数字图像处理-z2图像的基本知识

合集下载

数字图像处理(第二版)章 (2)

数字图像处理(第二版)章 (2)
(4) 噪声。数字化设备的噪声水平也是一个重要的性能参 数。例如,数字化一幅灰度值恒定的图像,虽然输入亮度是一 个常量,但是数字化设备中的固有噪声却会使图像的灰度发生 变化。因此,数字化设备所产生的噪声是图像质量下降的根源 之一,应当使噪声小于图像内的反差点(即对比度)。
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)

数字图像处理(冈萨雷斯)2数字图像处理基础PPT课件

数字图像处理(冈萨雷斯)2数字图像处理基础PPT课件
人眼对不同亮度的适应和鉴别能力
亮 暗 适应慢 暗 亮 适应快
55
(1)视觉适应性
2.1.3亮度适应和鉴别
✓亮度适应范围:1010量级(10-6mL(夜视域)~104mL(强闪光));
✓与整个适应范围相比,人眼在某一时刻能鉴别的亮度级别范围很 小(以该环境的平均亮度为中心的一个小的亮度范围);
✓亮度适应级(视觉系统当前的灵敏度级别):
Bit数为:
b=M×N×k
(2.4-4)
因此,存储一幅512×512 ,有256个灰度级(k=8)的图像
需要512×512×8=2097152(Bit) 或
512×512=256K(Byte)
32 32
2.4.3 空间和灰度分辨率
空间分辨率(spatial resolution)
图像中可分辨的最小细节,主要由采样间隔值决定
0<r(x,y)<1 平均反射系数(reflectance) r ( x ,y ) 0 — — 全 吸 收 r ( x ,y ) 1 — — 全 反 射
单色图像在任何坐标(x0,y0)处的强度为图像在该处的灰度 级 l=f(x0,y0),显然有 Lmin,l可L以ma规x 定灰度级范围为 [0,L-1]
2.1.3亮度适应和鉴别
✓当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以
察觉间变化,一般观察者可以辨别12到24级不同强度的变化.
图2.5 亮度辨 别特性的基本 实验
图2.6 作为强
韦伯定理说明:
度函数
的典型
✓人眼视觉系统对亮度的对比度 敏感而非对亮度本身敏感;
韦伯比
✓低照度,韦伯比高,亮度辨别能力差;高照度,韦伯比低, 亮度辨别能力强;

数字图像处理-知识点总结

数字图像处理-知识点总结

图像分类:根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。

模拟图像是空间坐标和幅度都连续变化的图像,而数字图像是空间坐标和幅度均用离散的数字(一般是整数)表示的图像。

图像的数学表示:一幅图像所包含的信息首先表现为光的强度(intensity),即一幅图像可看成是空间各个坐标点上的光强度I 的集合,其普遍数学表达式为:I = f (x,y,z,λ,t) 式中(x,y,z)是空间坐标,λ是波长,t是时间,I是光点(x,y,z)的强度(幅度)。

上式表示一幅运动的(t)、彩色/多光谱的(λ)、立体的(x,y,z)图像。

图像的特点:1.空间有界:人的视野有限,一幅图像的大小也有限。

2.幅度(强度)有限:即对于所有的x,y都有0≤f(x,y) ≤Bm其中Bm为有限值。

图像三大类:在每一种情况下,图像的表示可省略掉一维,即1.静止图像:I = f(x,y,z, λ)2.灰度图像:I = f(x,y,z,t )3.平面图像:I = f(x,y,λ,t)而对于平面上的静止灰度图像,其数学表达式可简化为:I = f(x,y)数字图像处理的基本步骤:1.图像信息的获取:采用图像扫描仪等将图像数字化。

2.图像信息的存储:对获取的数字图像、处理过程中的图像信息以及处理结果存储在计算机等数字系统中。

3.图像信息的处理:即数字图像处理,它是指用数字计算机或数字系统对数字图像进行的各种处理。

4.图像信息的传输:要解决的主要问题是传输信道和数据量的矛盾问题,一方面要改善传输信道,提高传输速率,另外要对传输的图像信息进行压缩编码,以减少描述图像信息的数据量。

