09第三章泊松过程
第三章泊松过程
![第三章泊松过程](https://img.taocdn.com/s3/m/eae86249b307e87101f696d3.png)
定理 设是{N (t), t≥0}一个强度为l的泊松过程,则对任 意固定的t, N(t)服从泊松分布,即
P(N (t) = k ) = (lt)k e-l t
k!
k = 0,1, 2,L
二、泊松过程的数字特征与特征函数
1. 泊松过程的均值函数
mN (t) = E[N(t)]= lt
2. 泊松过程的方差函数
DN (t) = D[N(t)]= lt
3. 泊松过程的均方值函数
y
2 N
(t)
=
E[N
2
(t)]
=
DN
(t)
+
mN2
(t)
=
lt
+
(lt)2
4. 泊松过程的自相关函数
E(N (t1)N (t2 ))
令t2 ³ t1E{[N (t1)- N (0)][N (t2 )- N (t1)+ N (t1)]} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]+ [N(t1)- N(0)]N(t1)} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]}+ E{[N(t1)- N (0)]N (t1)} 增量独立E{[N(t1)- N(0)][N(t2 )- N(t1)]}+ E{[N(t1)- N(0)]N(t1)} 增量独立E[N (t1)- N (0)]E[N (t2 )- N (t1)]+ E{[N (t1)- N (0)]N (t1)}
mN (t) = 4t = DN (t)
RN (t1,t2 ) = 4 min(t1,t2 ) + 16t1t2 , t1,t2 Î T
CN (t1,t2 ) = 4 min(t1,t2 )
泊松过程
![泊松过程](https://img.taocdn.com/s3/m/0b5bb0c208a1284ac8504394.png)
3.1 泊松过程的定义 泊松过程的定义
• 独立增量计数过程: 独立增量计数过程: 对于t 对于 1<t2<…<tn,N(t2)-N(t1), N(t3)-N(t2), … …, N(tn)-N(tn-1)独立 独立 • 平稳增量计数过程: 平稳增量计数过程: 在(t,t+s]内(s>0),事件 发生的次数 内 ,事件A发生的次数 N(t+s)-N(t)仅与时间间隔 有关, 仅与时间间隔s有关 仅与时间间隔 有关, 而与初始时刻t无关 而与初始时刻 无关
j=0
= Pn ( t ) P0 ( h) + Pn−1 ( t ) P1 ( h) + ∑ Pn − j ( t ) Pj ( h)
j=2
n
= Pn ( t ) P0 ( h) + Pn−1 ( t ) P1 ( h) + o( h) = (1 − λ h) Pn ( t ) + λ hPn−1 ( t ) + o( h)
14
3.1 泊松过程的定义 泊松过程的定义
P0 ( t + h) − P0 ( t ) o( h ) , 故 = − λ P0 ( t ) + h h P0′( t ) 当h → 0时有 P0′( t ) = − λ P0 ( t )或 = −λ P0 ( t ) 由于 P0 (0) = P{N(0) 0} = 1 = 于是有 P0 ( t ) = e − λt
j =0
16
Pn ( t + h) = P{N ( t + h) = n}
(2)对n≥1,建立递推公式 对 ≥ ,
n
j =0
n
3.1 泊松过程的定义 泊松过程的定义
泊松过程
![泊松过程](https://img.taocdn.com/s3/m/0546457e01f69e3143329454.png)
(t ) D[ X (t )] D[ X (t ) X (0)] t
2 X
R X ( s, t ) E[ X ( s ) X (t )] E[ X ( s )( X (t ) X ( s ) X ( s ))] E[ X ( s )( X (t ) X ( s ))] E[( X ( s ))2 ] E[( X ( s ) X (0))(X (t ) X ( s ))] D[ X ( s )] E[ X ( s )]2 E[ X ( s ) X (0)]E[ X (t ) X ( s )] D[ X ( s )] E[ X ( s )]2 s (t s ) s (s ) 2 s (t 1)
从而W1的条件分布函数为
0 , s 0 s FW1| X (t )1 ( s) , 0st t 1 , s t
条件分布密度函数为
1 , 0st fW1| X (t )1 (s) t 0 ,
设{X(t), t0}是泊松过程, 已知在[0, t]内 事件A发生n次,则这n次事件的到达时间 W1< W2<< Wn的条件概率密度为
T1服从均值为1/的指数分布
t t
FT1 (t ) P T1 t 1 P T1 t 1 e
(2)n=2
P{T2>t| T1=s} = P{在(s, s+t]内没有事件发生| T1=s}
=P{X(s+t) -X(s)=0 | X(s) -X(0) =1} = P{X(s+t) -X(s)=0 }
等待时间Wn与时间间隔Tn均为随机变量
时间间隔Tn
设{X(t), t0}是参数为的泊松过程, {Tn,n1}是相应第n次事件A发生的时间间隔 序列,则随机变量Tn是独立同分布的均值 为1/的指数分布。
随机过程——泊松过程(习题讲解)
![随机过程——泊松过程(习题讲解)](https://img.taocdn.com/s3/m/d1757c18866fb84ae45c8d15.png)
n ( x t )n
n!
