(课后巩固为主)第二课时复习内容 1、复习古诗、名句的默写.2、学会初步赏析一些古诗或《论语》中的名句.一、学生复习要求背诵古诗和名篇.1、学生诵读本册要求背诵的古诗.2、教师指导学生熟记一些名句,会默写.3、掌握重点,理解诗歌的主题思想,体会含义深刻的句子.二、默写练习.(主要针对后进生,以激励为主)如:A、商女不知亡国恨,_______________________.《泊秦淮》 ,浅草才能没马蹄.《钱塘湖春行》B、《观沧海》中展现海岛生机勃勃的诗句是:,.,.《次北固山下》一诗中道出新旧更替的生活哲理的名句是:,.三、课后试卷练习巩固.第三课时复习内容1、仿写句子.2、复习比喻、拟人等修辞方法的辨别和运用.一、明白仿写的意义及方法.1、仿句是按照题目已经给出的语句的形式,再另外写出与之相仿的新句,仿句只是句式仿用,文字内容不能完全一样.只要被模仿的是句子的形式,不管是单句或复句,都列入仿句.2、仿句考查的知识点:(1)、考查同学们对语法、修辞等知识的综合运用,要求同学们根据不同的语境和要求,写出与例句内容和形式相同或相近、意义上有密切关联的句子.例如:生活就是一块五彩斑斓的调色板.希望就是________________________.[解析]这道题目从句式上看是陈述句.在修辞上运用了比喻,同学们要注意比喻运用的得体,比喻的艺术贵在创新,要寻找新鲜、活泼的喻体,保持上下文的协调性.如:希望就是一颗永不陨落的恒星.希望就是一盏永不熄灭的明灯.(2)、考查同学们的语言表达能力,联想、想象能力,创新思维能力.例如:什么样的年龄最理想什么样的心灵最明亮什么样的人生最美好什么样的青春最辉煌鲜花说,我开放的年龄多妩媚;月亮说,____________________________;海燕说,_______________________.太阳说,_________________________________.[解析]该题是问答式的仿写,在回答上运用拟人的修辞,要求天下们针对性进行回答,有一定的开放度,但是在解题时,要注意结合回答对象的特点.如:我纯洁的心灵多明亮;我奋斗的人生极美好;我燃烧的青春极辉煌.(3)、是对同学们思想认识水平的检测,包括道德素质,审美理论力学第七版课后习题答案(六): 理论力学的基本原理和基本假设是什么理论力学是机械运动及物体间相互机械作用的一般规律的学科,也称经典力学.是力学的一部分,也是大部分工程技术科学理论力学的基础.其理论基础是牛顿运动定律,故又称牛顿力学.原理的话就是牛顿三大定理咯.定理都是在基本假设的基础上推出来的,所以想想牛顿三定律是建立在什么假设基础上的我能总结出来的就三点:1.时间是绝对的,其含义是时间流逝的速率与空间位置和物体的速率无关; 2.空间是欧几里德的,也就是说欧几里德几何的假设和定律对空间是成立的;3.经典物理的第三个假设,就是质点的运动可以用位置作为时间的函数来描述.理论力学第七版课后习题答案(七): 大学理论力学的问题(哈工大第七版)有关力矩在平面力对点之炬,这一节中,关于力对点之矩的正负问题中,顺时针和逆时针怎么判断呢以及在力对轴的矩中右手螺旋定则怎么定义的啊利用右手螺旋定则,其实判断力矩正负和以前高中学的判定磁场方向差不多,就是伸出右手,大拇指与其余四个手指垂直,其余四指弯向力的方向,这时候可以有两种判定方法:第一种,如果其余四指弯曲的方向是顺时钟,则力矩为负,反之,则为正;第二种,如果这时大拇指指向为上,那么力矩为正,反之,则为负.总之大体的判断方法就是这样,至于哪种方法更容易,楼主自行体会吧.最后祝你学业进步~理论力学第七版课后习题答案(八): 现代物理学包括哪几部分目前我们学物理是包括了力学,光学,热学,电磁学,原子物理学,理论力学,热力学,统计物理学,电动力学,量子力学,数学物理方法,固体物理学这些学科的理论力学第七版课后习题答案(九): 科学不怕挑战的阅读答案5.本文的中心论点是什么7 (4分)6.第③④段运用了事例来论证,请分别概括这两个事例的内容.(4分)7.第⑤段申两个句子的顺序能否颠倒为什么(4分)8.第⑥段中"科学"一词为什么加上引号(2分)9.说说画线句子在文中的表达作用.(3分)参考答案:5、科学不怕挑战(或“科学不怕挑战,怕挑战的不是科学.”)(2分)6、第③段:量子力学曾受到爱因斯坦理想实验的挑战(1分);第④段:进化论曾受到创世说者的频频发难(1分).7、不能颠倒(1分).这句话有承上启下的作用,前半句总结上文,后半句引出下文(1分).8、为了表示讽刺和否定.(2分)9、运用了比喻论证的方法(1分),将科学不断受到挑战比作了大浪淘沙,证明了科学是不怕挑战的,从而把抽象深奥的道理阐述得生动形象、浅显易懂(1分).。
理论力学第7章答案
7.1 直杆AB 搁置如图a b 所示试分别以A 端沿水平轴x 向右运动时的速度和加速度表示杆AB 的角速度和角加速度解杆作平面运动由于受两处约束1=f 取θ为广义坐标a 将θ=ctg A h x 对时间求导得θθ−=&&2A csc h x因此有h x /sin 2A θ−=θ&&hh x x /)/2sin (sin 2A A 2θ−θ−=θ&&&&&b 将θ=sin /A r x 对时间求导得θθθ−=2A sin /cos &&r x因此有r x /tg sin A &&θθ−=θr x x x/)sec sin sin tg sin (A 2A A &&&&&&&&θθθ+θθ+θθ−=θr r x x/]/sin )sec 1([tg sin 2A A θθ+−θθ−=&&&7.2 试证明直杆AB 搁置如图a b 所示杆AB 运动时杆上点C 的速度沿杆AB其大小等于θcos A v解基点CA A C v v v +=a x ′0sin sinA CA A x C =θ+θ=−θ=′&&CA xv v v y ′θ=′cos A y C v v 证毕b x ′0sin sinA CA A x C =θ+θ=+θ=′&&CA x v v v y ′θ=′cos A y C v v 证毕7.3 滚压机构的滚子沿水平面作纯滚动如图示曲柄OA 长r 连杆AB 长l 滚子半径为R 若曲柄以匀角速度ω绕固定轴O 转动试求任意时刻θ=∠AOB 连杆AB和滚子的角速度解本机构自由度14233=×−×=f 除θ外取多余坐标ϕ两者间有约束方程ϕ=θsin sin l r 1矢量法基点BA A B v v v +=)(A r v ω=)sin()sin()sin(B 