5.图像信息的输出和显示:用可视的方法进行输出和显示。

数字图像处理系统五大模块:数字图像处理系统由图像输入、图像存储、图像通信、图像处理和分析五个模块组成。

1.图像输入模块:图像输入也称图像采集或图像数字化,它是利用图像采集设备(如数码照相机、数码摄像机等)来获取数字图像,或通过数字化设备(如图像扫描仪)将要处理的连续图像转换成适于计算机处理的数字图像。

数字图像及处理的基础知识

数字图像及处理的基础知识

数字图像1 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。

2 图像种类:二值图像(Binary Image): 图像中每个像素的亮度值(Intensity)仅可以取自0到1的图像。

灰度图像(Gray Scale Image),也称为灰阶图像: 图像中每个像素可以由0(黑)到255(白)的亮度值表示。

0-255之间表示不同的灰度级。

彩色图像(Color Image):每幅彩色图像是由三幅不同颜色的灰度图像组合而成,一个为红色,一个为绿色,另一个为蓝色。

伪彩色图像(false-color)multi-spectral thematic 立体图像(Stereo Image):立体图像是一物体由不同角度拍摄的一对图像,通常情况下我们可以用立体像计算出图像的深度信息。

三维图像(3D Image):三维图像是由一组堆栈的二位图像组成。

每一幅图像表示该物体的一个横截面。

数字图像也用于表示在一个三维空间分布点的数据,例如计算机断层扫描(:en:tomographic,CT)设备生成的图像,在这种情况下,每个数据都称作一个体素。

3 图像显示目前比较流行的图像格式包括光栅图像格式BMP、GIF、JPEG、PNG等,以及矢量图像格式WMF、SVG等。

大多数浏览器都支持GIF、JPG以及PNG图像的直接显示。

SVG格式作为W3C的标准格式在网络上的应用越来越广。

4 图像校准:数字图像与看到的现象之间关系的知识,也就是几何和光度学或者传感器校准。

图像的基本属性亮度:也称为灰度,它是颜色的明暗变化,常用0 %~100 %( 由黑到白) 表示。

对比度:是画面黑与白的比值,也就是从黑到白的渐变层次。

比值越大,从黑到白的渐变层次就越多,从而色彩表现越丰富。

直方图:表示图像中具有每种灰度级的象素的个数,反映图像中每种灰度出现的频率。

图像在计算机中的存储形式,就像是有很多点组成一个矩阵,这些点按照行列整齐排列,每个点上的值就是图像的灰度值,直方图就是每种灰度在这个点矩阵中出现的次数。

数字图像处理知识点总结

数字图像处理知识点总结

定小于任何其他排列形式.
矢量量化原理
第7章
矢量量化的编码就是根据一定的失真测度 在码书搜索出与输入矢量失真最小的码字的索引。
用Canny算子进行边缘检测的主要步骤
① 用高斯滤波器平滑图像 第9章
② 计算滤波后图像梯度的幅值和方向
③ 对梯度幅值应用非极大值抑制,其过程为找处图像梯度中的局 部极大值点,把其它非局部极大值点置零以得到得到细化的边 缘 ④ 用双阈值算法检测和连接边缘,使用两个阈值T1和T2(T1>T2), T1用来找到每条线段,T2用来在这些线段的两个方向上延伸寻 找边缘的断裂处,并连接这些边缘。
背景差分法 如何利用多幅运动图像构造一个 第9章 基准图像
• 找出多幅对应像素点灰度值变化在一定阈值范围内的部 分为基准图像,可通过检测图像序列相邻两帧之间的变 化,保留对应像素点灰度值变化在一定阈值范围内的部 分,再与下一帧的图像对比,重复上述过程,最终取得 基准图像。
• I=imread(‘原图像名.tif’); % 读入原图像,tif格式 • whos I • imshow(I) % 显示图像I的基本信息 % 显示图像
自动阈值 迭代式阈值选择算法的基本思想
第9章
• 开始时选择一个阈值作为初始估计值,然后按某种策略 不断地改进这一估计值,直到满足给定的准则为止。在 迭代过程中,关键之处在于选择什么样的阈值改进策略, 好的阈值的改进策略应该具备两个特征,一是能够快速 收敛,二是在每一个迭代过程中,新产生阈值优于上一 次的阈值。
• title(‘原图像’);
• %对原图像进行屏幕控制;显示直方图均衡化后 的图像 • figure;imshow(J); • %给直方图均衡化后的图像加标题名 • title(‘直方图均衡化后的图像’) ;

