光学信息技术原理及应用(第二版)课后答案

合集下载

陈家璧版光学信息技术原理及应用习题解答(7-8章)

陈家璧版光学信息技术原理及应用习题解答(7-8章)

陈家璧版光学信息技术原理及应用习题解答(7-8章)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第七章 习题解答1. 某种光盘的记录范围为内径80mm,外径180mm 的环形区域,记录轨道的间距为2um.假设各轨道记录位的线密度均相同记录微斑的尺寸为um,试估算其单面记录容量. (注: 内、外径均指直径)解: 记录轨道数为 25000002.0280180=⨯-=N单面记录容量按位计算为 ∑=⨯≈⨯+=Nn n M 110107.10006.0)002.040(2π bits = 17 Gb.按字节数计算的存储容量为 2.1GB.2. 证明布拉格条件式(7-1)等效于(7-17)式中位相失配= 0的情形, 因而(7-18)式描述了体光栅读出不满足布拉格条件时的位相失配。

证明: 将体光栅读出满足布拉格条件时的照明光波长(介质内) 和入射角 (照明光束与峰值条纹面间夹角)分别记为0和θ0, 则根据布拉格条件式(7-1)有: 2sin θ0= 0 其中为峰值条纹面间距.对于任意波长λa (空气中) 和入射角θr (介质内), 由(7-17)式, 位相失配 δ 定义为:24)cos(n K K ar πλθφδ--=其中n 0为介质的平均折射率, K = 2π/Λ为光栅矢量K 的大小,φ为光栅矢量倾斜角,其值为 22πθθφ++=sr ,θr 为再现光束与系统光轴夹角 (参见图7-9).当 δ = 0 时,有2422cos n K K a r s r πλθπθθ=⎪⎭⎫ ⎝⎛-++ 即:Λ=Λ=⎪⎭⎫ ⎝⎛-2422sin 0λππλθθn s rλ为介质中的波长. 由于角度2sr θθ-恰为照明光与峰值条纹面的夹角θ, ∑ ©亦即布拉格条件2Λ sin θ = λ.当读出光偏离布拉格角θo 和布拉格波长λo 的偏移量分别为∆θ和∆λ时,有[]0200200002044sin )sin(cos )cos( 4)()(cos n K n K K K n K K πλπλθθφθθφπλλθθφδ∆--∆--∆-=∆+-∆+-=利用布拉格条件式(7-17), 以及∆θ和∆λ很小时的近似关系 cos ∆θ≈1 和 sin ∆θ≈∆θ, 立即可得:δ =∆θK sin(φ-θ0) - ∆λK 2/4πn 0 即(7-18)式 原题得证。

陈家璧版-光学信息技术原理及应用习题解答(4-7章)

陈家璧版-光学信息技术原理及应用习题解答(4-7章)

第四章习题4.1若光波的波长宽度为λΔ,频率宽度为νΔ,试证明:λλννΔΔ=。

设光波波长为nm 8632=.λ,nm 8-10⨯2=λΔ,试计算它的频宽νΔ。

若把光谱分布看成是矩形线型,那么相干长度?=c l 证明:参阅苏显渝,李继陶《信息光学》P349,第4.1题答案。

421.510c λνλ∆∆==⨯赫,32010()c c cl ct m ν===⨯∆4.2设迈克尔逊干涉仪所用的光源为nm 0589=1.λ,nm 6589=.2λ的钠双线,每一谱线的宽度为nm 010.。

(1)试求光场的复自相干度的模。

(2)当移动一臂时,可见到的条纹总数大约为多少?(3)可见度有几个变化周期?每个周期有多少条纹?答:参阅苏显渝,李继陶《信息光学》P349,第4.2题答案。

假设每一根谱线的线型为矩形,光源的归一化功率谱为()^1212rect rect νννννδνδνδν⎡--⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦G (1)光场的复相干度为^1()()exp(2)1sin ()exp(2)[1exp(2)]2r j d c j j τνπντνδντπντπντ∞==+∆⎰G 式中12ννν-=∆,复相干度的模为ντπδνττ∆=cos )(sin )(c r 由于νδν∆ ,故第一个因子是τ的慢变化非周期函数,第二个因子是τ的快变化周期函数。