e ( x t )
因此,
dP( Sn k
k 1 n ( x t )n ( x t ) d 1 e k k 1 n! x | N (t ) n) n 0 ( x t ) e ( x t ) dx dx (k 1)!
即,在 N (t ) n 条件下,在时刻 t 之后首次事件发生的平均时间为 t
1 .
下面求 E{Sn k | N (t ) n} , ( k 1) : E ( Sn k | N (t ) n)
t
xdP(Sn k x | N (t ) n) ,而
由于在 N(t)=n 的条件下,n 个到达时刻 < < …< 区 间 [0 , t] 上 均 匀 分 布
( )<
与时间
,
,… ,
的 顺 序 统 计量
<…<
有相同分布,所以
故
= 习题九:假设车站有两辆客车准备开出,乘客以速率为 泊松过程登上 A 车,当 A 车坐满 的事件,乘客以速率为 的
个乘客就开出;与此独立
P( Sn k x, N (t ) n) P( N ( x) N (t ) k , N (t ) n) P( N (t ) n) P( N (t ) n) P( N ( x) N (t ) k ) P( N (t ) n) P( N ( x t ) k ) 1 P( N ( x t ) k 1) P( N (t ) n) P( Sn k x | N (t ) n) 1
t
e ( x t )
第三章 泊松过程
![第三章 泊松过程](https://img.taocdn.com/s3/m/1574e68ce53a580216fcfe72.png)
第一节、泊松过程的基本概念
证明: (1) 0 N (0) N1 (0) N2 (0) 可得 N1 (0) N2 (0) 0 (2)由N(t)的独立增量性可得,N1 (t ), N2 (t ) 也为独立增量过程; (3)记 N (t s) N (t ) N (t , t s) P[ N1 (t , t s ) k1 ]
泊松过程(Poisson process)最早由法国人Poisson于 1837年引入。
主 要 内 容
第一节 第二节 第三节 第四节 第五节 第六节
泊松过程的基本概念 相邻时间的时间间隔 剩余寿命与年龄 非时齐泊松过程 复合泊松过程 更新过程
第一节、泊松过程的基本概念
一、定义 一随机过程N (t ), t 0 ,若满足条件: (1)是一计数过程,且N(0)=0; (零初值性) (2)任取 0 t1 t2 tn , (独立增量过程) N (t1 ), N (t2 ) N (t1 ), , N (tn ) N (tn1 ) 相互独立; (3)s, t 0, n 0, P[ N (s t ) N (s) n] P[ N (t ) n] (增量平稳性) (4)对任意 t 0 和充分小的 t 0 ,有 P[ N (t t ) N (t ) 1] t o(t ) P[ N (t t ) N (t ) 2] o(t ) 称N (t ), t 0 是强度 为的时齐泊松过程。 其中 0 称 为强度常数。
即 N (s t ) N ( s) 是参数为 t 的泊松分布。
证明
第一节、泊松过程的基本概念
泊松过程的等价定义: 一计数过程N (t ), t 0 ,若满足条件: (1)N(0)=0; (2)N(t)是独立增量过程; (3)对 s, t 0, N (s t ) N (s) P(t ) ,即
随机过程第三章 泊松过程 ppt课件
![随机过程第三章 泊松过程 ppt课件](https://img.taocdn.com/s3/m/1a7317b6e009581b6bd9eb94.png)
第 n次事件发生的时刻, X n 是第 n次与第n 1 次事件发生
的时间间隔.
一. X n和 T n 的分布
定理3.2 X n (n 1)服从参数为 的指数分布,且相互独立.