数字图像处理知识点

数字图像处理知识点

数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。

数字图像处理的基本内容:1、图像获取。

举例:摄像机+图像采集卡、数码相机等。

2、图像增强。

显示图像中被模糊的细节,或是突出图像中感兴趣的特征。

3、图像复原。

以图像退化的数学模型为基础,来改善图像质量。

4、图像压缩。

减小图像的存储量,或者在图像传输时降低带宽。

5、图像分割。

将一幅图像划分为几个组成部分或分割出目标物体。

6、图像的表达与描述。

图像分割后,输出分割标记或目标特征参数。

7、目标识别。

把目标进行分类的过程。

8、彩色图像处理。

9、形态学处理。

10、图像的重建。

第一章导论图像按照描述模型可以分为:模拟图像和数字图像。

1)模拟图像,模拟图像可用连续函数来描述。

其特点:光照位置和光照强度均为连续变化的。

2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。

内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。

三个层次:狭义图像处理,图像分析,图像理解。

狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。

图像分析是一个从图像到数值或符号的过程。

图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。

图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。

2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解.5.图像处理五个模块:采集、显示、存储、通信、处理和分析.第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)〈∞ ,反射分量0 <r(x,y)<1。

7.图像数字化:将一幅画面转化成计算机能处理的形式-—数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样.采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠.9.将像素灰度转换成离散的整数值的过程叫量化.10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像.12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度.例如对细节比较丰富的图像数字化。

14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

数字图像处理基础2

数字图像处理基础2

数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。

由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。

所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。

设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。

显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。

在实际中,一般取L min 的值为0,L max =L-1。

这样,灰度的取值范围就可表示成[0,L-1]。

当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。

为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。

图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。

图像的数字化包括采样和量化两个过程。

连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

即:空间坐标的离散化。

量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。

数字图像处理及基本知识

数字图像处理及基本知识
感器阵列。这是在数字摄像机上常见的主要结构 。 如右图:
.
下图是用传感器阵列获取数字图像的过程
照射(能)源
成像系统
场景元素
(内部)图像平面
.
输出(数字化后的) 图像
右图所示的传感器 阵列是二维的,主要优点 是把图形能量聚焦到阵列 表面一次就能得到完整的 图像。
.
(2)图像函数
图像是用某一技术手段获得的、能为人的视 觉系统所感受的信息形式。
由图可见,变化剧பைடு நூலகம்的图像 与变化缓慢的图像其差值的 分布是不一样的。
图2—3 帧差值信号分布密度特性
.
2.6 常用的图像文件格式
数字图像在计算机中是以图像文件的形 式存放的,图像文件的格式一般包含文件数 据的存储形式、大小、起止位置等内容。
BMP
常用的静态图像文件格式
GIF TIFF
JPEG
.
(1) BMP文件格式 定义: BMP文件又称为位图文件
像信息进行简单的分类。概括起来,图像信息大致可 分成三类,即:符号信息 景物信息 情绪信息。
.
(1)符号图像信息 一般是用文字、符号、图形等表示的具体的或抽
象的事物。例如文字,利用文字可组成文章,可以 看成是用二值图像的形式携带这篇文章的寓意。最 有代表意义的符号图像信息是电路图、机械图、建 筑图等,它们都是用二值图像的形式向人们提供信 息的。符号信息是以某一规则排列的记号,因此, 在传送及处理中只要能表达清楚就可以了,它允许 有较大的压缩。
.
①TV型的自然风景:常见有的图片,如肖象、风景画、建筑物照片等。 ②空间摄影照片和地球资源探测图片:这类图片的特点是往往没有
适宜的方向,构图不十分明显,除了海岸线外,没有可区别的形状。