2A 2BA ϕ+θ=ϕ−=θ−ππv v v ϕθ=cos cos A BA v v ϕθω==ωcos cos BA AB l r l vϕϕ+θ=cos )sin(A B v v ϕϕ+θω==ωcos )sin(B B R r R v分析法将式1对时间求导得ϕθω=ϕθθ=ϕcos cos cos cos l r r &&对ϕ+θ=cos cos B l r x 对时间求导得ϕϕ+θω−=ϕϕ−θθ−=)sin(sin sin B r l r x&&&因此ϕϕ+θω=−=ωcos )sin(/B B R r R x&7.4 一放大机构中ABCD 为一平行四边形B 为OC 的中点D 为CE 的中点设图示位置点A 的速度如图示求点E 的速度解平行四边形机构在任意时有BC//ADAB//CD 因此1AD BC ωωω==2CD AB ωωω==A 基点ABB A v v v +=基点ECC E v v v +=Q OB OC 2=BACE 2=∴B11C 22v v =×=×=OB OC ωωAB22EC 22v v =×=×=BA CE ωω可导出AE 2v v =7.5 一自动卸货大卡车的升降机构如图示图中BFBE =l AC =在此瞬时活塞在处于水平的液压缸中的速度为v 求车厢转动的角速度解利用速度投影定理杆vv =o 60cosF vv 2F =v v v 2F E ==杆v v v ==o 60cosE D 因此lv AD v 2D ==ω7.6 画出图示机构中作平面运动的杆件在图示位置的速度瞬心7.7 图示拱桥上受到1F 和2F 两力作用若给出的三拱桥的支座C 若突然坍塌试求此瞬时GBJ 和ICJ 两部分的速度瞬心解GBI 构件瞬心为ICJ 构件瞬心在无穷远7.8 杆AB 可在作定轴转动的套筒O ′内滑动如图示其A 端与曲柄OA 铰接已知r O O OA =′=求杆的动瞬心轨迹和定瞬心轨迹解AB 杆作平面运动杆上与O 相重合之点速度O ′v 沿杆方向A v 垂直于OA 杆因此瞬心为C 不难看出C 点相对AB 杆和定系的位置可分别以),2(ϕr 和)2,(ϕr 表示则动定瞬心迹线分别是半径为r 2和r 的圆7.9 图示反平行四边形机构中a CD AB 2==c BD AC 2==c a >求杆BD的动瞬心轨迹和定瞬心轨迹解BD 杆的瞬心为AB 与CD 的交点P 容易证明三角形APC和DPB 全等因此瞬心P 点相对BD 杆和定系的位置均可用),(ϕρ表示在三角形APC 中有DPAP ==ρ 0sin )2(sin =ψρ−−ϕρa ca 2cos )2(cos =ψρ−+ϕρ上二式中消去ψ得222)2()cos 2()sin (ρ−=ϕρ−+ϕρa c 可导出如下椭圆方程]cos )/(1[]/)[(22ϕ−−=ρa c a c a 因此动定瞬心迹线均为椭圆7.11 三根连杆AB BC 和CD 用铰链相连组成一四连杆机构AD 可视作固定不动的连杆已知a BC AB ==a CD 2=杆AD 以匀角速度ω转动求图示两位置杆CD的角速度和角加速度解a 杆作瞬时平动0BC =ωBC v v =∴2/2/C CD ω==ωa v 基点ττ+=+CBn B n C C a a a a∴0C =τa 0CD =αb 杆速度瞬心在点0=C v ∴ω==ωa v /B BC 0CD =ω基点nCBCB n B C a a a a ++=ττx ′n CBn B c cos a a a −−=θτQ 4/7sin cos =ϕ=θaa 2n B ω=aa 2n CB ω=∴7/82C a a ω−=τ7/742/2C CD ω−==ατa a7.12 平面机构如图示已知CD//EG B 为杆DG 的中点O A B C D E G 均为铰链cm 20==EG CD cm 50=DG cm 40=OA 在图示位置杆CD 铅垂OA//CD cm/s20A =v 水平向左B 的加速度沿水平方向的分量2Bx cm/s10=a3.0tan =θ试用平面运动基点法求此瞬时 1杆CD 和杆OA 的角速度2B 的加速度沿铅垂方向的分量3杆OA 的角加速度解杆做瞬时平动AB =ωBA v v = rad/s 5.0/A OA ==ωOA v22OA nA cm/s10=ω=OA a 某点ττ++=+ABBy Bx A n A a a a a ax ′θ−θ=θ−θτsin cos cos sinBy Bx A nA a a a a 2By n A Bx A cm/s 1tg )(−=θ++−=τa a a a 2A OA rad/s )40/1(/−==ατOA a7.13 滚压机构的滚子沿水平面作纯滚动如图示曲柄OA 长r 连杆AB 长l 滚子半径为R 若曲柄以匀角速度ω绕固定轴O 转动计算连杆AB 和滚子的角加速度解矢量法基点nBABA n A B a a a a ++=τyϕ+ϕ−θ−=τsin cos sin 0n BA BA n A a a aϕω−ϕ=ϕθω−ϕϕ=τtg )(cos /)sin sin (2222BA &&l r l a x ′nBAn A B )cos(cos a a a +ϕ+θ=ϕϕϕ+ϕ+θω=cos /])cos([22B &l r a ∴ϕω−ϕ==ατtg )(/22BA AB &l a ϕϕ+ϕ+θω==αcos /])cos([/22B B R l r R a &分析法ϕω−ϕ=ϕϕθω+ϕθω−=ϕ=αtg )(cos /sin cos cos /sin 2222AB &&&l r l r ϕϕϕϕ+θω+ϕϕ+ωϕ+θω=ω=α2B B cos /sin )sin(cos /))(cos(R r R r &&&ϕϕ+ϕ+θω=cos /])cos([22R l r &7.14 半径为r 的圆盘在水平面上作直线纯滚子如图示其中心O 的速度O v 常量杆AB 长l 其B 端用铰链与圆盘边缘相连接求在水平面上运动的A 端的速度和加速度以转角ϕ表示之解本机构自由度1=f θ和ϕ有约束方程)cos 1(sin ϕ−=θr l )1(矢量法圆盘的瞬心为点杆的瞬心为点因此)2/sin(2)/(O O B ϕ==v BP r v v θϕϕ==ωcos /)2/cos()2/sin(2/O l v CB v B AB θϕ=cos /sin O l v ]2cos /)2/sin()[cos /sin (O ϕϕ+θθϕ=ω=l l v CA v AB