模拟电路实验报告.pdf

合集下载

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告模拟电路实验报告引言:模拟电路是电子工程中的重要组成部分,通过对电子元件的组合和连接,可以实现信号的放大、滤波、调节等功能。

本次实验旨在通过实际操作,加深对模拟电路原理的理解,并掌握相关实验技巧。

实验一:放大电路在本实验中,我们使用了一个基本的放大电路,包括一个电压源、一个输入信号源、一个放大器和一个输出负载。

实验的目的是研究放大器的放大倍数和频率响应。

实验过程中,我们首先将输入信号源连接到放大器的输入端,然后将输出负载连接到放大器的输出端。

接下来,我们调节电压源的输出电压,观察输出信号的变化情况。

通过改变输入信号的频率,我们可以观察到放大器的频率响应。

实验结果显示,当输入信号的幅度较小的时候,放大器的输出信号与输入信号基本一致,放大倍数接近1。

然而,当输入信号的幅度较大时,放大器的输出信号会出现失真。

此外,我们还发现放大器的频率响应在不同的频率下有所差异,频率越高,放大倍数越小。

实验二:滤波电路滤波电路是模拟电路中常用的一种电路,通过选择性地通过或阻断特定频率的信号,实现对信号的滤波处理。

本实验旨在研究RC滤波电路的频率响应。

在实验中,我们使用了一个RC滤波电路,包括一个电容和一个电阻。

我们首先将输入信号源连接到滤波电路的输入端,然后将输出信号连接到示波器上进行观察。

接下来,我们改变输入信号的频率,观察输出信号的变化情况。

实验结果显示,当输入信号的频率较低时,滤波电路基本不对信号进行滤波处理,输出信号与输入信号相似。

然而,当输入信号的频率增加时,滤波电路开始对信号进行滤波,输出信号的幅度逐渐减小。

当输入信号的频率高于滤波电路的截止频率时,滤波电路几乎完全阻断了信号的传递。

实验三:调节电路调节电路是模拟电路中常用的一种电路,通过对电子元件的调节,实现对电压、电流等信号的调节。

本实验旨在研究调节电路的工作原理和调节范围。

在实验中,我们使用了一个调节电路,包括一个电位器和一个负载电阻。

元件模拟电路实验报告(3篇)

元件模拟电路实验报告(3篇)

一、实验目的1. 理解并掌握基本模拟电路元件(电阻、电容、电感)的特性及其在电路中的作用。

2. 掌握模拟电路的测试方法,包括伏安特性曲线的测量、阻抗测量等。

3. 培养实验操作技能,提高分析问题、解决问题的能力。

二、实验原理1. 电阻元件:电阻元件是模拟电路中最基本的元件之一,其特性表现为对电流的阻碍作用。

电阻元件的伏安特性曲线为直线,其斜率即为电阻值。

2. 电容元件:电容元件的特性表现为储存电荷的能力。

电容元件的伏安特性曲线为非线性,其斜率与电容值和电压值有关。

3. 电感元件:电感元件的特性表现为储存磁场能量的能力。

电感元件的伏安特性曲线为非线性,其斜率与电感值和电流值有关。

4. 电路测试方法:伏安特性曲线的测量方法为在电路中施加一定的电压,测量通过电路的电流,然后绘制电压与电流的关系曲线。

阻抗测量方法为测量电路的电压和电流,然后根据欧姆定律计算电路的阻抗。

三、实验器材1. 电阻元件:R1、R2、R3(不同阻值)2. 电容元件:C1、C2、C3(不同容量)3. 电感元件:L1、L2、L3(不同电感值)4. 直流稳压电源5. 电压表6. 电流表7. 示波器8. 电路实验板四、实验步骤1. 测量电阻元件的伏安特性曲线(1)将电阻元件R1、R2、R3分别接入电路,测量通过电阻元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电阻元件的伏安特性曲线。

2. 测量电容元件的伏安特性曲线(1)将电容元件C1、C2、C3分别接入电路,测量通过电容元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电容元件的伏安特性曲线。

3. 测量电感元件的伏安特性曲线(1)将电感元件L1、L2、L3分别接入电路,测量通过电感元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电感元件的伏安特性曲线。

4. 测量电路阻抗(1)将待测电路接入电路实验板,测量电路的电压和电流值。

(2)根据测量的电压和电流值,计算电路的阻抗。

模拟电路实验报告

模拟电路实验报告

本科实验报告实验名称:1BJT共发射极放大电路验证1.原理图的编辑2.分析设置直流工作点分析(DC operating Point):Simulate->analyses->DC operating Pont Analysis 要求观察三极管各个管脚的电压和电流,(IE, IC, VE, VC, VB)并判断三极管的工作状态;IC=3.28930mA, IE= -3.32066mA, IB=31.36094uA, VE=3.32066V, VB=3.98331V, VC=4.76355V,可以判断出集电极电压>基极电压>发射极电压,三极管工作在集电极反偏,发射极正偏的放大区。

瞬态分析(Transient Analysis):要求观察 5 个周期的节点 Vi 和 Vout 的瞬态响应曲线,并通过计算得到增益Av=vo/vi;由IB=IC/ß得ß=IC/IB=3.28930mA/31.36094uA=105rbe=rbb’+(1+ß)26/IE=1030ΏAv=vo/vi= -ß(Rc//RL)/[rbe+(1+ß)Re]= -1.08,所以交流小信号源的电压增益为Av= -1.08频率分析(AC Analysis):要求观察 1hz 到 100MegHz 的节点 Vout 幅频响应曲线,Sweep type 为 Decade,Number of Points per decade 为 10,Verital scale 为 Linear;分别保存幅度相位特性曲线,并求得上下限截止频率(3db 频率截止点)。