相干时间由第一个因子决定,它的第一个零点出现在δντ1=c 的地方,c τ为相干时间,故相干长度δλλδλλδντ22≈===cc l c c 。

(2)可见到的条纹总数589301.05893====δλλλcl N (3)复相干度的模中第二个因子的变化周期ντ∆=1,故可见度的变化周期数601.06==∆=∆==δλλδννττc n 每个周期内的条纹数9826058930===n N 4.3假定气体激光器以N 个等强度的纵模振荡,其归一化功率谱密度可表示为()()()()∑21-21--=+-1=N N n n NνννδνΔgˆ式中,νΔ是纵模间隔,ν为中心频率并假定N 为奇数。

信息光学第二版课后答案-苏显渝版可修改全文

信息光学第二版课后答案-苏显渝版可修改全文

4如图所示的等腰直角三角形孔径放在透镜的前焦平面上,以单 位振幅的单色平面波垂直照明,试求透镜后焦面上的夫琅和费衍 射图样的复振幅分布。
y0 y0 x0
U(x, y)
1
jf
exp(
jkf
) e xp
j
k 2f
(x2
y
2
)
45 0 45
x0 a
x0
2
U0( x0 ,
y0 ) exp
0
其它
1.5 计算下列一维卷积
(1) (2 x 3) rect( x 1)
2
(2) rect( x 1) rect( x 1)
2
2
(3) com b( x) rect( x)
解(1)
(1) (2 x 3) rect( x 1) 1 ( x 3 ) rect( x 1)
2 z
2z
I
(0,0,
z
)
4
sin2
a 2
2
z
1 exp( j2x) 2 j exp( jx)sin x
2.1 焦距f=500mm,直径D=50mm的透镜将波长 632.8nm
的激光束聚焦,激光束的截面D1=20mm。试求透镜焦点处 的光强是激光束光强的多少倍?
解:设入射激光束的复振幅A0,强度为 I0 A02 通过透镜后的出
(1)
sinc4( x)
( ) ( )d
( )
1
1
0 (1 )2d 1 (1 )2d 2
1
0
3
(2)
sinc2( x)cos xdx
1 ( ) ( 1 )d 1 ( ) ( 1 )d
2
2

光学信息技术原理及应用-菲涅尔和夫琅和费衍射

光学信息技术原理及应用-菲涅尔和夫琅和费衍射

df xdf y
jz
exp
j
z
x
y
因而
U (x, y, z) exp( jkz)
jz
U (x ,y ,) exp{ j
z
[(x
x
)
(y
y
)
]}dx dy
该式与用惠更斯—菲涅尔—基尔霍夫标量理论导出的菲涅耳衍射公式 完全一样,更常用的菲涅耳衍射公式如下
U (x, y) exp( jkz) exp[ j k (x y )
)]
夫琅和费衍射与傅里叶变换
19 0 6
夫琅和费衍射: 在菲涅耳衍射公式中,对衍射孔采取更强的限制条
件,即取
z
1 2
k ( x02
y
2 0
)
则平方位相因子在整个孔径上近似为1,于是
U (x, y, z) exp( jkz) exp[ j k (x 2 y 2 )]
jz
2z
2
U (x0 , y0 ,0) exp[ j z (xx0 yy0 )]dx0dy0
上式的四重积分是类似基尔霍夫公式的一个精确的表达式,尽 管它不含三角函数,但是使用起来仍很不方便。下面还是要按 照菲涅耳的办法进行化简,首先对不同传播距离衍射的情况做 个直观的说明
按传播距离划分衍射区
19 0 6
用角谱衍射理论导菲涅耳公式(1)
19 0 6
假定孔径和观察平面之间的距离远远大于孔径的线度,并且只 对轴附近的一个小区域内进行观察,则有
这就是夫琅和费衍射公式。在夫琅和费近似条件下,观察面上的场 分布等于衍射孔径上场分布的傅里叶变换和一个二次位相因子的 乘积
对于仅响应光强不响应位相的一般光探测器,夫琅和费衍射和光场

陈家璧版_光学信息技术原理及应用习题解答(1-3章)

陈家璧版_光学信息技术原理及应用习题解答(1-3章)

第一章习题1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。

若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。

并画出输出函数及其频谱的图形。

答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。

1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果La 1<,Wb 1<,试证明()()y x f y x f bx a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1证明:(){}(){}(){}()()(){}(){}()y x,f bxsinc a x sinc ab bf afrect y x f y x,f bfaf rect y x f W f L f rect y x f y x,f yxyx y x *⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F,,F ,,F F 1-(2)如果La 1>, Wb 1>,还能得出以上结论吗?答:不能。