A )2/sin()2/sin(2)cos /(O ϕϕ+θθ=v ]cos /)cos(1[O θϕ+θ−=v 基点nBO BO O B a a a a ++=τO =a τBOa基点nAB ABB A a a a a ++=τx ′nABB A )2cos(cos a a a +θ−ϕ−π=θ∴θϕ+θϕ+θ=3222A cos sin cos )sin(l v r v a O O 分析法将式1对时间求导得θϕ=θcos /sin Ol v &因为θ−ϕ−=cos sin O A l r x x 对时间求导得)cos /sin (sin cos O O O A A θϕθ+ϕ−==l v l v v xv &]cos /)cos(1[O θϕ+θ−=v θθθϕ+θ−θϕ+θϕ+θ==2O A A cos /sin )cos(cos /))(sin(&&&&v va θϕ+θϕ+θ=322O 2O cos sin cos )sin(l v r v7.15 半径为10cm 的轮B 由曲柄OA 和连杆AB 带动在半径为40cm 的固定轮上作纯滚动设OA 长10cm AB 长40cm OA 匀角速转动角速度rad/s 10=ω求在图示位置轮B 滚动的角速度和角加速度解矢量法杆作瞬时平动AB =ωω==r v v A Brad/s10/B B =ω==ωr v cmr 10=基点ττ+=+BA n A n B Ba a a ax ′α−=β−βτsin sin cos nA nB B a a a ∴75/154tg )5/(2222B ω−=βω−ω−=τr r r r a 2rad/s 7.2075/154/2B B −=ω−==ατr a 分析法设的坐标分别为A x A y BxB y 此瞬时0A =x r y =A rx 15B =0B =y 则有22A B 2A B )4()()(r y y x x =−+−将上式求导得0))(())((A B A B A B A B =−−+−−y y y y x xx x &&&&0))(()())(()(A B A B 2A B A B A B 2A B =−−+−+−−+−y y y y y y x x x x x x &&&&&&&&&&&&将0B A ==y y&&2A ω−=r y&&r x y 5/2B B &&&−=及0A =x&&等代入上二式得ω−==r x xB A &&75/1542B ω=r x&&因此导出rad/s 10/B B =−=ωr x &2B B rad/s 7.20/−=−=αr x&&7.16 半径为r 的两轮用长l 杆A O 2相连如图示前轮1O 匀速滚动轮心的速度为v求在图示位置后轮2O 滚动的角加速度解矢量法1O 轮纯滚动vv v 221O A ==A O 2杆瞬时平动v v v 2A O 2==0A O 2=ω2O 轮纯滚动rv r v /2/22O O ==ω基点1O n AOAOO A1a a a a ++=τ1O =a 0AO =τa2O 基点n AO A O AO 221a a a a ++=τx ′ϕ−=ϕsin cosA O2a a rv a /tg 2O 2ϕ−=222O O //22r l r v r a −−==α分析法A O 2杆长l ,故22O A 2O A )()(22l y y x x =−+−则有0))(())((2222O A O A O A O A =−−+−−y y y y x xx x &&&&0))(()())(()(222222O A O A 2O A O A O A 2O A =−−+−+−−+−y y y y y y x x x x x x &&&&&&&&&&&&将0B A ==y y&&r v y/2A −=&&02O =y&&0A =x&&代入上二式得v x x2A O2==&&222O /2r l v x−−=&&于是导出r v r x /2/22O O ==ω&222O O //22r l r v r x −−==α&&7.17 圆柱体C 在固定的半圆柱D 上纯滚动一杆AB 一端与圆柱体中心铰接另一端与滑块A 铰接在图示瞬时滑块A 的速度m/s3=v 加速度2m/s2=a 求此瞬时圆柱体C 的角速度和角加速度解B基点ABAA B v v v +=o o o 105sin 15sin 60sin ABA B v v v ==m/s 70.2B =v m/s80.0BA =v∴rad/s8.15.1/B C ==ωvrad/s1.08/BA AB ==ωv nBABA AnBBa a a a a ++=+ττ5.4/2B v 82AB ⋅ωx ′n BA A n B B 30cos 15sin 15cos a a a a +=−τo o o2B m/s 31.2=τa 2B C rad/s 54.15.1/==ατa7.18 一杆AB 一端与小齿轮中心A 铰接另一端与圆盘D 的边缘B 点铰接如图示若圆盘D 以匀角速度ω转动杆AB 长m5.0求此瞬时小齿轮在齿圈上滚动的角速度和角加速度解杆的速度瞬心即齿圈的圆心因此ω=−=ω)3/4()25.3/(B AB vω=ω=)3/16(4B A v ω==ω3.51/A A &v基点nABABnBnA Aa a a a a ++=+ττ4/2A v 22⋅ωABAB ωx ′n AB n B n A A45cos cos sin a a a a +=β+β−τo 在三角形中AB)45sin(5.1sin 445sin β+=β=o o 解得o377.15=β)m 10(92.41−=AB 于是有2A 45.12ω−=τa 2A45.121/ω−==ατa A7.19 直杆CD 在C 点处与齿轮B 铰接在图示瞬时杆CD 的速度为0=v 加速度2mm/s 600=a 求此瞬时齿条A 的加速度解(1)令齿轮轮心O, 以C 为基点有τOC C O a a a += 0Ox =a 0Oy =a 所以0O =a (2)τPOP a a =2CP m/s 8.0==OP OCa a 齿条加速度 )/(8.02P s m a a ==7.20 上题中若速度改为mm/s75=v 加速度不变求齿条A 的加速度解轮心O 为速度瞬心rad/s 1C==OCv ωnOCOC C O a a a a ++=τ2C rad/s 875600/===OC a αnPOPO O P a a a a ++=τ2O τPO Px