测得上下限截止频率fL=1.3082kHZ, fH=816.7701kHZ3.电阻测量对电路原理图(图 1)做适当的修改,添加 AC 电压表、AC 电流表以及虚拟开关。

1、在 Indicators 库调用 VOLTMETER(电压表)和 AMMETER(电流表),选中所调用仪器,单击鼠标右键选择 properties,在弹出对话框中的 Mode 中选择AC;2、在 Basic 库中选择 SWITCH 中的 DIPSW1,将其并入负载直路中,在运行期间通过控制键 A,控制开关的断开和闭合分别测出UO1(电阻 RL 接入时的输出电压)和UO2(电阻 RL 开路时的输出电压)。

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告实验题目:成绩:__________学生姓名:李发崇学号指导教师:陈志坚学院名称:专业:年级:实验时间:实验室:一.实验目的:1.熟悉电子器件和模拟电路试验箱;2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响;3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特性;4.学习放大电路的动态性能。

二、实验仪器1.示波器2.信号发生器3.数字万用表三、预习要求1.三极管及单管放大电路工作原理:2.放大电路的静态和动态测量方法:四.实验内容和步骤1.按图连接好电路:(1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容C1,C2的极性和好坏。

(2)按图连接好电路,将Rp的阻值调到最大位置。

(注:接线前先测量电源+12V,关掉电源后再连接)2.静态测量与调试按图接好线,调整Rp,使得Ve=1.8V,计算并填表心得体会:3.动态研究(一)、按图连接好电路(二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。

观察Vi和Vo端的波形,并比较相位。

(三)信号源频率不变,逐渐加大信号源输出幅度,观察Vo不失真时的最大值,并填表:基本结论及心得:Q点至关重要,找到Q点是实验的关键,(四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:实验总结和体会:输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。

(1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。

(2)、连在三极管集电极的电阻越大,电压的放大倍数越大。

(五)、Vi=5mVp,增大和减小Rp,观察Vo波形变化,将结果填入表中:实验总结和心得体会:信号失真的时候找到合适Rp是产生输出较好信号关键。

(1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被放大,反而出现信号减弱的情况。

模拟电路课程设计实验报告

模拟电路课程设计实验报告

XX理工学院实验报告
系(院)、专业班级:电子工程学院姓名:XXX 学号:_XXXXX_____
课程名称《模拟电子技术》课程设计
实验名称应用实验-温度监测及控制电路
同组同学XXX 指导教师吴XX
1、实验目的
(1)学习由双臂电桥和差动输入集成运放组成的桥式放大电路。

(2)掌握滞回比较器的性能和调试方法。

(3)学会系统测量和调试。

2、实验设备与器件
12V直流电源函数信号发生器双踪示波器热敏电阻(NTC)运算放大器uA741*2、晶体三极管3DG12、稳压管2CW231、发光管LED、继电器KA、电阻器等
3、实验原理
1、实验电路是由负温度系数电阻特性的热敏电阻(NTC元件)Rf为一臂组成测温电桥,其输出经测量放大器放大后电滞回比较器输出“加热”与“停止”信号,经三极管放大后控制加热器“加热”与“停止”。