因为这时(){}(){}()yx yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。

1.3 对一个空间不变线性系统,脉冲响应为()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。

(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x fy x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F FF F F ,F ,F F,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫⎝⎛75⎪⎭⎫⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect xrect x cos f rect f sinc 75f sinc x cos y 7x sin y rect xrect x cos y x h y x fy x g x yxππδπF FF F F ,F ,F F,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75fsinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g yxx y xx y xx x x y xδδδδδπδπF FFF FF F F,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f ff rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comby x g y x y x y x y x y xx y x y x y x y x xy x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F,.,.,.,F FF F F,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫⎝⎛331=对下述传递函数利用图解方法确定系统的输出。

光学信息技术原理及应用(第二版)课后答案汇总

光学信息技术原理及应用(第二版)课后答案汇总

第一章 习题解答1.1 已知不变线性系统的输入为()()x x g c o m b =系统的传递函数⎪⎭⎫⎝⎛b f Λ。

若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。

并画出输出函数及其频谱的图形。

答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。

1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1) 如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2) 如果L a 1>, Wb 1>,还能得出以上结论吗?答:不能。

因为这时(){}(){}()y x yx bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。

1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。

(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫ ⎝⎛331= 对下述传递函数利用图解方法确定系统的输出。

光学信息技术原理及应用课后答案

光学信息技术原理及应用课后答案

第一章 习题解答1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛bf Λ。

若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。

并画出输出函数及其频谱的图形。

答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。

1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。

因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。

1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。

(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。

物理光学与应用光学第二版课件及课后习题答案

物理光学与应用光学第二版课件及课后习题答案

由式(1-12)
2 所以有: ( E ) ) E
由式(1-16)得:
2
即 E 0
E 2 E 2 t
(1-17)
同理对式(1-15)两边 取旋度,得
2 2 D B E H ( D) 2 2 t t t t
即:
E E 2 t
2
(1-16)
利用矢量微分恒等式
2 ( A) ( A) A
有:
2 ( E ) ( E ) E
D 0
可知 E 0
同理,利用矢量微分恒等式,可得:
2 有以上两式得: H H 2 t
2
2 ( H ) H
(1-18)
v 令
1

可将式(1-17)式(1-18)变为:
2 1 2E 2 E 2 2 0 (1-19) 2 H 1 H 0 v t v 2 t 2
4.波动方程
麦克斯韦方程组描述了电磁现象的变化规律, 指出随时间变化的电场将在周围空间产生变化的磁 场,随时间变化的磁场将在周围空间产生变化的电 场,变化的电场和磁场之间相互联系,相互激发, 并且以一定速度向周围空间传播。因此,时变电磁 场就是在空间以一定速度由近及远传播的电磁波。
一、 电磁场波动方程:
D H j t
符号的意义:
哈密顿算符:
i j k x y z
具有矢量和求导的双重功能 Dx Dy Dz 散度: D D
x y z

光学信息技术原理及应用_26840

光学信息技术原理及应用_26840

;
x f f ff a , y f 0
;

x f f ff a , y f 0
另一解法续六
1 9 0 6
(2)使像平面出现条纹时,物体透射光场的频谱中至少要有两项能 够通过透镜的出瞳,射到物面上成像。显然要求
x f f , y f 0
;
x f f ff a , y f 0
在非相干照明条件下,系统的截止频率2ρ c大于物的基频2/b,所 以零频和基频均能通过系统参与成像。于是在像面上仍有图像存在 非相干照明比相干照明好
第(2)小题比较结果
x
1 9 0 6
对于相干照明,理想像的复振幅分布为 cos2 i ,其频率为 b a 1/b 。按题设系统的截止频率为 c ,且1/b<ρ c 。因此这 d i 个呈余弦分布的复振幅能不受影响地通过此系统成像。
1 9 0 6
解答续四
在达到前面给出的最大值,即 时,几何像的傅氏变 换中的三项只剩下两项,这两个 函数与光瞳函数的乘积还是 函数,而且因为光瞳函数在光瞳范围内取值为一,两个 函数前 的系数也不变 进一步作反变换可以得到像面上的光场分布为
aK2 d i2 U i xi , yi F F U i xi , yi F 2
t1 ( x) cos2
1 9 0 6
(2)物体的复振幅透过率为 式中
d i d i a b b
t 2 ( x) cos 2
b
x b
第(1)小题比较结果
采用相干照明,对于半径为a的圆形出瞳,其截止频率为 a c d i 题设条件λ di/b<a<2λ di/b可得
1 9 0 6
解答