数字图像处理知识点汇总

数字图像处理知识点汇总

数字图像处理知识点汇总1. 什么是数字图像处理?就是利⽤数字计算机或其他⾼速、⼤规模集成数字硬件,对从图像信息转换来的数字电信号进⾏某些数字运算或处理,以期提⾼图像的质量或达到⼈们所要求的某些预期的结果。

2.图像的表⽰⽅法:.不等长码3. 图像数字化的过程包括两个⽅⾯:采样和量化。

i. 图像在空间上的离散化称为采样,即使空间上连续变化的图像离散化。

也就是⽤空间上部分点的灰度值来表⽰图像,这些点称其为样点。

ii. 对样点灰度值的离散化过程称为量化。

也就是对每个样点值数量化,使其只和有限个可能电平数中的⼀个对应,即使图像的灰度值离散化。

量化也可以分为两种:⼀种是将样点灰度值等间隔分档取数,称为均匀量化;另⼀种是不等间隔分档取整,称为⾮均匀量化。

4. 样点的约束条件:由这些样点,采⽤某种⽅法能够正确重建原图像,采样的⽅法有两类:⼀类是直接对表⽰图像的⼆维函数值进⾏采样,即读取各离散点上的信号值,所得结果就是⼀个样点值阵列,所以也成为点阵采样;另⼀类是先将图像函数进⾏某种正交变换,⽤其变换系数作为采样值,故称为正交系数采样。

5. 最佳量化:6. 图像噪声的分类:按噪声的来源外部噪声:从处理系统外来的影响。

内部噪声:(1)由光和电的基本0(0o)1(45o) 2(90o)3(135o)4(180o) 5(225o)6(270o)7(315o)性质引起的噪声。

(2)电器的机械运动产⽣噪声。

(3)元器件材料本⾝引起的噪声。

(4)系统内部电路噪声。

从统计观点:平稳噪声、⾮平稳噪声从噪声幅度分布:⾼斯噪声、瑞利噪声、椒盐噪声……按噪声和信号之间关系:加法性噪声乘法性噪声7. 图像质量评价:(1)客观保真度准则(2)主观保真度准则相对评价::对⼀批图象从好到坏进⾏排队,按排队关系评分8.三基⾊原理:颜⾊的基本属性:⾊调(hue):由物体反射光线的波长决定,是颜⾊本质的基本特性。

饱和度(saturation):由物体反射光中混⼊⽩光的多少决定,指颜⾊的鲜明程度。

数字图像处理基本知识

数字图像处理基本知识

数字图像处理基本知识1、数字图像:数字图像,⼜称为数码图像或数位图像,是⼆维图像⽤有限数字数值像素的表⽰。

数字图像是由模拟图像数字化得到的、以像素为基本元素的、可以⽤数字计算机或数字电路存储和处理的图像。

2、数字图像处理包括内容:图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。

3、数字图像处理系统包括部分:输⼊(采集);存储;输出(显⽰);通信;图像处理与分析。

4、从“模拟图像”到“数字图像”要经过的步骤有:图像信息的获取;图像信息的存储;图像信息处理;图像信息的传输;图像信息的输出和显⽰。

5、数字图像1600x1200什么意思?灰度⼀般取值范围0~255,其含义是什么?数字图像1600x1200表⽰空间分辨率为1600x1200像素;灰度范围0~255指⽰图像的256阶灰阶,就是通过不同程度的灰⾊来来表⽰图像的明暗关系,8bit的灰度分辨率。