改变滞回比较器的比较电压Ur即改变控温的范围,而控温的精度则由滞回比较器的滞回宽度确定。

(1)测温电桥
(2)差动放大电路
(3)滞回比较器
温度监测及控制实验电路。

模拟电子线路实验报告

模拟电子线路实验报告

模拟电子线路实验报告模拟电子线路实验报告引言:模拟电子线路是电子工程领域中的重要基础课程,通过实验可以帮助学生理解电子器件的工作原理和电路的设计方法。

本实验报告将介绍我在模拟电子线路实验中所进行的一系列实验,包括放大器电路、滤波器电路和振荡器电路。

实验一:放大器电路在放大器电路实验中,我们使用了两个常见的放大器电路:共射极放大器和共基极放大器。

共射极放大器具有较高的电压增益和输入阻抗,适用于信号放大应用。

共基极放大器则具有较低的电压增益和输出阻抗,适用于驱动低阻抗负载。

通过实验,我们验证了这两种放大器电路的性能,并观察到了它们在不同频率下的响应特性。

实验二:滤波器电路滤波器电路是电子系统中常见的电路,用于去除或选择特定频率的信号。

在实验中,我们研究了三种常见的滤波器电路:低通滤波器、高通滤波器和带通滤波器。

通过调整电路参数和元件值,我们观察到了这些滤波器在不同频率下的截止特性和幅频响应。

此外,我们还讨论了滤波器的阶数和频率响应对电路性能的影响。

实验三:振荡器电路振荡器电路是一种能够产生稳定振荡信号的电路,常用于时钟发生器、射频发射和接收等应用中。

在实验中,我们设计和搭建了两种常见的振荡器电路:RC 相移振荡器和LC谐振振荡器。

通过调整电路参数和元件值,我们观察到了振荡器的频率稳定性和波形特性。

此外,我们还讨论了振荡器的起振条件和频率稳定性的影响因素。

实验结果与分析:通过实验,我们对放大器、滤波器和振荡器电路的性能进行了验证和分析。

我们观察到了不同电路参数和元件值对电路性能的影响,例如放大器的电压增益、滤波器的截止频率和振荡器的频率稳定性。

我们还学习到了如何根据电路需求选择合适的电路结构和元件数值,以满足特定的电路设计要求。

结论:通过模拟电子线路实验,我们深入了解了放大器、滤波器和振荡器电路的原理和性能。

我们通过实验验证了这些电路的工作特性,并学会了根据设计要求选择合适的电路结构和元件数值。

这些实验为我们今后在电子工程领域的学习和研究奠定了坚实的基础。

模拟电路设计实验报告

模拟电路设计实验报告

模拟电路设计实验报告实验目的:本次实验旨在通过设计和搭建模拟电路,加深对模拟电路设计原理的理解,并掌握模拟电路设计的基本方法和技巧。

实验器材:1. 电源:直流可变电源、示波器;2. 元器件:电阻、电容、二极管、晶体管等;3. 工具:数字万用表、示波器探头等。

实验内容:1. 单管反馈放大电路设计:搭建单管反馈放大电路,并通过调整电路中的参数来验证电路的放大功能;2. 二极管扩频电路设计:设计并搭建二极管扩频电路,并观察其在不同频率下的性能表现;3. 滤波电路设计:搭建不同类型的滤波电路,如低通滤波器、带通滤波器和高通滤波器,研究其频率特性和滤波效果。

实验步骤:1. 单管反馈放大电路设计:- 根据电路图搭建单管反馈放大电路;- 调节电路中的元器件数值,如电阻和电容值,以达到不同的放大倍数;- 通过示波器观察输入输出电压波形,分析电路的放大效果。

2. 二极管扩频电路设计:- 设计二极管扩频电路的电路图,并进行搭建;- 使用示波器测量不同频率下电路的输出波形,观察频率响应曲线;- 分析电路在不同频率下的扩频性能,评估电路设计的合理性。

3. 滤波电路设计:- 搭建低通、带通和高通滤波器电路,分别进行实验;- 使用数字万用表和示波器测试不同频率下的输出波形,比较滤波器的频率特性和滤波效果;- 分析实验结果,总结不同类型滤波器的特点和应用范围。

实验结果与分析:1. 单管反馈放大电路实验结果显示,在一定范围内随着反馈电阻的增大,电路的整体增益也会随之增大,但是增益的稳定性会有所下降;2. 二极管扩频电路实验结果表明,二极管扩频电路在一定频率范围内具有较好的扩频效果,但是在过大或过小的频率范围内效果会逐渐降低;3. 不同类型滤波器的实验结果显示,低通滤波器适用于去除高频噪声信号,高通滤波器适用于去除低频干扰信号,带通滤波器则可以选择特定频率范围内的信号传输。

结论与建议:通过本次模拟电路设计实验,我们深入理解了模拟电路设计原理,掌握了设计模拟电路的基本方法和技巧。

模拟电路实验一报告

模拟电路实验一报告

模拟电路实验一报告学院信息科学与工程学院班级学号姓名一、实验题目元器件的识别和测试二、实验摘要识别电阻器、电容器、二极管、三极管和场效应管,并用万用表测量。

三、实验环境万用表、电阻器、电容器、二极管、三极管、场效应管、镊子等。

四、实验内容1、识别电阻器种类,用万用表测量电阻器阻值,判断其好坏,计算测量误差。

2、识别电容器种类,用万用表测量电容器容量值,计算测量误差。

3、识别二极管种类,用万用表判断二极管的极性,测量其正向导通电压。

4、万用表确定三极管种类和极性,测量其静态电流放大倍数。

5、用万用表判断场效应管的好坏。

五、实验步骤1、电阻器的测量○1将万用表转换开关调至“×200Ω”档位上;○2将两表笔短接,读数为零,证明万用表是准确的;○3用两表笔分别接触被测五环电阻两引脚进行测量,读数并记录;○4将万用表转换开关调至“×2KΩ”档位上;○5用两表笔分别接触被测四环电阻两引脚进行测量,读数并记录;2、电容器的测量○1将红表笔插到有Cx相连的孔中,将转换开关调至“×2μF”档位上;○2取出电解电容,红表笔接长脚(正),黑表笔接短脚(负),读数并记录;○3将转换开关调至“×20nF”档位上;○4取出CBB电容,用两表笔分别接触被测电容两引脚进行测量,读数并记录。

3、二极管的测量○1将红表笔插到VΩ孔中,将转换开关调至“二极管”档位上;○2取出发光二极管,用两表笔分别接触二极管两引脚进行测量;○3若万用表读数为零则为反向电压,将两表笔对调测量,读数并记录二极管正负极与正向导通电压;○4重复○2、○3两个步骤,分别测量整流二极管和稳压二极管。

4、三极管的测量○1先判别基极和管型:三极管内部有两个PN结,即集电结和发射结,与二极管相似,三极管内的PN结同样具有单向导电性。

因此可用万用表电阻档判别出基极b和管型。

例如测NPN型三极管,当用黑表笔接基极b,用红表笔分别搭试集电极c和发射极e,测得阻值均较小;反之,表笔位置对换后,测得电阻均较大。

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告
实验名称:模拟电路实验
实验目的:
1. 了解模拟电路的基本原理和设计方法。