证 当 t 0时,有
F 1 ( t ) P { X 1 t } 1 P { X 1 t } ቤተ መጻሕፍቲ ባይዱ1 P { N ( t ) 0 }
重复以上的推导可证定理之结论.
定理3.3 Tn ~(n,)
n
证 由于 Tn
Xi
i 1
故由定理3.2以及引理的结论马上可得本定理之结论.
注:1 (n,)的概率密度为
fTn (x) et
(t)n1
(n1)!
2. {T nt} {N (t)n}
(t 0)
由定理3.2,我们给出泊松过程的另一个等价定义.
p 的泊松过程.
证 M (t)满足定义3.2中的前两个条件是显然的,下证它也 满足第三个条件.
显然, M (t)的可能取值为 0,1,2, ,并且由全概率公式,有
P { M (t) m } P { M (t) m |N (t) n } P { N (t) n } n 0
而 P { M (t) m |N (t) n } 0 若 nm
f (x)() x1ex, x0
0,
x0
则称 X服从参数为 , 的 分布,记为 X~(,)
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X~(1,),
Y~(2,),且 X与 Y独立,则
X Y~ (1 2,)
指数引分理布,则设有X1,X2, ,Xn 相互独立且均服从参数为 的 X 1 X 2 X n ~ ( n ,)
随机过程第三章 泊松过程
![随机过程第三章 泊松过程](https://img.taocdn.com/s3/m/bacb1154bb68a98271fefa93.png)
解:设一年开始为 0 时刻,1 月末为时刻 1,则年末为时刻 12,依泊松过程的定义可知
PN (12) N (0) n e412 (412)n
n!
平均索赔请求次数及金额
E[N(12) N(0)] 412 48
3.2 与泊松过程相联系的若干分布
记 Tn , n 1, 2,表示第 n 次事件发生的时刻,规定T0 0 。记 Xn , n 1,2, 表示第 n
即
N(t) n Tn t
因此
PTn
T
P N (t )
n
in
et
(t)i i!
对上式求导,得到Tn 的概率密度函数
f (t)
et (t)i
et
(t)i1
et
(t )( n 1)
in
i! in
(i 1)!
(n 1)!
命题得证。
注:Tn 的数字特征
ETn
n
,
DTn
n 2
;且
ETn
nEX n
P ti Ti ti hi ,i 1, 2,, n N (t) n
PN (ti
hi )
N (ti )
1,
N (ti1) N (ti hi )
PN (t) n
0,1
i
n,
N (t1)
0
h1e h1
h e e hn (th1h2 hn ) n et (t)n / n!
n! tn
-2-
P0 (t) et
类似地,当 n 1时
Pn (t h) PN (t h) n PN (t) n, N (t h) N (t) 0 PN (t) n 1, N (t h) N (t) 1
随机过程 第3章 泊松过程
![随机过程 第3章 泊松过程](https://img.taocdn.com/s3/m/1d420fd033d4b14e852468c8.png)
泊松过程
[定义] 称计数过程{ X (t) , t 0 }为具有参数 的泊松过程, 若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) (平稳性)在任一长度为 t 的区间中,事件A发生的次 数服从参数 >0的泊松分布,即对任意 s , t 0 ,有
3.2 泊松过程的基本性质
泊松分布:
( t ) n t P{ X (t s ) X ( s ) n} e , n!
n 0, 1,
( t ) n t P{ X (t ) n} e , n 0, 1, 2, n!
Φ X ( ) E[e
假设在[0 , t ]内事件A已经发生一次,确定这一事件到 达时间W1的分布 ——均匀分布
P{W1 s, X (t ) 1} P{W1 s X (t ) 1} P{ X (t ) 1} P{ X ( s ) 1, X (t ) X ( s ) 0} P{ X (t ) 1} P{ X ( s ) 1} P{ X (t ) X ( s ) 0} P{ X (t ) 1}
故仪器在时刻 t0 正常工作的概率为:
k 1 ( t ) P P (T t 0 ) e t dt t0 ( k 1)! n k 1 ( t ) 0 P [ X (t 0 ) k ] e t
0
n0
n!
(3) 到达时间的条件分布
P{ X k }
k e
k!