6、图像的数字化包括哪两个过程?它们对数字化图像质量有何影响?采样;量化采样是将空间上连续的图像变换成离散的点,采样频率越⾼,还原的图像越真实。

量化是将采样出来的像素点转换成离散的数量值,⼀幅数字图像中不同灰度值得个数称为灰度等级,级数越⼤,图像越是清晰。

7、数字化图像的数据量与哪些因素有关?图像分辨率;采样率;采样值8、什么是灰度直⽅图?它有哪些应⽤?从灰度直⽅图中你可可以获得哪些信息?灰度直⽅图反映的是⼀幅图像中各灰度级像素出现的频率之间的关系它可以⽤于:判断图像量化是否恰当;确定图像⼆值化的阈值;计算图像中物体的⾯积;计算图像信息量。

从灰度直⽅图中你可可以获得:暗图像对应的直⽅图组成成分⼏种在灰度值较⼩的左边⼀侧明亮的图像的直⽅图则倾向于灰度值较⼤的右边⼀侧对⽐度较低的图像对应的直⽅图窄⽽集中于灰度级的中部对⽐度⾼的图像对应的直⽅图分布范围很宽⽽且分布均匀9、什么是点处理?你所学算法中哪些属于点处理?在局部处理中,输出值仅与像素灰度有关的处理称为点处理。

数字图像处理知识点与考点(经典)

数字图像处理知识点与考点(经典)
数字图像处理知识点与考点(经典)
第 1 章 导论(知识引导)
1. 图像、数字图像和数字图像处理: 答: “图”是物体投射或反射光的分布,是客观存在的。“像”是人的视觉系统对图在大脑中形成的 印象或认识。图像(image)是图和像的有机结合,即反映物体的客观存在,又体现人的心理因素;是 客观对象的一种可视表示,它包含了被描述对象的有关信息。 数字图像是指由被称作像素(pixel)的小块区域组成的二维矩阵。将物理图像行列划分后,每个小 块区域称为像素。 数字图像处理是指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种 预想目的的技术. 2. 数字图像处理一般包括图像处理、图像分析、图像理解三个层次。 图像处理是对图像本身进行加工,以改善其视觉效果或表现形式,为图像分析打下基础,图像处理 的输出仍是图像。 图像分析是目标图像进行检测和各种物理量的计算,以获取对图像的客观描述。 图像理解是在图像分析的基础上。理解图像所表现的内容,分析图像间的相互联系,得出对客观场 景的解释。 3. 数字图像处理主要包括哪些研究内容? 答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、 重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。 4. 一个数字图像处理系统由哪几个模块组成?试说明各模块的作用。 答: 一个基本的数字图像处理系统由图像输入、图像处理和分析、图像存储、图像通信、图像输出5 个模块组成,如下图所示。
说明:通过细心调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。 4.曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内,故采用线性变换拉伸图像。 5.直方图的均衡化(考)(习题第四章 6 题,如下示例)与规定化

数字图像处理知识点与考点(经典)

数字图像处理知识点与考点(经典)
答: Laplacian 算子进行检测边缘是利用阶跃边缘灰度变化的二阶导数特性,根据边缘点是零交叉点来检测图像边缘位 置。 它对应的模板为 -1 -1 -4 1 -1
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。

哈工大数字图像处理知识点总结

哈工大数字图像处理知识点总结

1. 引言1.1图像的概念图像:是对客观存在的物体的一种相似性的、生动性的模仿或描述,是一种不完全的、不精确的,但在某种意义上是适当的表示。

也是对客观存在的物体的某种属性的描述。

(非所见即所得,对事物不能完全描述)1.2数字图像的起源与应用1.3 数字图像处理的概念●图像的类型:从图像生成角度:物理图像(可见图像(光学图像)、不可见图像(红外)、数学图像等)从照明角度:多光谱图像(特指不可见光谱)和单光谱图像(激光);从人眼视觉特点上:可见图像、不可见图像。

从波段多少分为:单波段(每点只有一亮度值)、多波段(每点不只一特性如红绿蓝光谱图像)和超波段图像。

从图像空间坐标和明暗程度的连续性:模拟图像、数字图像(空间坐标和灰度均不连续,用离散的数字表示)。

●图像的表现形式●图像的属性:构成数字图像的要素,灰度坐标图像的属性:1.对比度:灰度差别 0~255(256个灰度级)2. 灰度分辨力:适于人眼3.空间分辨力:越高越好4.放大率对比度与灰度的关系:量化?灰度量化最高、最暗差值尽可能大。