陈家璧版-光学信息技术原理及应用习题解答(9-11章)

陈家璧版-光学信息技术原理及应用习题解答(9-11章)

第九章习题解答9-1. 用白光再现彩虹全息时,如果彩虹全息有实狭缝象,在狭缝实象处观察全息图,人眼将能观察到单色的全息象,试分析人眼在狭缝前后位置时的全息象的颜色分布情况。

如彩虹全息再现的是虚狭缝,再分析人眼观察到的全息象情况。

答:在图示的情况下,物的两个端点为A 和B 点,它们被全息记录在一条线区域上,当白光再现时,这一区域的衍射光是色散的,长波长的衍射角较大,而短波长的衍射较小,。

按图示的光路结构, A 点的长波长沿AM 方向衍射,短波长沿AN 方向衍射,B 点的长波长沿BN 方向衍射,短波长沿BM 方向衍射。

假设沿AP 和BP 方向衍射的波长相同,那么人眼在P 处观察将看到单色象,当眼睛靠近全息图时,将看到象的上方偏蓝,而下方偏红,反之则相反。

对于虚狭缝的情况,如上图所示,P 点是某一衍射波长的虚狭缝,A 和B 两点是两线全息图,象上的两点与它们对应,AM 是线全息图A 最短波长的衍射方向,BM 是线全息图B 的最长波长衍射方向。

显然,眼睛在M 点观察,将能看到A 、B 之间的所有象点,但它们的颜色呈光谱色分布,在图示情况下,上部是紫色,下部是红色。

眼睛观察到的象的范围由眼睛离全息图的距离决定,离得越远,观察到的范围越大。

9-2. 用白光点光源再现彩虹全息时,人眼将能观察到由光谱色组成的单色象。

如果用白光线光源作为再现光源,线光源的扩展方向与狭缝方向垂直,这时观察到的是消色差的黑白象,试解释其原因。

答:线光源可以看成由无数个点光源组成,每一个点光源都按光谱色排列形成一组彩色狭缝,线光源上不同点形成的狭缝的位置各不相同,它们在与狭缝垂直的方向上平移。

这无数个狭缝相互迭合在一起,使人眼在该处观察时,无数个不同波长的再现象重合在一起,这也就形成了消色差的黑白象。

9-3. 在一步法彩虹全息记录光路中,物的大小为10cm ,人双眼的瞳孔间距为6.5cm ,透镜的孔径为20cm ,对物体1:1成像,如狭缝距全息图30cm ,要求人双眼能同时看见完整的象,试计算成像透镜的焦比。

《光学信息处理》习题解答

《光学信息处理》习题解答
光 信 息 处 理 习 题 解 答
《光学信息技术原理及应用》习题解答
第一章
1.1 已知线性不变系统的输入为
二维线性系统分析
g ( x) = comb( x)
系统的传递函数为三角形函数 Λ ( 输出函数及其频谱的图形。
f ) 。若取(1) b=0.5; (2) b=1.5,求系统的输出 g ' ( x ) ,并画出 b
故 f ( x, y ) ∗ h( x, y ) = f ( x, y ) ,即 (2) 如果 a >
1 x y sinc( )sinc( ) * f ( x, y ) = f ( x, y ) 。 ab a b
1 1 ,因 f ( x, y ) 是限带函数,在频域内, F ( f x , f y ) 在长、宽分别为 L 、W 的矩 ,b > L W
所以, G ' ( f x ) =
n = −∞
∑δ ( f
+∞
x
) ,等式两边取傅立叶变换,
g ' ( x ) = F −1 [δ ( f x )] = 1 。
g ' ( x ) 的函数图形和频谱图如下:
图 1-1
图 1-2
第 1 页 共 61 页
《光学信息技术原理及应用》习题解答
(2) b = 1.5 , G ( f x ) =
fx ) ,在 f x 方向,滤波器仅使 f x < 3.5 和 f x > −3.5 的频 7
其中后两项以 4 为中心, H ( f x , f y ) = rect (
率分量通过,又 sinc[75( f x − 4)] 和 sinc[75( f x + 4)] 宽度很窄,可以认为完全不能通过滤波器。于是