m/s 725.0075.08.0=−=−=a a a 所以2Px A m/s725.0==a a7.21 图示动齿轮O ′由曲柄O O ′带动在定齿轮O 上滚动已知曲柄的角速度为ω计算齿轮相对曲柄的角速度解方法一ω−=′)(21O r r v ω−==ω′)1/(/212O r r r v a齿轮O ′动系O O ′杆er a ωωω+=ω=ω−−ω=ω)/()(21a r r r 方法二齿轮O ′瞬心位于O ′连线外侧因此因此r ω必与ω=ωe 反向由e r /ωω=′O C CO 得ω=ω)/(21r r r7.22 图示行星齿轮系中轮I 固定轮II 由曲柄AB 带动轮III 又由轮II 带动已知曲柄的角速度为ω角加速度为零求轮III 相对曲柄AB 的角速度和角加速度设轮II 轮III 半径相同解设轮 半径为r 则rAB 2=ω=r v B 2ω==ω2/B 2r vω=ω=r r v 422P ω==ω4/P 3r v轮 动系杆er a ωωω+=∴ω=ω−ω=ω34r 03=ω=ω=α&&r r7.23 图示传速器由以下齿轮组成半径cm 401=r 的定齿轮半径各为cm 202=r 和cm 303=r 的相连的行星齿轮以及半径cm 904=r 的内啮合齿轮主动轴转速min /r 18001=n 带动行星齿轮在定齿轮上滚动并通过内啮合齿轮使从动轴转动试求从动轴每分钟的转速2n 解A 点作圆周运动a21A )(n r r v +=齿轮2在定齿轮1上纯滚动r v A /2=ω齿轮3与齿轮2有相同角速度23ω=ω基点BAA B v v v +=b 4n r 33ωr a232133A B )/1)((n r r r r r v v ++=ω+=∴rpm3000/)/1)((/4a 23214b =++==r n r r r r r v n B rpm 转数分e r杆OA 作顺时针纯滚动圆盘半径为r 3r =OP 求圆盘中心B 的速度解方法一因r ω与e ω反向圆盘的瞬心在连线外侧由e r //ωω=CP CO 可得rCP =圆盘动系杆e r a ω+ω=ωω=ω3a∴ω=ω=r r v 232a B 方法二基点BPP B v v v +=Q ω=ω=r r v 33e P ω=ω=r r v 3a BP∴ω=+=r v v v 23)(2/12BP 2P B 方法三动系杆er a v v v +=Q ω=ω=r r v 4r r ω=ω=r r v 1010e e∴ω=β−+=r v v v v v 23)cos 2(2/1e r 2e 2r ae r杆OA 作顺时针纯滚动圆盘半径为r 3r =OP 试求圆盘与杆OA 的接触点P 的加速度解圆盘上动系杆kr n e e P a a a a a +++=τe r α323e r ω2rr ωQ 0=r v x ′2n e x P 3ω−=−=′r a ay ′222r e y P 13)4(3ω=ω+ω−=+=τ′r r r a a a7.27 图中直杆AB 表示齿条圆轮O 表示齿轮当齿条的一端运动时带动半径为cm 5的齿轮绕轴O 转动今设A 端以cm/s 30的速度向右匀速运动求图示位置齿条AB 及齿轮O 的角速度和角加速度解AB 杆瞬心为点rad/s3/AB ==ωPA v AABC ω=PC vrad/s3/AB C O =ω==ωCO v 矢量法圆盘动系杆ABr O ωωω+=rad/s6r =ωAB r O ααα+=ABO r α+α=α圆盘上动系杆ke r O a a a a ++=杆上O ′基点nOAOA A e a a a a ++=τ由于0O =a 0A =a 由以上二式得k n OA OA r =+++τa a a ar αr AB αOA 2AB ωOA r AB 2v ωrr ω=r v x ′060cos 30cos k n OA OA =−+−τa a a o o 2AB rad/s 39−=αy ′060sin 30sin n OA OA =−−τo o a a a r 2O rad/s 39=α分析法设ϕ为广义坐标)2/(ctg ϕ=r x A 将上式求导得2/)2/(csc 2ϕϕ−=&r v A可导出rad/s 3|/)2/(sin 2602A −=ϕ−=ϕ=ϕo &r v 260A rad/s 39|/sin =ϕϕ−=ϕ=ϕo &&&r v 因为为杆瞬心ϕ==cos /A A C v PA PC v v则有rad/s3|/cos /60A C O =ϕ==ω=ϕo r v r v 260A O rad/s 39|/sin =ϕϕ−=α=ϕo &r v7.28 一机构在图示位置时OB OA ⊥点C 位于AB 的中点已知rOA =r AB 4=求当杆OA 以匀角速度ω转动时杆CD 的速度和加速度解杆瞬时平动A C v v =′0AB =ω基点nBA BA n A B a a a a ++=τ0n BA =ay β+−=τcos 0BA n A a a 15/4/2BA AB ω==ατr a杆上动系杆e r a v v v +=15/CD ωr v = k e r a a a a a ++=0k =a杆上C ′基点nCA CA n A e a a a a ++=τ0n CA =a导出τ++=CAn A r a a a a a x ′τββCAn A a a a −=cos cos CD 15AB /r r r a 22CD 7cos /2ωαεω=−=7.29 套筒C 上装有一销轴可在半径为1m 的圆槽内滑动当滑块A 以匀速m/s 5.0=v 向右上方运动而杆DA 以匀角速度2rad/s =θ&转动时求图示瞬时套筒C 在杆AD 上滑动的速度和加速度图示位置o90=θ解动系杆e r a v v v += 1k e r n a a a a a a a ++=+τ 2杆C ′点基点CA A e v v v += 3nCA CA a e a a a a ++=τ 4由13得CA A r a v v v v ++=θ=&AC CA v m/s 8=a v m/s4r =v由24得kn CA r n a a a a a a a ++=+τ1/2a v 2θAC r2v θ&y oo o 30sin 30cos 30cos k n CA r n a a a a a −−−=−∴m/s6.5330tg 30cos /k n CA n r =−−=o o a a a a a7.30 