减少灰度级一般会提高图像的对比度。

构成数字图像的要素:地址(坐标)和灰度值●数字图像的处理概念及三种分类:处理\分析\理解操作对象:狭义数字图像处理:图像——图像图像分析:图像——数据(特征值)图像理解:数据——概念狭义图像处理强调图像之间进行变换,指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

图像分析是对图像中感兴趣的目标进行检测的测量,从而建立对图像的描述,是从图像到数值或符号的过程。

经分割和特征提取,把原来以像素构成的图像转变成比较简洁的非图像形式的描述。

图像理解研究图像中各目标的性质和它们之前的相互联系,并得出对图像容含义的理解以及对原来客观场景的解译,人而指导和规划行动●数字图像的运算形式:全局、局部、点,串行、并行全局:快速傅立叶变换局部:点运算:对于一幅输入图像,经过点运算产生一幅输出图像,后者的每个像素的灰度值仅由相应输入像素的值决定(对比度增强,对比度拉伸,灰度变换)串行:后一像素输出结果依赖于前面像素处理的结果,并且只能依次处理各像素而不能同时对各像素进行相同处理的一种处理形式。

数字图像处理课件ppt

数字图像处理课件ppt
几何变换
几何变换是对图像进行形状、大小、位置等变换的过程。常见的几何变换包括 平移、旋转、缩放、扭曲等。这些变换可以通过矩阵运算来实现。
空间滤波
空间滤波是在图像上应用滤波器来改变图像的像素值。常见的空间滤波包括均 值滤波、中值滤波、高斯滤波等。这些滤波器可以用于去除噪声、增强边缘等 操作。
数字图像处理算法
01
计算机视觉
实现机器视觉,进行目标检测、识 别、跟踪等任务。
安全监控
利用数字图像处理技术实现安全监 控,提高监控的准确性和效率。
03
02
医学影像分析
对医学影像进行各种处理,以辅助 医生进行疾病诊断和治疗。
遥感影像处理
对遥感影像进行各种处理和分析, 以提取有用的地理信息。
04
数字图像处理基础
02
知识
特定目标分割
采用特定目标检测和跟踪技术,实现特定目 标的分割。
数字图像处理实践
04
使用Python进行图像处理的基本步骤和常用库
01
02
03
04
05
安装Python和相 导入图像 关库
图像预处理
图像分析
结果可视化
为了使用Python进行图像 处理,需要先安装Python 解释器和相关的图像处理 库,如OpenCV、Pillow等 。
人脸识别
人脸识别是在人脸检测的基础上,对检测到的人脸进行特征提取和比对,从而识别出不同的人脸。人脸识别算法 通常采用深度学习模型,如卷积神经网络(CNN)或循环神经网络(RNN)。
车牌识别系统
车牌定位
车牌定位是车牌识别系统的第一步,其 目的是在给定的图像中找到车牌的位置 和大小。车牌定位算法通常采用基于颜 色和形状的方法,结合图像处理技术进 行实现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于f(x,y)的值是能量的记录 故其是非负有界的实数。 由于f(x,y)的值是能量的记录,故其是非负有界的实数。 的值是能量的记录, 综上,因为人的视野有限,所以,人看到的平面图像是一个 综上,因为人的视野有限,所以, 二元、有界、非负的连续(指模拟光学图像)函数。 二元、有界、非负的连续(指模拟光学图像)函数。
14
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
空间分辨率
1、采样点数
M M N ↑
(采样间隔 ↓ ) 空间分辨率↑ 空间分辨率↑ ∆y
∆x
2、G不变, N ↓ 图像中各细节区域边缘出现“棋盘- 图像中各细节区域边缘出现“棋盘- 马 赛克”效应,即像素粒子变粗。 赛克”效应,即像素粒子变粗。
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
非均匀采样
– 灰度级变化大区域精确采样,平滑区域粗采样。 灰度级变化大区域精确采样,平滑区域粗采样。
非均匀量化
– 灰度级变化剧烈处,人眼分辨力差,边界附近 灰度级变化剧烈处,人眼分辨力差, 较少灰度级; 较少灰度级; – 平缓区域较多灰度级,避免假轮廓 平缓区域较多灰度级,
7
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 计算机中数字图像的表示
I = f (m, n)