2. 学会使用测试仪器测量电路的电压、电流和功率。

3. 掌握常见的模拟电路元件的特性和使用方法。

实验步骤:
1. 实验仪器准备:示波器、函数发生器、电压表、电流表、电阻箱等。

2. 搭建电路:根据实验要求,搭建所需的模拟电路。

例如,可以搭建一个简单的放大电路或滤波电路。

3. 测试电路:先使用示波器观察电路的输入输出波形,确定电路正常工作。

4. 测量电压和电流:连接电压表和电流表,测量各个元件的电压和电流。

5. 记录测量数据:将测量到的电压和电流数据记录下来,作为实验数据。

6. 分析数据:根据实验数据,计算电路的功率、增益等参数,并进行分析。

7. 总结实验:根据实验结果,总结实验的目的、过程和结论,并提出改进意见。

实验结果:
1. 经过测量和分析,得到了电路的输入输出特性、增益和频率响应等数据。

2. 绘制了电路的输入输出波形图和频率特性曲线。

3. 根据实验结果,总结了电路的工作原理和特点,并提出了改进建议。

实验结论:
通过本次实验,我们深入了解了模拟电路的工作原理和设计方法。

模拟电路在信号处理、放大和滤波等方面具有重要的应用价值。

掌握了模拟电路的测量方法和分析技巧,对以后的电路设计和故障排除有很大帮助。

模拟电路实习报告.

模拟电路实习报告.

一、整体设计要求、步骤及报告要求A、设计要求1.电路原理图绘制正确(或仿真电路图;2.掌握EWB仿真软件的使用和电路测试方法;2.电路仿真达到技术指标。

3. 完成实际电路,掌握电路的指标测试方法;4.实际电路达到技术指标。

B、设计步骤1.原理了解,清楚设计内容。

2.原理及连线图绘制,仿真结果正确。

3.安装实际电路。

4.调试,功能实现。

5.教师检查及答辩。

6.完成设计报告。

C、实验报告要求1.画图要求:1原理图(草图要清楚,标注元件参数2正式原理图、接线图: A4打印EWB画图。

3要求用统一格式封面;4使用中原工学院课程设计报告专用纸。

5图要顶天立地,均匀分布,合理布局2.课程设计报告要求a.题目:b.设计任务及技术指标c.设计内容及原理d.设计步骤和方法(仿真、实际电路分别来写e.安装与调试f.电路的指标结果(仿真、实际电路分别来写g.所用仪器和设备h.参考文献二、函数信号发生器(一、设计任务设计一函数信号发生器,能输入方波和三角波两种波形。

(二、主要技术指标1、输出为方波和三角形两种波形,用开关切换输出;2、输出电压均为双极性;3、输出阻抗均为50Ω4、输出为方波时输出电压峰值为0—5V可调,输出信号频率为200Hz—2KHz可调。

5、输出为三角波时输出电压峰值为0—5V可调,输出信号频率为200Hz—2KHz可调。

(三、设计内容和原理设计内容是要求设计一个函数信号发生器,能输出方波和三角波两种波形。

而且幅度可以调节,有技术指标可以知道,两个波形发生电路可以共用一个限幅电路。

所以,可以得到此电路可有这两部分组成:方波发生电路,三角波发生电路,1、方波发生电路原理图及原理a、运算放大器的选择:双电源、741b、电源电压选择:12Vc、稳压二极管的选择:IN4740d、频率参数选择输出信号的频率为200—2KHz可调,决定信号的频率元件有R f1、R f2、C 、R2、R1。

T=2R f CIn(1+2R2/R1 R f=R f1+R f2f=1/T=1/2R f Cln(1+2R2/R1可取R1/R1+R2=0.47,则f=1/2R f C=1/2(R f1+R f2C,即R1=4.7KΩ,R2=5.1KΩ。

模拟电路原理实验报告

模拟电路原理实验报告

模拟电路原理实验报告实验目的本次实验旨在通过实际搭建模拟电路,学习和掌握模拟电路的基本原理和相关知识,培养学生的动手能力和解决问题的能力。

实验仪器本次实验所使用的仪器设备如下:- 模拟电路实验箱- 多用电表- 功放电路实验板- 信号源实验步骤1. 首先,根据所给的电路原理图,将实验箱中的元器件正确连接起来,搭建出所要求的模拟电路。

同时,使用多用电表对每个元器件进行测量,确保电路的连接正确无误。

2. 接下来,将信号源与功放电路实验板连接,将信号源的输出端与功放电路的输入端相连。

根据实验要求,调节信号源的输出,确保输入信号的幅度和频率满足要求。

3. 使用多用电表测量功放电路输出端的电压幅值和频率,并记录下来。

同时,观察输出波形,并对波形进行分析和理解。

4. 调整输入信号的频率和幅值,观察输出波形的变化,并做出相应的记录和分析。

5. 完成实验后,将电路恢复到初始状态,将所有的元器件断开连接,并清理实验现场。

同时,将测量结果进行整理和分析。

实验结果与分析在本次实验中,我们成功的搭建了所要求的模拟电路,并得到了相应的测量结果。

通过观察输出波形的变化,我们可以看到输入信号的幅值和频率对输出波形的影响。

当输入信号的幅值较小,输出波形会变得模糊不清,失真严重;而当输入信号的幅值逐渐增大时,输出波形逐渐清晰,并且能够保持所需频率的波形。

这验证了模拟电路放大的基本原理。

另外,我们还观察到了输入信号的频率对输出波形的影响。

当输入信号的频率较低时,输出波形较为平缓;而当输入信号的频率逐渐增大时,输出波形会产生明显的谐波分量。

这也进一步验证了模拟电路的放大特性和频率响应。

实验总结本次实验通过搭建模拟电路并对其进行测量和观察,使我们更加深入地了解了模拟电路的基本原理和特性。

同时,通过实际动手操作,我们提高了解决问题的能力和动手能力。

在实验中,我们还发现了一些问题,比如电路接线不牢固导致测量结果不准确等。

这提醒我们在实验中要细心仔细,确保电路的连接正确可靠,以避免测量结果的误差。

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告目录1. 实验目的1.1 实验背景1.2 实验内容2. 实验原理2.1 模拟电路基本概念2.2 电阻、电容和电感3. 实验器材3.1 仪器设备3.2 元器件4. 实验步骤4.1 搭建电路4.2 施加电压4.3 测量电流电压5. 实验数据处理5.1 绘制电流电压曲线5.2 计算阻抗6. 实验结果分析6.1 对比理论值6.2 分析电路特性7. 实验结论7.1 实验总结7.2 结论和展望1. 实验目的1.1 实验背景在实验中介绍模拟电路的基本概念和重要性,以及实验的背景和意义。