图示一机构在某瞬时的位置此时ω=ωOA 0OA =αω=l v CD 0CD =a求杆AB 的角速度和角加速度解动系杆e r a v v v += 1k e r a a a a a ++=0a =a 2杆上P 点基点A P A e v v v +=3nPA PA na e a a a a ++=τ4由13得PAe r a v v v v ++=CD v OA ωl AB 2ωl x ′PAA a 45cos 45cos v v v +=−o o ω−=+ω−==ωl v l l v 2/)(2/CD OA PA AB y ′o o 45cos 45cos A r a v v v −=ω=l v 2r由24得0k nPA PA nA r =++++τa a a a a 2OA ωl AB 2αl 2AB 2ωl r AB 2v ω x ′045cosk PA nA =−+τa a a o 222PA AB 5.222/2/ω−=ω−ω−==ατl l l l a7.31 两个半径为cm 20=r 中心距离保持不变的圆盘在地面作纯滚动在其边缘B D 处铰接的连杆BD 上安装一滑块C 杆AC 一端与滑块铰接另一端与一圆盘的中心A 铰接若A 以cm/s 60A =v 匀速水平向左运动求图示位置杆AC 的角速度和滑块C 相对BD 的速度以及杆AC 的角加速度解矢量法圆盘rad/s3/A A ==ωrv 0/A A ==εra基点BAA B v v v +=1n BA BA A B a a a a ++=τ0A =a 0BA =τa2C基点CAA C v v v +=3n CACA A C a a a a ++=τ0A =a4C 动系BD e r C v v v +=B e v v=5e r C a a a +=B e a a=6由135得CA A BA A r v v v v v +=++ yo o 30cos 30sin CA BA v v=rad/s 13/CA AC ==ωr vxo o 30sin 30cos CA BA r v v -v −=cm/s 320r =v 由246得n CA CA n BA r a a a a +=+τy oo o 30sin 30cos 30cos n CA CA BA a a a n −=−τ2CA AC rad/s 3/383/−==ατr a 分析法取θϕ为坐标存在约束方程θ=ϕcos sin 3r r 高丽营对上式连续求导得θθ−=ϕϕ&&sin cos 3θθ−θθ−=ϕϕ−ϕϕ&&&&&&sin cos sin 3cos 322将o 30=ϕ=θrad/s 3/A−=−=θr v &0=θ&&代入得rad/s 1=ϕ&2rad/s 3/38−=ϕ&&令BC =ρ则有θ−ϕ=ρsin cos 3r r 因此cm/s 320|)cos sin 3(30r =θθ+ϕϕ−=ρ==ϕ=θo&&&r v7.32 图示机构中已知杆AB 相对杆OA 的角速度ω=ωr 杆AB 相对杆OA 的角加速度0r =α杆AB 长为l 2l OC =求图示位置杆AB 上点B 的速度和加速度解矢量法杆动系杆OA r AB ω+ω=ωOA r AB ααα+=0r =α动系套筒AB C ω=ωABC αα=e r a v v v +=ea 30cos v v =oω=ω2OA ω=ω=ω3AB Clv v a ω==32/r k n e e r n a a a a a a a a +++=+ττOA 3αl 2OA 3ωl C αl 2C ωl r C 2v ωx ′k e n a a 30sin 30cos a a a a −−=−−ττo o 2OA C 38ω=α=αy ′n e r n a a 30cos 30sin a a a a −−=−τo o 2r 15ω=a动系套筒er a v v v ′+′=′Q r r v v =′e e v v −=′iv l a ω−=′32kn e e r a a a a a a ′+++′=′′τ′其中r r a a =′ττ′−=e e a a n e n e a a −=′kk a a =′xl a a a a a 2e k n e r ax 1530cos )(30sin )(ω−=−′++′−=′τ′′o oy l a a a a a 2e k n e r ay 31130sin )(30cos )(ω−=−′−+′−=′τ′′o o 分析法本题一自由度取θϕ为坐标存在如下约束)sin(sin 3=ϕ+θ−θ对上式连续求导有0))(cos(cos 3=ϕ+θϕ+θ−θθ&&&0))(sin())(cos(cos 3sin ))(cos()sin (cos 322=ϕ+θϕ+θ+ϕ+θϕ+θ−θθ+ϕ+θϕ+θ−θθ−θθ&&&&&&&&&&&&o 30=ϕ=θ时ω=ω=θr &0=α=θr&&代入以上二式得ω=ϕ2&238ω=ϕ&&取为原点点坐标为)cos(2cos 3ϕ+θ+ϕ−=l l x B )sin(2sin 3ϕ+θ+ϕ−=l l y B 对上二式连续求导并代入具体数值解出l l l xB ω−=ϕ+θϕ+θ−ϕϕ=32))(sin(2sin 3&&&&0))(cos(2cos 3=ϕ+θϕ+θ+ϕϕ−=&&&&l l y B )cos (sin 32ϕϕ+ϕϕ=&&&&&l xB l l 2215]))(cos())([sin(2ω−=ϕ+θϕ+θ+ϕ+θϕ+θ−&&&&&&)sin (cos 32ϕϕ−ϕϕ−=&&&&&l y B l l 22311]))(sin())([cos(2ω−=ϕ+θϕ+θ−ϕ+θϕ+θ+&&&&&&。
哈尔滨工业大学 第七版 理论力学 第7章 课后习题答案
tan θ =
r sin ϕ h − r cos ϕ
sin ω 0 t h − cos ω 0 t r ]
图 7-5
注意到 ϕ = ω 0 t ,得
θ = tan −1 [
(2)
自 B 作直线 BD 垂直相交 CO 于 D,则
tan θ =
r sin ω 0 t BD = DO h − r cos ω 0 t
80
理论力学(第七版)课后题答案 哈工大.高等教育出版社
7-6 如图 7-6 所示,摩擦传动机构的主动轴 I 的转速为 n = 600 r/min 。轴 I 的轮盘与轴Ⅱ的轮 盘接触,接触点按箭头 A 所示的方向移动。距离 d 的变化规律为 d = 100 − 5t ,其中 d 以 mm 计, t 以 s 计。已知 r = 50 mm , R = 150 mm 。求: (1)以距离 d 表示轴 II 的角加速度; (2)当 d = r 时,轮 B 边缘上 1 点的全加速度。 解 (1)两轮接触点的速度以及切向加速度相同