I = f ( x, y ) 模拟光学图像的数字化
结果。 结果。 在计算机中可用一矩阵表示,其中 在计算机中可用一矩阵表示,
0 ≤ m ≤ M − 1,0 ≤ n ≤ N − 1
f(m,n)称为图像元素,简称像素 pixel) 其取值为灰度 f(m,n)称为图像元素,简称像素(pixel),其取值为灰度 像素( 称为图像元素 grey),一幅图像的灰度种类称为灰度级 ),一幅图像的灰度种类称为灰度级( level)。 (grey),一幅图像的灰度种类称为灰度级(grey level)。
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
265x180
133x90
66x45
33x22
17
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 幅度分辨率
1、G ↑ 图像幅度分辨率↑ 图像幅度分辨率↑;
2、M、N不变, G↓ 灰度渐变成突变,出现虚假轮廓 不变, 灰度渐变成突变, 有木刻画效果)。 (有木刻画效果)。
9
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 一幅图像必须要在空间 灰度上都离散化才能被计 一幅图像必须要在空间和灰度上都离散化才能被计 空间和 算机处理。 算机处理。
空间坐标的离散化
灰度的离散化
空间采样
灰度量化
问题: 问题: 采样频率(密度)取多大合适? 采样频率(密度)取多大合适? 采样 以多少个等级表示样本的亮度值为最好? 以多少个等级表示样本的亮度值为最好? 量化
12
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
图像的量化
– 取值的数字化被称为图像灰度级量化 – 量化处理:将f 映射到 的处理 量化处理: 映射到Z的处理 – Z的最大取值,确定像素的灰度级数 = 2m, 的最大取值, 的最大取值 确定像素的灰度级数G 如256
f
13
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 分辨率变化对图像的影响 概念 1、图像分辨率: 区分细节的程度; 图像分辨率: 区分细节的程度; 2、影响因素:采样点数(M,N)和灰度级数。 影响因素: 灰度级数。
11
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
图像的采样
–空间坐标 空间坐标(x,y)的数字化被称为图像采样 空间坐标 的数字化被称为图像采样 –确定水平和垂直方向上的像素个数 、 M 确定水平和垂直方向上的像素个数N 确定水平和垂直方向上的像素个数
M
N
实际中为了便于计算机处理,通常取 实际中为了便于计算机处理,通常取M=2m, N=2n
2
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
以CCD技术为核心,目前图象获取设备有黑白摄象机、彩色 CCD技术为核心,目前图象获取设备有黑白摄象机、 技术为核心 摄象机、扫描仪、数字相机等,性能与价格主要取决于CCD CCD的 摄象机、扫描仪、数字相机等,性能与价格主要取决于CCD的 规格,如尺寸等。 规格,如尺寸等。 除了这些常见的类型外, 除了这些常见的类型外,目前有许多厂商提供各种其它的 专用设备,如显微摄象设备、红外摄象机、高速摄象机、 专用设备,如显微摄象设备、红外摄象机、高速摄象机、胶片 扫描器等等。 扫描器等等。 此外,遥感卫星、 此外,遥感卫星、激光雷达等设备提供其它类型的数字图 象。
8
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 一幅M 个像素的数字图像, 一幅M×N个像素的数字图像,其像素灰度值可以用M 表示: 行、N列的矩阵G表示:
g11 g12 L g1N g g L g 2N 21 22 G= M M M g M 1 g M 2 L g MN
18
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
不同量化级别对图像质量的影响 图 不同量化级别对图像质量的影响 原始图像(256 (256色 量化图像1(64 1(64色 量化图像2(32 2(32色 (a) 原始图像(256色)(b) 量化图像1(64色)(c) 量化图像2(32色) 量化图像3(16 3(16色 量化图像4(4 4(4色 量化图像5(2 5(2色 (d) 量化图像3(16色)(e) 量化图像4(4色) (f) 量化图像5(2色) 19
