数列求和学案案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 数列求和(导学案)
【导入】同学们,前面我们学习了等差数列、等比数列及其前n 项和,那么对于非等差、等比数列求和该如何求呢?本节课一起来学习数列求和。
【学习目标】
1. 熟练掌握等差、等比数列的求和公式。
2. 掌握非等差、等比数列求和的几种常见方法
【问题组】
1. 数列求和有几种方法?
2. 各种求和方法中的通项公式有什么特点?
【学法指导】现在看《与名师对话》102页知识梳理,体会数列求和的各种方法适用什么样的数列通项,时间为5分钟。
【自学】按规定的时间完成问题组。
【课堂训练】
1. 在等比数列*{}()n a n N Î中,若1411,8
a a ==
,则该数列的前20项和为
2. 11111357...24816n S =++++=
3. 111...1447(32)(31)
n S n n =
+++=创-?
4. 设函数()m f x x ax =+的导数为'()21f x x =+,则数列*1{}()()n N f x Î的前n 项和是
5. 数列{(1)}n n -的前2011项和
6. 已知2
2()1x f x x
=+,求111()()()(2)(3)(4)432f f f f f f +++++的值
7. 已知数列*{}()n a n N Î的前n 项和为n S ,且2n n a n =,则n S =
8. (2011浙江)已知数列*{}()n a n N Î的前n 项和为n S ,且2*2()n S n n n N =+?,数列{}n b 满足*24log 3,n n a b n N =+?
(1)求n a ,n b
(2)求{}n n a b 前n 项和n T
【小组互改作业】
【新问题生成】。