氧化锌纳米材料制备及应用研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米ZnO的合成及光催化的研究进展
摘要:综合叙述了以纳米ZnO半导体光催化材料的研究现状。主要包括纳米光催化材料的制备、结构性质以及应用,同时结合纳米ZnO的应用和光催化的优势阐述了后续研究工作的主要的研究方向。
关键词:纳米;光催化;应用
1.1 ZnO光催化材料的研究进展
纳米氧化锌的制备技术国内外有不少研究报道,国内的研究源于20世纪90年代初,起步比较晚。目前,世界各国对纳米氧化锌的研究主要包括制备、微观结构、宏观物性和应用等四个方面,其中制备技术是关键,因为制备工艺过程的研究与控制对其微观结构和宏观性能具有重要的影响[1]。综合起来,纳米氧化锌的化学制备技术大体分为三大类:固相法、液相法和气相法。
1.1.1固相法
固相法又分为机械粉碎法和固相反应法两大类,前者较少采用,而后者固相反应法,是将金属盐或金属氧化锌按一定比例充分混合,研磨后进行燃烧,通过发生固相反应直接制得超细粉或再次粉碎的超细粉。固相配位化学反应法是近几年刚发展起来的一个新的研究领域,它是在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定温度下热分解,得到氧化物超细粉。运用固相法制备纳米氧化锌具有操作和设备简单安全,工艺流程短等优点,所以工业化生产前景比较乐观,其不足之处是制备过程中容易引入杂质,纯度低,颗粒不均匀以及形状难以控制。
王疆瑛等人[2]以酒石酸和乙二胺四乙酸为原料,采用固相化学反应法在450℃热分解4h 得到具有纤锌矿结构的ZnO粉体,通过X射线衍射及透射电镜结果分析,合成的产物粒径均小于100nm,属于纳米颗粒范围,而且颗粒大小均匀,粒径分布较窄,并采用静态配气法对气敏特性的研究发现,对乙醇气体表现了良好的灵敏性和选择性。
1.1.2气相法
气相法是直接利用气体或通过各种手段将物质变为气体并使之在气体状态下发生物理或化学变化,最后在冷却过程中凝聚长大形成超微粉的方法。气相法包括溅射法、化学气相反应法、化学气相凝聚法、等离子体法、激光气相合成法、喷雾热分解法等。运用气相法能制备出纯度高、分散性好的纳米氧化锌粉体,但是其工艺复杂,设备昂贵,一般需要较高的温度和能耗。
赵新宇等[3]利用喷雾热解技术,以二水合醋酸锌为前驱体通过研究各操作参数对粒子形态和组成的影响,在优化的工艺条件下制得20-30nm粒度均匀的高纯六方晶系ZnO粒子。研究发现,产物粒子分解程度随反应温度的提高、溶液浓度和流量程度的降低而增大,随压力的升高先增大后略有减小,粒子形态与分解程度密切相关,只有当分解程度高于90%以上,才能获得形态规则、粒度均匀的产物粒子,并且由理论计算和实验结果的比较推断出喷雾热解过程超细ZnO粒子的形成机理为一次粒子成核-分裂机理。
1.1.3液相法
液相法制备纳米微粒是将均相溶液通过各种途径使溶质和溶剂分离,溶质形成一定形状和大小的颗粒,得到所需粉末的前驱体,热解后得到纳米微粒。液相法是目前实验室和工业广泛采用的制备纳米粉体的方法。与其他方法相比,该法具有设备简单,原料容易获得,纯度高,均匀性好,化学组成控制准确等优点,主要用于氧化物超微粉的制备。因此本课题也
就是基于此来研究几种液相法制备纳米级氧化锌粉体的机理及其工艺。液相法包括沉淀法、水解法、水热法、微乳液法、溶胶-凝胶法等。
(1)沉淀法。