, k 0, 1, 2, ( 0为常数 )
则随机变量X 服从参数为 的泊松分布,简记为 ()。
E(X ) ,
第3章 泊松过程
![第3章 泊松过程](https://img.taocdn.com/s3/m/017b0702e87101f69e319541.png)
第一节 泊松过程的定义
一、计数过程
N(t)表示到时刻t为止以发生的“事件”的总数,称{N(t), t≥0}为计数过程。 N(t)满足 1, N(t) ≥0
2, N(t)为整数
3,若s < t , 则 N(s) ≤N(t) 4,当s < t 时,N(t)- N(s) 为区间(si 1
n
则
X i Ti Ti 1
称Tn为事件A第n 次出现的等待时间(到达时间).
定理1 设{Xn, n≥1}是参数为λ的泊松过程 {N(t), t≥0}的时间间隔序列, 则{Xn, n≥1}相互 独立同服从指数分布, 且E{X}=1/λ. 证 (1) 因 {X1>t}={(0, t)内事件A不出现} P{X1>t}=P{N(t)=0}=e-λt
P0 t h P0 t o h P0 t h h dP0 t P0 t 令h 0, 得 dt P 0 1, 条件1N 0 0 0
解得
p0 ( t ) e
t
,
t 0.
Fn t P X n t 1 e t , t 0.
注 (1)上述定理的结果应该在预料之中,因为泊
松过程有平稳增量,过程在任何时刻都“重新开 始”,这恰好就是“无记忆性”的体现,正好与指 数 分布的“无记忆性”是对应的.
(2)泊松过程的另一个等价定义:
独立,且服从同一参数 的指数分布,则记数过
两边同乘以eλt 后移项整理得
d [e t Pn ( t )] t e pn 1 ( t ) dt
当n=1, 则
( 2)
d [e t P1 ( t )] e t P0 t e t e t dt P 0 0 1
[理学]泊松过程
![[理学]泊松过程](https://img.taocdn.com/s3/m/1adb4b175a8102d276a22fe4.png)
(2) N( t ) 取非负整数值;
(3) 如果s < t,则N( s )≤N( t ); (4) 对于s < t, N(t) -N(s)表示时间间 隔(s, t)内事件出现的次数. ) s ) t
一类很重要的计数过程是Poisson过程.
5
Poisson过程数学模型: 电话呼叫过程 设N ( t )为[0, t) 时间内 到达的呼叫次数, 其状态空间为 E={0,1,2,…} 此过程有如下特点: 1) 零初值性:N( t )=0; 2) 独立增量性:任意两个不相重叠的时间间隔 内到达的呼叫次数相互独立;
(t )
n
n!
21
3.2 泊松过程的性质
• 数字特征 设{X(t),t0}是参数为的泊松过程, 对任意t,s[0,),若s < t ,则有 E[ X (t ) X ( s)] D[ X (t ) X ( s)] (t s) m X (t ) E[ X (t )] E[ X (t ) X (0)] t
(1) 当n 0时 P0 ( t h) PN ( t h) 0
PN ( t h) N (0) 0
PN ( t ) N (0) 0, N ( t h) N ( t ) 0 P0 ( t )[1 h o( h)]
PN ( t ) N (0) 0PN ( t h) N ( t ) 0
n0
e e
iun n0
t
e
t
exp te
(t ) (te ) t e n! n! n0
n iu
iu n
expt (e
iu
随机过程第三章泊松过程
![随机过程第三章泊松过程](https://img.taocdn.com/s3/m/b76585b8fbb069dc5022aaea998fcc22bcd1431c.png)
随机过程第三章泊松过程泊松过程是随机过程中的一类重要过程,在许多领域都有广泛应用,如排队论、可靠性分析、金融工程等。
泊松过程的概念由法国数学家泊松提出,它具有无记忆性、独立增量和平稳增量等重要特征。
在本文中,我们将介绍泊松过程的定义、性质以及一些实际应用。
泊松过程的定义:设N(t)是在区间[0,t]内发生的事件个数,若满足以下三个条件,则称N(t)是具有独立增量和平稳增量的泊松过程:1.N(0)=0,表示在时间0之前没有事件发生;2.对于任意的s<t,N(t)-N(s)的分布只与时间间隔t-s有关,与s时刻之前的事件个数无关,这表明泊松过程具有无记忆性;3.对于任意的s<t,N(t)-N(s)的分布是一个参数为λ(t-s)的泊松分布,其中λ是过程的强度参数。
泊松过程具有很多重要的性质。
首先,泊松过程的均值和方差等于其强度参数λ。
其次,泊松过程的增量独立,即在非重叠区间上的增量相互独立。
此外,泊松过程的时间间隔也是独立同分布的指数分布。
泊松过程具有广泛的应用。
在排队论中,泊松过程可用于描述到达队列的顾客数量。
在可靠性分析领域,泊松过程可用于描述设备的故障次数。