1.2 实验内容详细描述本次实验中涉及的主要内容和实验要求。

2. 实验原理2.1 模拟电路基本概念解释模拟电路的基本概念,包括模拟信号与数字信号的区别以及模拟电路在各种电子设备中的应用。

2.2 电阻、电容和电感介绍电阻、电容、电感的定义、特性以及在模拟电路中的作用和影响。

3. 实验器材3.1 仪器设备列出实验中所需的仪器设备,如示波器、信号发生器等。

3.2 元器件说明实验中所用到的元器件,如电阻、电容、电感等。

4. 实验步骤4.1 搭建电路逐步说明如何搭建模拟电路实验中所需的电路结构。

4.2 施加电压描述如何正确施加电压源以保证实验进行顺利。

4.3 测量电流电压介绍如何进行电流电压的测量方法及注意事项。

5. 实验数据处理5.1 绘制电流电压曲线详细说明如何根据测量数据绘制电流电压曲线图。

5.2 计算阻抗提供计算阻抗所需的步骤和公式,并进行相关数据处理。

6. 实验结果分析6.1 对比理论值分析实验结果与理论值的差异,并探讨可能的原因。

6.2 分析电路特性根据实验数据分析模拟电路的特性,如频率响应、幅频特性等。

7. 实验结论7.1 实验总结总结实验过程中的收获和困难,并提出改进建议。

7.2 结论和展望总结实验结果并展望模拟电路实验对深入学习电子电路的意义和价值。

模拟电路实训报告总结(3篇)

模拟电路实训报告总结(3篇)

第1篇一、引言随着科技的飞速发展,模拟电路在电子技术领域的应用越来越广泛。

为了提高我们的实践能力,加深对模拟电路理论知识的理解,我们进行了模拟电路实训。

通过本次实训,我们对模拟电路有了更深入的认识,以下是对本次实训的总结。

二、实训目的1. 掌握模拟电路的基本概念、原理和常用分析方法。

2. 熟悉常用模拟电路元件的特性及电路设计方法。

3. 培养动手能力,提高电路实验技能。

4. 提高团队合作意识,锻炼沟通与协作能力。

三、实训内容1. 模拟电路基本概念和原理的学习本次实训首先对模拟电路的基本概念、原理进行了学习,包括模拟信号、模拟电路元件、放大电路、反馈电路、滤波电路等。

2. 常用模拟电路元件的特性及电路设计方法我们学习了常用模拟电路元件的特性,如电阻、电容、电感、二极管、晶体管等。

同时,了解了电路设计方法,如共射极放大电路、共集电极放大电路、差分放大电路等。

3. 电路实验操作在掌握了理论知识后,我们进行了电路实验操作。

实验内容包括:(1)搭建共射极放大电路,观察电路的放大效果;(2)搭建共集电极放大电路,观察电路的输入阻抗和输出阻抗;(3)搭建差分放大电路,观察电路的差模和共模抑制效果;(4)搭建滤波电路,观察电路的滤波效果。

4. 电路故障排查在实验过程中,我们遇到了一些故障,如电路不工作、输出信号异常等。

通过分析故障原因,我们学会了如何排查电路故障,提高了电路实验技能。

四、实训过程及结果1. 实训过程本次实训分为三个阶段:理论学习、实验操作和故障排查。

在理论学习阶段,我们认真学习了模拟电路的基本概念、原理和常用分析方法,为后续实验操作打下了基础。

在实验操作阶段,我们按照实验步骤搭建电路,观察电路的输出效果,并与理论分析进行对比,验证了所学知识的正确性。

在故障排查阶段,我们遇到了一些故障,通过分析故障原因,我们成功解决了这些问题,提高了电路实验技能。

2. 实训结果通过本次实训,我们掌握了以下成果:(1)熟悉了模拟电路的基本概念、原理和常用分析方法;(2)掌握了常用模拟电路元件的特性及电路设计方法;(3)提高了动手能力,提高了电路实验技能;(4)培养了团队合作意识,锻炼了沟通与协作能力。

模拟电路制程实验报告

模拟电路制程实验报告

模拟电路制程实验报告一、实验目的本实验旨在通过模拟电路制程的过程,了解模拟电路设计流程,并通过实际操纵实验仪器,掌握电路的基本测试方法。

二、实验器材和仪器- 信号发生器- 示波器- 直流电源- 模拟电路实验箱- ...(列举实验用到的器材和仪器)三、实验内容1.(实验内容1名称)在实验内容1中,我们首先设计出一个(电路原理图)电路。