一般都采用均匀采样和量化,特殊用途才会用 一般都采用均匀采样和量化, 到非均匀采样和量化。 到非均匀采样和量化。
20
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
个样点, 假定图像取M×N个样点,量化等级数为G =2n, 则存 储一幅数字图像所需的位数为
B = M × N × n(bit )
I = f ( x, y )
6
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 图像的特点: 图像的特点:I = f ( x, y )
图像在某点处的函数值称为图像 在该点的灰度值或亮度。 在该点的灰度值或亮度。
1. 空间有界: − L x ≤ x ≤ L x , − L y ≤ y ≤ L y 空间有界: 2. 亮度有界: 亮度有界: 0 ≤ f ( x, y ) ≤ A
f (0, M −1) L f (1, M −1) L M L f (N −1, M −1) L
23
计算机图像数据处理
灰灰灰灰 数数数
1 1 1 1 1 1 1 1 1 2 5 6 6 5 4 2 2 7 8 8 8 8 8 6 4 8 5 5 7 4 3 1 4 8 5 6 5 1 1 1 2 7 8 8 4 6 6 1 1 2 6 6 2 6 6 1 1 1 1 1 1 1 1 1
5
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
由于 运动图像可用(静止)图像序列表示; 运动图像可用(静止)图像序列表示; 彩色图像可以分解成三基色图像; 彩色图像可以分解成三基色图像; 三维图像可由二维重建。 三维图像可由二维重建。 本课程主要研究静止 平面、黑白图像 静止、 图像, 本课程主要研究静止、平面、黑白图像,即
4
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
图像的数学表示: 图像的数学表示: 一幅图像所包含的信息首先表现为光的强度, 一幅图像所包含的信息首先表现为光的强度,即一幅图像可看成是空间 各个点坐标上的光强度i的集合。其普遍数学表达式为: 各个点坐标上的光强度i的集合。其普遍数学表达式为:
n B = M × N × ( Byte) 8
21
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
用一系列计算机指令来表示和 描述一幅画,如画点、画线、 描述一幅画,如画点、画线、 画曲线、画圆、画矩形等。 画曲线、画圆、画矩形等。
矢量图法
黑白图像 640×480 ×1bit=307200bit=37.5KB
15
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述
不同采样点数对图像质量的影响 图 不同采样点数对图像质量的影响 原始图像(256 256)( (256× 采样图像1(128 128)( 1(128× 采样图像2(64 2(64× (a)原始图像(256×256)(b)采样图像1(128×128)(c) 采样图像2(64×64) 采样图像3(32 3(32× 采样图像4(16 4(16× 采样图像5(8 8) 5(8× (d)采样图像3(32×32) (e)采样图像4(16×16) (f) 采样图像5(8×16
I = f ( x, y , z , λ , t )
彩色/ 它可以代表一幅运动的(t)、彩色/多光谱(λ)、立体(x,y,z)图 像。其中 静止图像: 静止图像: 黑白图像: 黑白图像: 平面图像: 平面图像:
I = f ( x, y , z , λ )
I = f ( x, y , z , t ) I = f ( x, y , λ , t )
10
图像获取、图像的数字化、 图像获取、图像的数字化、数字图像的描述 采样定理: 采样定理:
若函数f(x,y)的傅立叶变换 若函数f(x,y)的傅立叶变换F(u,v)在频域中的一个有限区域外处 的傅立叶变换F(u,v)在频域中的一个有限区域外处 处为零, 为其频谱宽度, 处为零,设uc和vc为其频谱宽度,只要采样间隔满足条件 ∆x<=1/2uc ,∆y<=1/2 vc 就能由f(x,y)的采样值 (x,y)精确的 无失真地重建f(x,y)。 的采样值f 精确的、 就能由f(x,y)的采样值fs(x,y)精确的、无失真地重建f(x,y)。
相关文档
最新文档