陈家璧版-光学信息技术原理及应用习题解答(8-11章)

陈家璧版-光学信息技术原理及应用习题解答(8-11章)

习 题8.1利用4f 系统做阿贝—波特实验,设物函数t (x 1,y 1)为一无限大正交光栅 ⎥⎦⎤⎢⎣⎡*⨯⎥⎦⎤⎢⎣⎡*=)c o m b ()r e c t ()c o m b (r e c t (),(21212111111111b y a y b b x a x b y x t其中a 1、a 2分别为x 、y 方向上缝的宽度,b 1、b 2则是相应的缝间隔。

频谱面上得到如图8-53(a )所示的频谱。

分别用图8-53(b )(c )(d )所示的三种滤波器进行滤波,求输出面上的光强分布(图中阴影区表示不透明屏)。

图8.53(题8.1 图)解答:根据傅里叶变换原理和性质,频谱函数为 T ( f x , f y ) = ℱ [ t ( x 1 , y 1 )]= { 11b ℱ [)rect(11a x ]·ℱ [)comb(11b x ] } *{21b ℱ [rect(21a y ·ℱ [comb(21b y ]}将函数展开得 T ( f x , f y ) ={}•••++++)δ()sinc()δ()sinc()sinc(111111111b 1b 1-x x x f b a f b a f a b a*{}•••++++)δ()sinc(δ()sinc()sinc(222222222b 1b 1-y y y f b a f b a f ab a(1)用滤波器(b )时,其透过率函数可写为1 f x = + 1/ b 1 f y = 0F ( f x , f y ) =0 f x ≠ 1/ b 1 f y = 任何值 滤波后的光振幅函数为 T ·F =[])δ()δ()sinc(111111b 1b 1-++x x f f b a b a输出平面光振幅函数为 t ’(x 3,y 3)= ℱ -1[ T ·F ]= )]}(exp [(sinc(13131111b 2-b 2x j x j b a b a ππ+=)(cos)sinc(131111b 22x b a b a π•输出强度分布为 I (x 3,y 3)=)(cos )(sinc 1321122121b 24x b a b a π•=)cos()(sinc131122121b 42x b a b a π• - C其中C 是一个常数,输出平面上得到的是频率增加一倍的余弦光栅。

《光学信息技术原理及应用》(第2版)教学课件 光学信息处理第1讲B

《光学信息技术原理及应用》(第2版)教学课件 光学信息处理第1讲B

• 函数作为基元函数的情况。根据 函数的筛选性质(A.7,或
《积分变换》P16中1.12式),任何输入函数都可以表达为
fx1,yf,x,ydd
• 积分就是“相加”,筛选性质表明任意函数都可以表示为无穷多的
函数的和,每个 函数的“大小”被输入函数“调制”。
• 函数通过系统后的输出用算符可以表示为
gx2,y L f, x ,y d d
• 对于线性系统的一个重要子类——不变线性系统,分析才变得简单
• 大多数情况下,光学系统都可以看做不变线性系统
19
练习
1、已知函数 U x A ex j2 p f0 x 求下列函数,并作出函 数图形。(1)U x 2(2) UxU*x (3)UxU*x2
2、已知函数
fx re x c 2 r te x 2 c t 求下列函数,
2
近代光学对信息时代发展的重要作用
• 20世纪40年代末提出的全息术
• 50年代产生的光学传递函数
• 60年代发明的激光器
• 70年代发展起来的光纤通信
• 80年代成为微机标准外设的光驱
• 航天航空事业中应用的空间光学,神州五号搭载的相 机拍到美国军用机场照片分辨率一米
3
信息光学的研究方法和用途
17
1.1.2 脉冲响应和叠加积分(2)
• 根据线性系统的叠加性质,算符与加(乘)法的顺序可以交换,算符 与对基元函数积分的顺序也就可以交换
g x2, y f, L x , y d d
• 定义为系统的脉冲响应函数
h x 2 , y ; , L x , y
• 得到系统输出为 “叠加积分”
7
第一章 二维线性系统分析
• 把光学系统看成二维线性系统---信息传输系统,而不 是看成一个物理的成象系统或干涉、衍射系统