然后,连接实验器材和仪器,如信号发生器和直流电源。

接下来,通过示波器对电路波形进行观测和测试,并记录下测试数据。

(注意事项和实验过程的描述)2.(实验内容2名称)...四、实验结果和分析通过实验,我们得到了一系列测试数据,根据这些数据我们发现(发现的规律或趋势)。

这与原先设计的电路图是一致的,说明我们的电路设计是正确的。

在实验过程中,我们还发现(其他相关的发现)。

根据实验结果和分析,我们可以得出结论:(总结实验结果和验证原理的结论)。

五、实验总结通过本次模拟电路制程实验,我们学习并掌握了模拟电路设计流程和基本测试方法。

通过操纵实验器材和仪器,我们得到了有关电路波形和电压的测试数据,并对实验结果进行了分析和讨论。

在实验中,我们还遇到了一些困难和问题,但通过同组成员的讨论和努力,我们成功地解决了这些问题。

通过这次实验,我深刻认识到模拟电路制程的重要性,并对电路设计和测试方法有了更深入的了解。

这将对我今后的学习和研究产生积极的影响。

六、参考文献(列举本实验中相关的参考文献)七、附录(实验中使用到的电路原理图、测试数据和其他相关资料的附录)。

模拟电路仿真实验报告

模拟电路仿真实验报告

腹有诗书气自华一、实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

二、实验内容1.晶体管放大器共射极放大器(1)新建一个电路图(图1-1),步骤如下:①按图拖放元器件,信号发生器和示波器,并用导线连接好。

②依照电路图修改各个电阻与电容的参数。

③设置信号发生器的参数为Frequency 1kHz,Amplitude 10mV,选择正弦波。

④修改晶体管参数,放大倍数为40,。

(2)电路调试,主要调节晶体管的静态工作点。

若集电极与发射极的电压差不在电压源的一半上下,就调节电位器,直到合适为止。

(3)仿真腹有诗书气自华(↑图1)(↓图2)腹有诗书气自华2.集成运算放大器差动放大器差动放大器的两个输入端都有信号输入,电路如图1-2所示。

信号发生器1设置成1kHz、10mV的正弦波,作为u i1;信号发生器2设置成1kHz、20mV的正弦波,作为u i2。

满足运算法则为:u0=(1+R f/R1)*(R2/R2+R3)*u i2-(R f/R1)*u i1仿真图如图3图1-2腹有诗书气自华图33.波形变换电路检波电路原理为先让调幅波经过二极管,得到依调幅波包络变化的脉动电流,再经过一个低通滤波器,滤去高频部分,就得到反映调幅波包络的调制信号。

电路图如图1-4,仿真结果如图4.腹有诗书气自华图1-4 调幅波检波电路图4 调幅波检波电路仿真结果腹有诗书气自华三、结果分析参数不同所得的波形不同,太大或太小都会失真。

四、仿真中遇到的问题仿真中,Channel A的波看起来一直是一条直线,检查连线没有错误,更改参数也没有变化,微调Scale也看不出差别,此时继续调Scale,调到一定程度会看到波形。

五、使用Multisim的体会我觉得Multisim这个软件主要有以下优点:1) 基本器件库较全,如电源、电阻、三极管等等不仅有,而且有很多的种类。

2) 比较符合现实,我发现很多电路元件是可以自己制定其运行情况的(如可以把三极管设置成漏电等)这样在实际中更具有实用性。

模拟实验电路实验报告

模拟实验电路实验报告

模拟实验电路实验报告本实验通过模拟电路实验,验证并深入理解电路的基本原理和电路元件的特性,提高学生解决实际电路问题的能力。

实验仪器和材料:1. 变压器2. 电阻器3. 二极管4. 电容器5. 电感器6. 示波器7. 多用表8. 电源9. 连线和插件实验原理:1. 二极管的特性:正向特性和反向特性;2. 电容器的特性:电容器的充放电过程;3. 电感器的特性:电感器的电流和电压关系;4. RC电路的特性:RC电路的充放电过程;5. RL电路的特性:RL电路的电流和电压关系。

实验步骤:1. 实验设计:根据实验要求和实验器材,设计实验电路图;2. 仪器调试:连接好电路,并调节实验仪器,保证输入输出信号幅度合适;3. 实验步骤:根据设计好的实验电路图,按照一定顺序进行实验;4. 数据记录:记录实验过程中的数据和实验现象;5. 结果分析:根据实验数据和实验现象,对实验结果进行分析;6. 实验总结:总结实验中的重要发现和问题,提出改进意见。

实验结果:1. 二极管:验证了二极管的正向特性,即只有当正向电压超过一定值,才能导通;2. 电容器:观察并记录了电容器的充放电过程,并分析了充放电曲线的特点;3. 电感器:测量了电感器的电流和电压关系,并通过实验确定了电感器的电感值;4. RC电路:观察并记录了RC电路的充放电过程,并分析了充放电曲线的特点;5. RL电路:测量了RL电路中电流和电压的关系,通过实验验证了RL电路的特性。

实验分析:1. 实验结果与理论相符,验证了电路元件的特性和电路原理;2. 实验中发现了一些实际电路中常见的问题和现象,例如电路中的噪声、电源的干扰等,这些问题需要进一步研究和解决;3. 实验中的数据记录和处理过程中存在一些误差,可能是仪器的精度或操作不准确导致的。