∠CBO =
π , x B = 2 R cos ϕ 2 & B = 2 R + vt (↓) x B (0) = 2 R , x
(2 R) 2 − x B
2
vt vt 1 2 − 2 2 − ( )2 R R 2R 2 v v , vC = 2 Rω = − ω =− 2 R sin ϕ sin ϕ sin ϕ = =
两边对时间 t 求导:
vt l
& sec 2 ϕ = , ϕ & = cos 2 ϕ , ϕ && = − ϕ
当ϕ =
v l
v l
2v & cos ϕ sin ϕ ⋅ ϕ l
理论力学第七章习题
7-1.M 点在直管OA 内以匀速u 向外运动,同时直管又按φ=ωt 规律绕O 转动。
开始时M 在O 点,求动点M 在任意瞬时相对于地面与相对于直管的速度和加速度。
解:动点M 的运动方程是⎩⎨⎧====tωut φOM y tωut φOM x sin sin cos cos 运动速度是22y 2x y x t ω1u v v v t ωt ωt ωu dt dy v t ωt ωt ωu dt dx v )()cos (sin )sin (cos +=+=∴⎪⎪⎩⎪⎪⎨⎧+==-== 运动加速度是⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=+=∴-=-+==+-=---==22y 2x 2yy 2xx t ω4ωu a a a t ωt ωt ω2ωu t ωt ωt ωωt ωωu dtdv a t ωt ωt ω2ωu t ωt ωt ωωt ωωu dt dv a )()sin cos ()sin cos cos ()cos sin ()cos sin sin (运点相对直杆作匀速直线运动,则相对速度和相对加速度是0dtdv a u v rr r ===7-2.机车以匀速v o =20m/s 沿直线轨道行驶。
车轮的半径r=1m ,只滚不滑,将轮缘上的点M 在轨道的起始位置取为坐标原点,并将轨道取为x 轴,求M 点的运动方程和在M 点与轨道接触时的速度和加速度。
O解:由图示几何关系知radt 20rt v φt 20φr t v OA 00==∴===动点M 的运动方程是⎪⎪⎩⎪⎪⎨⎧-=-+=-=--=t 2012πφr r y t 20t 202πφr OA x cos )sin(sin )cos( 速度分量是⎪⎪⎩⎪⎪⎨⎧==-==t 2020dt dy v t 202020dtdx v y x sin cos 加速度分量是⎪⎪⎩⎪⎪⎨⎧====t 20400dt dv a t 20400dtdv a yy x x cos sin M 点与轨道接触时2y y x y x sm 400a a 400a 0a 0v 0v v 0t 20 1t 200y /sin cos ==∴===∴====∴=7-3.摇杆机构的滑杆AB 在某段时间内以匀速u 向上运动,试分别用直角坐标法与自然坐标法建立摇杆上C 点的运动方程和在ϕ=π/4时该点速度的大小。
理论力学答案(第七章后)
第七章 点的合成运动一、是非题7.1.1动点的相对运动为直线运动,牵连运动为直线平动时,动点的绝对运动必为直线运动。
( × ) 7.1.2无论牵连运动为何种运动,点的速度合成定理r e av v v +=都成立。
( ∨ ) 7.1.3某瞬时动点的绝对速度为零,则动点的相对速度和牵连速度也一定为零。
( × ) 7.1.4当牵连运动为平动时,牵连加速度等于牵连速度关于时间的一阶导数。
( ∨ ) 7.1.5动坐标系上任一点的速度和加速度就是动点的牵连速度和牵连加速度。
( × ) 7.1.6不论牵连运动为何种运动,关系式a a +a a r e =都成立。
(× ) 7.1.7只要动点的相对运动轨迹是曲线,就一定存在相对切向加速度。
( × ) 7.1.8在点的合成运动中,判断下述说法是否正确:(1)若r v 为常量,则必有r a =0。
( × ) (2)若e ω为常量,则必有e a =0.( × )(3)若e r ωv //则必有0=C a 。
( ∨ ) 7.1.9在点的合成运动中,动点的绝对加速度总是等于牵连加速度与相对加速度的矢量和。
( × ) 7.1.10当牵连运动为定轴转动时一定有科氏加速度。
( × )二、 填空题7.2.1 牵连点是某瞬时 动系 上与 动点 重合的那一点。
7.2.2e a v v =大小为,在一般情况下,若已知v e 、v r ,应按a 的大小。
三、选择题:7.3.1 动点的牵连速度是指某瞬时牵连点的速度,它相对的坐标系是( A )。
A 、 定参考系B 、 动参考系C 、 任意参考系 7.3.2 在图示机构中,已知t b a s ωsin +=, 且t ωϕ=(其中a 、b 、ω均为常数),杆长为L ,若取小球A 为动点,动系固结于物块B ,定系固结于地面,则小球的牵连速度v e 的大小为( B )。
新版理论力学课外作业加答案详解-新版-精选.pdf
图 5-6
5-7 图示摇杆滑道机构中的滑块 M 同时在固定的圆弧槽 BC 和摇杆 OA 的滑道中滑动。 如弧 BC 的半径为 R,摇杆 OA 的轴 O 在弧 BC 的圆周上。摇杆绕 O 轴以等角速度 ω
转动,当运动开始时,摇杆在水平位置。试分别用直角坐标法和自然法给出点
M 的运动方
程,并求其速度和加速度。
图 7-7 解 ( a)套筒 A 为动点,动系固结于杆 O2 A ;绝对运动为绕 O1 的圆周运动,相对运动为沿
O2 A 直线,牵连运动为绕 O2 A定轴转动。速度分析如图 7-7a1 所示,由速度合成定理 va ve vr
因为 O1O2 A 为等腰三角形,故 由图 7-7a1:
( b)套筒 A 为动点,动系固结于杆 O1A ;绝对运动为绕 O2 圆周运动,相对运动为沿杆直 线运动,牵连运动为绕 O1定轴转动。速度分析如图 7-7b1 所示。 由图 b1: 得
图 5-3
解 1) A 相对于地面运动 把直角坐标系 xOy 固连在地面上,如图
5-3b 所示,则 A 点的运动方程为
x 0 , y R2 v02t 2 0.01 64 t 2 m (0 t 8)