陈家璧版 光学信息技术原理及应用习题解答(5-6章)

陈家璧版 光学信息技术原理及应用习题解答(5-6章)

第五章习题解答5.1两束夹角为 θ = 450的平面波在记录平面上产生干涉,已知光波波长为632.8nm ,求对称情况下(两平面波的入射角相等)该平面上记录的全息光栅的空间频率。

答案:已知:θ = 450,λ= 632.8nm求:全息光栅空间频率f x解:根据平面波相干原理,干涉条纹的空间分布满足关系式 2 d sin (θ/2)= λ其中d 是干涉条纹间隔。

由于两平面波相对于全息干板是对称入射的,故记录在干板上的全息光栅空间频率为f x = (1/d )= (1/λ)·2 sin (θ/2)= 1209.5 l /mm 答:全息光栅的空间频率为1209.5 l /mm 。

5.2 如图5.33所示,点光源A (0,-40,-150)和B (0,30,-100)发出的球面波在记录平面上产生干涉:xz图5.33 (5.2题图)(1)写出两个球面波在记录平面上复振幅分布的表达式;解答:设:点源A 、B 发出的球面波在记录平面上的复振幅分布分别为U A 和U B , 则有 ()[{]}22--22)()()/(e x p e x p A A A A A A y y x x z jk jkz a U +=()[{]}22--22)()()/(e x p e x p B B B B B B y y x x z jk jkz a U +=其中: x A = x B = 0, y A = -40, z A = -150, y B = 30, z B = -100; a A 、a B 分别是球面波的振幅;k 为波数。

(2)写出干涉条纹强度分布的表达式;I = |U A +U B |2 = U A ·U A * + U B ·U B * +U A *·U B + U A ·U B *[{]{[]}}[{]{[]}}--2---2-4--2--2--442222222222)()()/()()()/(exp )exp()()()/()()()/(exp )exp(B B B A A A B A BA B B B A A A B ABA BA y y x x z jk y y x x z jk jkz jkz a a y y x x z jk y y x x z jk jkz jkz a a a a ++•+++++•++=(3)设全息干板的尺寸为100 × 100 mm 2,λ = 632.8nm ,求全息图上最高和最低空间频率;说明这对记录介质的分辨率有何要求?解答:设全息干板对于坐标轴是对称的,设点源A 与点源B 到达干板的光线的最大和最小夹角分别为θmax和θmin,A 、B 发出的到达干板两个边缘的光线与干板的夹角分别为θA 、θB 、θA ’和θB ’,如图所示,它们的关系为θA = tg-1[z A /(-y A - 50)] ,θB = tg-1[z B /(-y B - 50)]θA ’= tg -1[z A /(y A - 50)] ,θ B ’= tg -1[z B /(y B - 50)]θmax =θ A -θB, θmin =θ B ’-θA ’根据全息光栅记录原理,全息图上所记录的 最高空间频率 f max = (2/λ)sin (θmax /2)·cos α 1 最低空间频率 f min = (2/λ)sin (θmin /2)·cos α2其中α角表示全息干板相对于对称记录情况的偏离角,由几何关系可知 cos α 1 = sin (θA+θB )/2 , cos α 2 = sin (θA ’+θB ’)/2将数据代入公式得 f max = 882 l /mm ,f min = 503 l /mm答:全息图的空间频率最高为882 l /mm ,最低为503 l /mm ,要求记录介质的分辨率不得低于900 l /mm 。