在金融工程中,泊松过程可用于模拟股票价格的变动和交易的发生。
在实际应用中,对于给定的泊松过程,我们通常感兴趣的是估计其强度参数λ。
常用的估计方法有最大似然估计和矩估计。
最大似然估计通过最大化观测到的事件发生次数和估计的事件发生率之间的似然函数,来估计λ的值。
矩估计则是通过将观测到的事件个数的平均值等于λ的估计值,来确定λ的值。
此外,在泊松过程的应用中,我们还可能遇到泊松过程的两个重要扩展:非齐次泊松过程和二维泊松过程。
非齐次泊松过程是指强度参数λ是时间的一个函数,而不是常数。
二维泊松过程是指同时考虑两个独立的泊松过程,其事件发生次数可能影响到对方的发生次数。
综上所述,泊松过程是一种重要的随机过程,具有无记忆性、独立增量和平稳增量等特征。
泊松过程
![泊松过程](https://img.taocdn.com/s3/m/4710cc59bb68a98270fefa45.png)
9 December 2015
随机过程
§3.1 泊松过程概念
一维分布
定理 设{N(t), t∈T=[0,+∞)}是一强度为λ的泊松过程,
则对任意固定的t >0, N(t)服从泊松分布π(λt ),即
P(N(t)
k)
(t)k k!
et
,
k 0,1,2,
证明:略。
注 该定理指明了泊松过程的一维分布,即在每个固定
P(N(t) 2) o(t), ( 0是常数)
普通性
则称{N(t), t∈T=[0,+∞)}是强度为λ的泊松过程。
9 December 2015
随机过程
《随机过程》
1
2015/12/9
§3.1 泊松过程概念
例1 设N(t)为[0 , t)时段内某电话交换台收到的呼叫次 数,t∈[0 , +∞),N(t)的状态空间为{0 , 1 , 2 ,···}, 且具有如下性质:
(4)在足够小的时间间隔△t内, P(t时间间隔内无呼叫) P(N(t) 0) 1 t o(t) P(t时间间隔内有一次呼叫) P(N(t) 1) t o(t) P(t时间间隔内收到2次以上呼叫) P(N(t) 2) o(t)
则计数过程{N(t), t∈[0,+∞)}是强度为λ的泊松过程。
-N(t1)服从参数为λ(t2-t1)的泊松分布, 即 增量平稳性
或齐次性
P(N(t1,
t2
)
k)Βιβλιοθήκη [(t2 t1 k!)]k
e(t2t1
)
,
k 0,1,2,( 0)
则称{N(t), t∈T=[0,+∞)}是强度为λ的泊松过程。
试利用定理说明上述两个泊松过程定义的等价性。
chapter 3泊松过程
![chapter 3泊松过程](https://img.taocdn.com/s3/m/3d8bfda3cc22bcd126ff0c88.png)
3.1 泊松过程的定义
3.1 泊松过程的定义
3.1 泊松过程的定义
Poisson 过程的常见例子
• • • • • • 排队论:到达的顾客数 一个地区的降雨量 撞击光电探测器的光子数 (自动)电话交换机的接入电话数, 长时间内川大网络服务器的网页请求 服务台接到咨询电话的次数
3.1 泊松过程的定义
j=0
= Pn ( t ) P0 ( h ) + Pn −1 ( t ) P1 ( h ) + ∑ Pn − j ( t ) P j ( h )
j=2
n
= Pn ( t ) P0 ( h ) + Pn −1 ( t ) P1 ( h ) + o ( h ) = (1 − λ h ) Pn ( t ) + λ hPn −1 ( t ) + o ( h ) n ⎛ n ⎞ ⎜ ∑ Pn − j (t ) Pj (h) ≤ ∑ Pj (h) ≤ ⎟ j =2 ⎜ j =2 ⎟ ⎜ ∞ ⎟ ⎜ ∑ Pj (h) = P ( N (h) − N (0) ≥ 2) = o(h) ⎟ ⎝ j =2 ⎠
(参数λ>0)
3.1 泊松过程的定义
定理:泊松过程两种定义等价。 证明:定义A⇒定义B 。由定义A(3)知平稳 性,下证定义B(3)。当h充分小有 P { N (t + h) − N (t ) = 1} = P { N ( h) − N (0) = 1}
( −λ h) n =e = λ h∑ 1! n! n =0 = λ h[1 − λ h + o(h)] = λ h + o(h)
N(t) 第三个信号到达 … … … … 第二个信号到达 第一个信号到达
0
第三章 泊松(Poisson)过程
![第三章 泊松(Poisson)过程](https://img.taocdn.com/s3/m/a1b24dd47f1922791688e8b2.png)
DN (t ) Var[ N (t )] t
E[
N (t ) ]. t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2014年6月18日星期三
(2)
协方差函数:
C N ( s, t ) mins, t , s, t 0.