A 的速度 vx x 0 , vy y
0.01t m/ s
64 t 2
A 的运动图( y-t 曲线)及速度图( vy -t 曲线)如图 5-3b 的左部。
式( 3)向 ve2 方向投影,得
式( 3)向 vr 2 方向投影,得
7-17 图 7-17a 所示铰接四边形机构中, O1 A O1 B =100mm ,又 O1O2 AB ,杆 O1 A 以等角
速度 ω =2rad/s 绕 O1 轴转动。 杆 AB 上有一套筒 C ,此筒与杆 CD 相铰接。 机构的各部
理论力学1-7章答案
A eaa a ra Cϕ1O ω2O B A2O 1O e v av rv C BAv ϕω习题7-1图B1θA eυAB /υBυAυOυ(a)2θBOBυυ=e BA /υυ(b)习题7-3图第7章 点的复合运动7-1图示车A 沿半径R 的圆弧轨道运动,其速度为v A 。
车B 沿直线轨道行驶,其速度为v B 。
试问坐在车A 中的观察者所看到车B 的相对速度v B /A,与坐在车B 中的观察者看到车A 的相对速度v A /B,是否有B A A B //v v -=?(试用矢量三角形加以分析。
)答:B A A B //v v -≠1.以A 为动系,B 为动点,此时绝对运动:直线;相对运动:平面曲线;牵连运动:定轴转动。
为了定量举例,设R OB 3=,v v v B A ==,则vv 3e =∴ ⎩⎨⎧︒==6021/θv v A B2.以B 为动系,A 为动点。
牵连运动为:平移;绝对运动:圆周运动;相对运动:平面曲线。
此时⎪⎩⎪⎨⎧︒==4522/θv v B A ∴ B A A B //v v -≠7-3图示记录装置中的鼓轮以等角速度0ω转动,鼓轮的半径为r 。
自动记录笔连接在沿铅垂方向并按)sin(1t a y ω=规律运动的构件上。
试求记录笔在纸带上所画曲线的方程。
解:t r x 0ω= (1) )sin(1t a y ω= (2)由(1) 0ωr x t = 代入(2),得)sin(01rx a y ωω= 7-5 图示铰接四边形机构中,O 1A = O 2B = 100mm ,O 1O 2 = AB ,杆O 1A 以等角速度ω=2rad/s 绕轴O 1转动。
AB 杆上有一套筒C ,此套筒与杆CD 相铰接,机构的各部件都在同一铅垂面内。
试求当ϕ=︒60,CD 杆的速度和加速度。
解:1.动点:C (CD 上),动系:AB ,绝对:直线,相对:直线,牵连:平移。
2.r e a v v v +=(图a ) v e = v A01.02121.0cos e a =⨯⨯==ϕv v m/s (↑)3. r e aa a a +=(图b ) 4.021.022e =⨯==ωr a m/s 2346.030cos e a =︒=a a m/s 2(↑)习题7-7图习题7-9图 ϕMυMυC υrυυB υωO υ(a)ϕra C a OυMυAυMa ea (b)z 'y 'x 'e a 1ωABeυrυω(a)7-7 图示瓦特离心调速器以角速度ω绕铅垂轴转动。
理论力学习题答案(修改6月19日)
⃗rc
=
m1⃗r1
+
m2⃗r2 M
+ m3⃗r3
=
1 3
( 2ˆi + ˆj +
) 3kˆ ,
⃗vc
=
⃗r˙c
=
ˆj
+
1 kˆ, 3
p⃗c = M⃗vc = 3ˆj + kˆ,
∑3 J⃗ = mi⃗ri × ⃗vi = −3ˆi + 3kˆ,
i=1
T
=
∑3
1 2
mi
vi2
=
4.
i=1
4. 证明:两质点系的角动量为,J⃗ = R⃗ c × M V⃗c + ⃗r × µ⃗v,其中,M = m1 + m2, µ 为折合质量,⃗r 为相对位矢,c 表示质心。
6
6. 半径为 r 的均质圆球在半径为 R 的固定圆柱的内表面滚动,试求圆球绕平
衡位置做微振动的运动方程及周期。
解:
vc
=
(R
−
r)θ˙, ω
=
(R
− r
r)θ˙ , Ic
=
2 mr2 5
T
=
1 2
mvc2
+
1 2
Icω2
= 7 m(R − r)2θ˙2 10
V = mg (R − (R − r) cos θ)
l
2± 2 g
7
8. 如果上题的双摆系统不是系在固定点上,而是系在一个可以在光滑水平杆 上自由运动的质量为 2m 的小环上,继续令 m1 = m2 = m,l1 = l2 = l,试 求系统的运动方程及周期。
解:
L=T −V
=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
aτ e
a
n a
aC 方向投影 :
n τ aa cos 60° + aτ sin 60 ° = a a e + aC
2 2 v 600 n aa = a = = 1200mm/s 2 OA 300
aen
α1
2 aτ = α ⋅ AB = 1000 3 mm/s e 1
aC = 2ω 1 vr = 2 × 3 × 300 = 1800mm/s 2
第7章 习题解答
1
7-1求轮边缘处水流对轮的vr
ve vr va
【解】 动点: M,动系: 轮
r r r va = ve + v r
va = 15 m s
nπ ve = R ⋅ = 6.28m s 30
x : va sin60 o = ve + vrx
⇒ v rx = 6.7 m s
y : − va cos60 o = 0 + vry
300
解 动点A,动系:BC
r r r va = ve + vr
ve = ω1 ⋅ AB = 3 OA = 300 3mm/s 3
va = ve / cos 30° = 600mm/s vr = va sin 30° = 300mm/s
12
aτ a ar
300
r n rτ r n r τ r r aa + aa = ae + ae + ar + aC
ω ω1 = ve / O1 D = 2
18
a
n ae
t e
r n r n rτ r r aa = ae + ae + ar + aC
n aa = ω2R
n aa
aC
ar
1 a = O1Dω = Rω 2 2 ω aC = 2ω1 vr = 2 Rω = Rω2 2
n e 2 1
τ n a cos 60 ° = − a cos 60 ° − a aC 方向投影 a e e sin 60° + aC 1 τ ⇒ ae = Rω 2 2 3
vr
n aa
va
300 300