物理光学与应用光学第二版课件及课后习题答案

物理光学与应用光学第二版课件及课后习题答案
干涉条件
相干光波、有相同的频率、有恒 定的相位差、有相同的振动方向 。
双缝干涉与多缝干涉
双缝干涉
两束相干光波分别通过两个平行狭缝 后,在屏幕上产生的明暗交替的干涉 条纹。
多缝干涉
多个狭缝产生的相干光波在屏幕上产 生的明暗交替的干涉条纹。
薄膜干涉与干涉滤光片
薄膜干涉
光波在薄膜表面反射和透射时产生的干涉现象,常用于增反 膜和增透膜的设计。
摄像机的原理
摄像机通过镜头将光线聚焦在电荷耦合器件(CCD)或互补金属氧化物半导体( CMOS)传感器上,记录下动态影像。
照相机与摄像机的比较
照相机和摄像机在结构和工作原理上存在差异,但它们都是用于记录影像的光学仪器。
光学信息处理系统
1 2
光学信息处理系统的原理
光学信息处理系统利用光的干涉、衍射、全息等 原理对信息进行处理。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
光学仪器及应用
透镜与成像原理
透镜的分类
01
根据透镜的形状和焦距,可以将透镜分为凸透镜、凹透镜和凹
凸透镜等。
成像原理
02
透镜通过改变光线的传播路径,使光线会聚或发散,从而形成
实像或虚像。
像距与物距
03
透镜成像时,像距与物距之间的关系遵循“1/f = 1/u + 1/v”
干涉滤光片
利用薄膜干涉原理设计的滤光片,具有特定波长范围的透过 或反射特性。
干涉系统的应用
光学干涉仪
干涉光谱技术
利用光的干涉原理测量长度、角度、表面 粗糙度等物理量。
通过干涉原理分析物质吸收、发射和散射 光谱,用于物质成分分析和光谱测量。

最新信息光学理论与应用(第2版)

最新信息光学理论与应用(第2版)
[af(x,y)bh(x,y)]g(x,y) af(x,y)g(x,y)bh(x,y)g(x,y)
(2)复函数的卷积 (由(1)可归结为实函数的
g ( x , y ) [ f R ( x , y ) i f I 卷( x 积, y )) ] [ h R ( x , y ) i h I ( x , y ) ]
δ(x)1eixd 2
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
《信息光学》课件
上述积分形式表明: 函数可由等振幅的所有频率的 正弦波(用余弦函数表示)来合成,换言之, 函数可
分解成包含所有频率的等振幅的无数正弦波。
● 一维情形:
com bxx0n xx0nx0n (xnx0)
x na(n1 ,2,3 ,...)
《信息光学》课件 1
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
● 二维情形:
sin c
x a
,
y b
sin c
x a
s
i
n
c
y b
其中
a零点0,位b置在0
(x处m 。a,ynb)
《信息光学》课件
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章
定义1 (积分表达式)
δ(xx0,
yy0)
0
xx0, yy0 其他
-δ(xx0, yy0)dxdy1
定义2 (函数序列表达式)
xy0
N li m fN(x,y) 0 其 他
N li m
fN(x,y)dxdy1
δ(x,y)N li m fN(x,y)
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章

《光学信息技术原理及应用》(第2版)教学课件 光学信息处理第18讲

《光学信息技术原理及应用》(第2版)教学课件 光学信息处理第18讲
右眼
左眼
15
彩色全息术
单波长激光记录的全息图是单色的。彩色全息术的目的则是记录和 再现彩色三维全息图像。
彩色全息术涉及两个基本问题:三原色信息的获取和再现。
三原色信息的获取有两种方法: 一种是用含有三原色的复合激光作为光源照明彩色物体 另一种方法是对彩色二维图片进行分色处理,以黑白的三原色图 片作为全息记录的物
8
两步法和一步法记录彩虹全息比较
• 二步法优点:记录全息图的观察范围比较大 采取合适的记录光路有较大的能量利用率
缺点:二步记录制作过程比较烦琐 全息图的噪声较大
• 一步法优点:噪声小,制作步骤简单 缺点:观察范围受成像透镜相对口径限制 制作大体积物体需成本高昂的高质量大口径透镜
• 除一步法和二步法外,还有像散彩虹全息,综合狭缝法,条形散斑 屏法,零光程法,一步掩膜法等
3
白光再现全息
用白光再现全息图,会出现严重的色模糊,研究如何用白光再 现全息图像是显示全息的主要研究内容之一
实现白光再现全息通常有三种方法:像面全息;彩虹全息;反 射全息
用这些手段可制作多种类型的全息图,例如彩色全息,合成全 息,消色差全息等等
近几年来,出现了一种新的与计算机紧密结合的数字像素全息, 制作方法与常规的显示全息不同,效果很难用通常的全息技术得 到
全息技术正逐渐从实验室走向市场,全息图的大批量复制技 术起了很大作用
4
线全息图消色模糊原理
O B P
O A
P
图9 .2
设记录的物光是点光源,白光再现时,像O和O的波长分别对应A和 B。人眼看到的色散像是全息图不同区域衍射的不同波长光
如果把记录物光波的面积限制在一窄条上,仅有A进入人眼,这时人 眼看到的像是单色像O,也就是消除了色模糊
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档