沉淀法是液相化学合成高纯纳米粒子采用的最广泛的方法。它是把沉淀剂加入金属盐溶液中进行沉淀处理,再将沉淀物加热分解,得到所需的最终化合物产品的方法。沉淀法可分为直接沉淀法和均匀沉淀法。直接沉淀法优点是容易制取高纯度的氧化物超微粉,缺点是易于产生局部沉淀不均匀。为避免直接添加沉淀剂产生局部浓度不均匀,可在溶液中加入某种物质使之通过溶液中的化学反应,缓慢的生成沉淀剂,即均匀沉淀法,此法可获得凝聚少、纯度高的超细粉,其代表性的试剂是尿素。
祖庸等[4]以硝酸锌为原料,尿素为沉淀剂,采用均匀沉淀法分别制得了粒径为8-60nm 的球形六方晶系ZnO粒子,粒度均匀、分散性好。并且为了考察小试数据的可靠性和进一步给中试提供数据,进行了28倍和168倍放大试验,产品收率达89%,为进一步工业化打下良好的基础。
(2)溶胶-凝胶法。
溶胶-凝胶法是将金属醇盐(如醋酸锌等)溶解于有机溶剂(如乙醇)中,并使醇盐水解,聚合形成溶胶,溶胶陈化转变成凝胶,经过高温锻烧制得ZnO纳米粉体。也可在真空状态下低温干燥,得到疏松的干凝胶,再进行高温锻烧处理。该法制备的氧化物粉末粒度小,且粒度分布窄,可以通过控制其水解产物的缩聚过程来控制聚合产物颗粒的大小。但由于金属醇盐原料有限,因此也出现了一些应用无机盐为原料制备溶胶的方法。
丛昱等[5]以草酸锌为原料、柠檬酸为络合剂,通过溶胶-凝胶法对Zn(OH)2凝胶在400℃下锻烧2h获得结晶型圆球状六方晶型纳米级ZnO超细粉,纯度为99.25%(wt),平均粒径为30nm,粒径分布范围窄。曹建明[6]分别以草酸、柠檬酸和柠檬酸为络合剂,利用溶胶-凝胶法制备了ZnO超细粉体。通过实验摸索出制备小粒径ZnO的最佳工艺条件为:草酸浓度0.3mol/L,乙酸锌浓度0.2mol/L,它们之间的摩尔比为3:1,经分析此时所得ZnO微粉为六方晶型,平均晶粒尺寸在15.3nm左右,从激光散射测试结果得知,ZnO纳米颗粒在水溶液中存在着软团聚,团聚体最小尺寸为79.4nm,并且对丁烷气体表现出良好的敏感性,可用于制备丁烷传感器。
(3)微乳液法。
微乳液法是两种互不相容的溶剂,在表面活性剂作用下形成乳液,在微泡中经成核、凝结、团聚、热处理后得到纳米微粒。与其他化学法相比,微乳液法具有微粒不易聚结,大小可控且分散性好等优点。
崔若梅等[7]以无水乙醇作辅助表面活性剂,Zn(CH3COO)2·2H2O为原料,添加到十二烷基苯磺酸钠、甲苯、水和吐温80、环己烷、水自发生成的两种不同的微乳液体系中制备出平均粒径位25nm和30nm的超细ZnO粒子,粒度分布均匀,样品纯度也较高。冯悦兵等[8]也采用不同的微乳体系合成了粒径在10-30nm之间的超细ZnO球形粒子,粒度均匀,分散性好,与普通氧化锌相比,粒径减小了一个数量级,并具有特殊的光学性能,即在可见光区有良好的透光率,在紫外区表现出强的宽带吸收,特别是长波紫外线有很强的吸收能力。杨华等[9]采用双微乳液混合法制备了纳米ZnO粉体,经研究分析,所得产物为球形六方晶系结构,平均粒径27nm,粒径尺寸分布范围较窄,99%的颗粒在纳米级范围。另外,还有人用超声辐射沉淀法、水解加热法、超临界流体干燥法等液相法也制得了纳米氧化锌粉体。
随着纳米材料科学技术的进一步发展,新的制备合成工艺被不断的提出并得到利用。国外对纳米氧化锌的研究相对已比较成熟,许多厂家已将先进的技术实现了产业化,制造出高品质的纳米氧化锌产品。目前,山西丰海纳米科技有限公司作为全国最大的纳米氧化锌专业生产企业,现生产能力己达5000 t/a,二期工程正在扩建阶段,完成后生产能力将达到30000