ve
1 2va cos 30 = ve⇒ va = 0.116m s 2 va ⇒ ωOB = = 0.33 rad s l
aa = ar + ae
y
300
t aa
n t cos60° + aa cos30° = 0 向y轴投影: aa
n 2 aa = l ⋅ ωOB = 0.0385m/s2
3 2 α1 = a / O1 D = ω 12
τ e
19
aτ a = α 1 ⋅ AB = 5 × 0.15 = 0.75
ωBC
a
ar
α2
n e
a
n a
aC
aC = 2ω2 vr = 0.3456
aC 方向投影
4 τ3 a + a a = aτ e + aC 5 5
n a
⇒ aτ e = 0.5844
α 2 = a / DB = 2.338rad/s
17
α AB
ve = 2va = 0.4 m s
⇒ ω AB vB 0.4 = = = 2 rad s AB 0.2
ห้องสมุดไป่ตู้
aa = ar + aet + aen
a
ar
n e
aa a
300
t e
n t 向y轴投影: aa = a e cos30° + ae cos60°
n 2 ae = AB ⋅ ωAB = 0.8m/s2
15
7-20 AB=150 mm, ω1=2rad/s,α1 =5rad/s2。杆BC穿过套筒,套 筒绕D转。AD=200 mm,此时AD⊥AB。求杆BC的ωBC 、αBC 。
vr va
ωBC
5 4 3
解: 动点B,动系:套筒D
r r r va = ve + vr
ve
va = ω1 ⋅ AB = 2 × 0.15 = 0.3
n aa
8 2 4 a = ω GE GE = ω (1.5r ) = ω r 3 3
2
2
y
8 2 a = 3a = 3ω r 3
τ a n a
α GE
a 16 = = 3ω 2 = 3.079ω 2 1.5r 9
7
τ a
7-14 已知:匀vr =0.5m/s,匀ω =6 rad/s 。r1=300 mm。 r2=100 mm。求销子通过点B和点D时的绝对加速度。
10
r n r τ r n rτ r r aa + aa = ae + ae + ar + aC
ar 垂直方向y轴投影:
n n τ aa cos 30° + aτ sin 30 ° = − a sin 30 ° + a a e e cos 30° + aC n aa = ω 2 AB = 1.6m/s 2 2 aτ = α ⋅ AB = 2 m/s a
D
θ
O
α AB
n a 向 r 方向投影,
aC aτ e
4 τ 3 n 4 n 3 τ aa − aa = ae + ae + arn − aC 5 5 5 5 n 2 aa = AB ⋅ ω AB = 0.1× 0.122 = 0.144
a
n a
A
θ θ
n ae
n ae = OA⋅ ω 2 = 0.04× 42 = 0.64
arn
a
τ a
a
τ r
aτ e = OA ⋅ α = 0.04 × 2 = 0.08 2 2 v 0 . 2 arn = r = = 0.8 r 0.05
aC = 2ω e vr = 2 × 4 × 0.2 = 1.6
2 ⇒ aτ = − 0 . 192 m/s a
2 α AB = a τ a / AB = – 0.192/0.1= –1.92 rad/s
n ae = ω12 ⋅ BC = 0.7111m/s2
y
aC
n a aτ a e
aτ a
ar
300
α1 ω1
n ae
aC = 2ω1 ⋅ vr = 2.844m/s2
2 ⇒ aτ = − 0 . 1192 m/s e
aτ α1 = e = −0.3974rad/s 2 BC
11
7-18 OA=300 mm,ω1=3rad/s,α1 =10rad/s2,求:aA。 va vr ve
θ
ω AB
r r r va = ve + v r
ve = OA ⋅ ω = 0.04 × 4 = 0.16m/s 3 va = ve = 0.12 m/s 4
ω AB
ve
A
θ
vr
va = = 0.12 / 0.1 = 1.2 rad/s AB
va
vr =
5 ve = 0.2 m/s 4
14
r n rτ r n rτ r n rτ r aa + aa = ae + ae + ar + ar + aC
3 ve = va = 0.18 5
⇒ ωBC = ve 0.18 = = 0.72rad/s BC 0.25
4 vr = va = 0.24 5
16
t ae t aa
r n r τ r n rτ r r aa + aa = ae + ae + ar + aC
n aa = ABω12 = 0.15 × 2 2 = 0.6
E
t ⇒ ae = −0.386m/s 2⇒ α AB
t aB = = −1.93m/s2 AB 4
7-8 尖劈匀v=0.2 m/s ,ϕ=300,l=200 3 mm。求θ = ϕ 时,ωΟB、 αOB。 (平动) 【解】 动点: B,动系:尖劈
ωOB
r r r va = ve + v r
o
αOB
⇒ v ry = −7.5 m s
r v r vr = 6.7 i − 7.5 j m ⋅ s -1
2
7-2 OA匀ω 1= 2rad/s,CB=200mm, 求图示位置CB的ωCB。 【解】 动点: B,动系: OA
va ve
ωBC
r r r va = vr + ve
vr
ve = 400 × ω1 = 800 mm s
r r r va = v e + v r
ve va
600
ve = vB = rω va = 2ve = 2 rω
⇒ ωGE va 4 = = ω 1.5r 3
6
vr
ωGE
r n rτ r r aa + aa = ae + ar
向y轴投影: aD
aτ a ae
α GE
ar
n a
n aa cos 30° − aτ a sin 30° = 0
ve va = = 1600mm s sin30
⇒ ωCB
va = = 8 rad s 200
3
7-7 v=0. 2m/s, a= 0.5m/s2 ,AB=CD=200mm,求此时ωAB、αAB。 【解】 动点: E,动系: BC杆
ω AB
vB vr
va
ve
r r r va = ve + v r
(平动)
va ve
300
vr
解 动点B,动系:CDE