实验总结:通过本次实验,我深入了解了电路的基本原理和电路元件的特性。

实验过程中,我不仅熟悉了各种电路元件的使用方法和特性,还学会了使用仪器进行电路调试和测量。

模电仿真实验报告

模电仿真实验报告

模拟电路仿真实验报告一、实验目的本次模拟电路仿真实验旨在通过使用专业仿真软件,掌握模拟电路的基本原理和设计方法,提高分析和解决问题的能力。

二、实验原理模拟电路是用于模拟真实世界中的各种信号的电子电路。

它能够复制或放大这些信号,以便更好地进行研究和分析。

模拟电路通常由电阻、电容、电感、二极管、三极管等元件组成。

三、实验步骤1. 打开仿真软件,创建一个新的模拟电路设计。

2. 根据实验要求,添加所需的电子元件和电源。

3. 连接各元件,构成完整的模拟电路。

4. 调整电源和各元件的参数,观察并记录电路的输出结果。

5. 根据实验要求,对电路进行测试和调整,直到达到预期效果。

6. 记录实验数据和结果,分析电路的工作原理。

7. 完成实验报告,总结实验过程和结果。

四、实验结果与分析1. 实验结果:在本次模拟电路仿真实验中,我们设计了一个简单的RC振荡电路。

通过调整电阻和电容的值,我们观察到了不同频率的振荡波形。

实验结果表明,该电路能够有效地产生振荡信号,并且可以通过改变电阻和电容的值来调整振荡频率。

2. 结果分析:本次实验中,我们使用了RC振荡电路来模拟一个简单的振荡器。

当电流通过电阻和电容时,会产生一个随时间变化的电压。

该电压在电容两端累积,直到达到某个阈值,才会发生振荡。

通过调整电阻和电容的值,我们可以改变电压累积的速度和阈值,从而调整振荡频率。

此外,我们还发现,当改变电阻或电容的值时,振荡波形也会发生变化。

这表明该电路具有较好的频率特性和波形质量。

五、实验总结与建议本次模拟电路仿真实验让我们深入了解了模拟电路的基本原理和设计方法。

通过使用仿真软件,我们能够方便地进行电路设计和测试,并且可以随时调整元件参数来优化电路性能。

建议在今后的实验中,可以尝试设计更加复杂的模拟电路,以进一步提高我们的实验技能和解决问题的能力。

同时,也需要注意遵守实验规则和安全操作规程,确保实验过程的安全性。

电脑模拟电路实验报告(3篇)

电脑模拟电路实验报告(3篇)

第1篇一、实验目的1. 理解电脑模拟电路的基本原理和组成;2. 掌握电脑模拟电路的仿真方法和技巧;3. 分析电脑模拟电路的性能指标,提高电路设计能力。

二、实验原理电脑模拟电路是指使用计算机软件对实际电路进行模拟和分析的一种方法。

通过搭建电路模型,可以预测电路的性能,优化电路设计。

实验中主要使用到的软件是Multisim。

三、实验内容及步骤1. 电路搭建以一个简单的RC低通滤波器为例,搭建电路模型。

首先,在Multisim软件中创建一个新的电路,然后按照电路图添加电阻、电容和电源等元件。

将电阻和电容的参数设置为实验所需的值。

2. 仿真设置在仿真设置中,选择合适的仿真类型。

本实验选择瞬态分析,观察电路在时间域内的响应。

设置仿真时间,本实验设置时间为0-100ms。

设置仿真步长,本实验设置步长为1μs。

3. 仿真运行点击运行按钮,观察仿真结果。

在Multisim软件的波形窗口中,可以看到电路的输入信号和输出信号随时间变化的曲线。

4. 数据分析分析仿真结果,观察电路的频率响应、幅度响应和相位响应。

本实验中,观察RC 低通滤波器的截止频率、通带增益和阻带衰减等性能指标。

5. 结果优化根据仿真结果,对电路参数进行调整,优化电路性能。

例如,可以通过调整电容值来改变截止频率,通过调整电阻值来改变通带增益。

四、实验结果与分析1. 频率响应通过仿真结果可以看出,RC低通滤波器的截止频率约为3.18kHz。

在截止频率以下,电路具有良好的滤波效果;在截止频率以上,电路的幅度衰减明显。

2. 幅度响应在通带内,RC低通滤波器的增益约为-20dB。

在阻带内,增益约为-40dB。

3. 相位响应在截止频率以下,电路的相位变化约为-90°;在截止频率以上,相位变化约为-180°。

五、实验结论1. 通过本实验,加深了对电脑模拟电路基本原理的理解;2. 掌握了Multisim软件在电路仿真中的应用;3. 分析了电路性能指标,提高了电路设计能力。

电子科技大学模电模拟电路实验报告

电子科技大学模电模拟电路实验报告

电子科技大学模电模拟电路实验报告电子科技大学实验报告实验项目:利用multisim分析、图rb、rc和晶体管参数变化对q点、au、ri、ro和uom的影响。

一、实验原理实验原理图输入电源通过单一改变rb、rc或晶体管参数,测量ibq、icq、uceq、输入电压峰值uimax、空载输出电压峰值uoomax,和带负载时的输出电压峰值uomax,并通过下列公式计算得到au、ri和ro。

au=uomax/uimax,ri=uimax/(usmax uimax)。

rs,ro=(uomax/uomax-1)。

rl二、实验器材安装了Multisim的计算机三、实验数据记录rc=5kω,β=80,rbb'=100ω时间Rb/Kω五十亿壹仟陆佰柒拾万rb=510kω,β=80,rbb’=100ω时rc543rb=510kω,rc=5kω时间βrbb'/kibq/μω捌佰壹兆捌拾亿贰仟陆佰壹拾万四、实验结论当RA增大时,IBQ减小,ICQ增大,uceq增大,|Au |增大,RI减小。

2当RC减小时,IBQ保持不变,ICQ基本不变,uceq增大,|Au |减小,RI基本不变,O减小。

3当rbb’增大时,|au|减小,ri增大;当β减小时,|au|减少,ri变化不大。

a27。

9872.23727.9872.23727.9871.6793.8133.8136.6020.3396620.3586910.337530-65.790-63.929-49.538icq/mauceq/vuimax/mvuomax/vauri/kω-1941.03-1781.12-1471.02ibq/27.98727.98727.9872.2378.2860.338536-49.467-1461.0262.9902.2376.0510.338735-58.492-1731.007icq。

237uceq/v3。

813uimax/mvuomax/vauri/kro/kω-一千九百四十一点零二八ω5.036/kωμaibq/μa27。

模拟电路实训报告

模拟电路实训报告

9.1 可调式三端集成直流稳压电源Multisim 仿真设计1、设计要求设计一个三端集成直流稳压电源,要求: V O =(+6~+12)V 。

2、三端集成稳压器的选择选定可调式三端集成稳压器LW317,其特性参数:基准电压V REF =1.25V ,基准电流I ADJ=50μA ,最小负载电流I Omin =3.5mA 。

选定电路形式如图9.1.1所示。

图9.1.13、电路参数设计 (1)调整电路R 1为泄放电阻,依LW317特性参数,取I Omin =5mA ,则有525.1Omin REF 1max ==I V R k Ω=250Ω,取为系列值240Ω。

依式V R R v o ⎪⎪⎭⎫⎝⎛⊕⨯≈12125.1,有 24.0)125.112()1(1REF Omax pmax ⨯-=-=R V V R k Ω=2.064k Ω, 24.0)125.16()1(1REF Omin pmin ⨯-=-=R V V R k Ω=0.912k Ω, 取R p 为2k Ω的精密线绕电位器。

(2)保护电路由于输出端接有一容量较大的滤波电容C 5(2200μF/25V ),一旦输入端开路,C 5将向稳压器放电,为保护稳压器,在稳压器的输入、输出端之间跨接了一个二极管D 5,取为1N4148。

为减小由于调整R P 滑臂移动产生的纹波电压,与R P 并联了一个电容器C 4,如图9.7.1中所示,取为10μF/25V 。

但在输出短路时,C 4将向稳压器调整端放电,并使调整管发射结反偏,为保护稳压器,在图9.7.1所示电路中接入了一个保护二极管D 6,取为1N4148,从而为C 4提供了一个放电回路。

4、仿真设计、测试按图9.1.1所示,在Multisim 中构建设计电路。

(1)接通电源,调整R P 的大小,输出电压V O 应随之变化,如图9.1.2所示,满足V O=+6~+12V 的设计要求。

图9.1.2(2)检测电压调整率保持R L 的大小不变,在I V 变化的情况下,使I O 保持为额定值,这里取R L =1k Ω,如图9.1.1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟电路实验报告
实验题目:成绩:__________ 学生姓名:李发崇学号指导教师:陈志坚
学院名称:专业:年级:
实验时间:实验室:
一.实验目的:
1.熟悉电子器件和模拟电路试验箱;
2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影
响;
3.学习测量放大电路Q点、A V、r i、r o的方法,了解公发射极电路特
性;
4.学习放大电路的动态性能。

二、实验仪器
1.示波器
2.信号发生器
3.数字万用表
三、预习要求
1.三极管及单管放大电路工作原理:
2.放大电路的静态和动态测量方法:
四.实验内容和步骤
1.按图连接好电路:
(1)用万用表判断试验箱上三极管的好坏,并注意检查电解电容
C1,C2的极性和好坏。

(2)按图连接好电路,将Rp的阻值调到最大位置。

(注:接线前先
测量电源+12V,关掉电源后再连接)
2.静态测量与调试
按图接好线,调整Rp,使得Ve=1.8V,计算并填表
心得体会:
3.动态研究
(一)、按图连接好电路
(二)将信号发生器的输入信号调到f=1kHz,幅值为500mVp,接至放大电路A点。

观察Vi和V o端的波形,并比较相位。

(三)信号源频率不变,逐渐加大信号源输出幅度,观察V o不失真时的最大值,并填表:
基本结论及心得:
Q点至关重要,找到Q点是实验的关键,
(四)、保持Vi=5mVp不变,放大器接入负载R L,在改变Rc,R L数值的情况下测量,并将计算结果填入表中:
实验总结和体会:
输出电阻和输出电阻影响放大效果,输入电阻越大,输出电阻越小,放大效果越好。

(1)、输出电阻的阻值会影响放大电路的放大效果,阻值越大,放大的倍数也越大。

(2)、连在三极管集电极的电阻越大,电压的放大倍数越大。

(五)、Vi=5mVp,增大和减小Rp,观察V o波形变化,将结果填入表中:
实验总结和心得体会:
信号失真的时候找到合适Rp是产生输出较好信号关键。

(1)Rp只有在适合的位置,才能很好的放大输入信号,如果Rp阻值太大,会使信号失真,如果Rp阻值太小,则会使输入信号不能被
放大,反而出现信号减弱的情况。

(2)、在输出信号不失真的情况下,集电极端的电压和发射极的电压趋于相等。

4、测量放大电路的输入、输出电阻
(1)、输入电阻ri的测量:
在放大电路输入端串接一个5.1k的电阻,如图。

测量Vs和Vi,即可计算ri。

(2)、输出电阻的测量
在输出端接入可调电阻作为负载,选择合适的RL值使放大电路输出不失真,测量带负载时的输出电压Vl和空载时V o,计算出ro。

将测量结果填入表中:
实测输入电阻(设R=5.1k)测量输出电阻。

相关文档
最新文档