基础部张守成 2014年6月18日星期三
(1) 7时至9时为t(2,4],则由非齐次泊松过程的 性质可得7时至9时乘车人数的数学期望为
E[ N (4) N (2)] m(4) m(2)
( t )dt
2
4
(200 400t )dt 1400dt
2 3
3
4
由于Wn Ti , 利用矩母函数容易证明
i 1
n
Wn ~ (n, ), 即Wn具有概率密度
t ( t )n 1 ,t 0 e fWn ( t ) ( n 1)! 0 , t 0
基础部张守成 2014年6月18日星期三
二、泊松过程的推广
由于 N ( s, t ) N ( t ) N ( s) ~ ( (t s )) , (1) E[ N (t ) N ( s )] Var[ N (t ) N ( s )] (t s ).
令 s 0, 根据假设 N (0) 0 可得
均值函数: 方差函数:
P Yn 2 0.4,P Yn 3 0.4, P Yn 4 0.1.
设X (t)表示 [0, t )时间内移民到该地的人口数, 求在五周内移民到该地人口数的的期望和方差.
X ( t ) Yn 是复合泊松过程, 解: 由Yn的分布律可得
第三章泊松过程
![第三章泊松过程](https://img.taocdn.com/s3/m/2c16e64ba76e58fafbb00346.png)
exp {mX
(t)},
n0
例题3.8
设{X(t),t≥0}是具有跳跃强度
定理3.2: 设{X(t),t≥0}为具有参数λ的泊松过程,{Tn,n≥1}是 对应的时间间隔序列,则随机变量Tn是独立同分布 的均值为1/λ的指数分布。
即:对于任意n=1,2, …事件A相继到达的时间 间隔Tn的分布为
1 et , t 0
FTn
(t )
P{Tn
t}
0,
t0
其概率密度为
e t , t 0
设{X(t),t≥0}是泊松过程,已知在[0,t]内事件A 发生n次,求这n次到达事件W1<W2, …<Wn的 联合概率密度函数。
解:
例题3.4
设在[0,t]内事件A已经发生n次,且0<s<t,对 于0<k<n,求P{X(s)=k|X(t)=n}
解:
例题3.5设在[0,t]内事件A已经发生n次,求 第k(k<n)次事件A发生的时间Wk的条件概率 密度函数。
• 独立增量过程 • 平稳增量过程
计数过程
定义:
称随机过程{N(t),t≥0}为计数过程,若N(t) 表示到时刻t为止已发生的“事件A”的总数, 且N(t)满足下列条件:
1. N(t) ≥0;
2. N(t)取正整数值以及0;
3. 若s<t,则N(s) ≤N(t); 4. 当s<t时,N(t)-N(s)等于区间(s,t]中发生的
y y
W1(2)
合Leabharlann y非齐次泊松过程定义3.4: 允许速率或强度是t的函数
称计数过程{X(t),t≥0}为具有跳跃强度函数 λ(t)的非齐次泊松过程,若它满足下列条件:
泊松过程
![泊松过程](https://img.taocdn.com/s3/m/d9f11fd8770bf78a652954fd.png)
对t s, n m:
4. P{N t n | N s m} e ( t s ) [ (t s )]n m ( n m)!
n s m 5. P{N s m | N t n} ( ) (1 s ) n m t m t
例 : 顾客依泊松过程到达某商店,速率为 4人/小时。已知商店上午9:00开门. (1)求到9:30时仅到一位顾客,而到11:30时 已到5位顾客的概率? (2)求第2位顾客在10点前到达的概率? (3)求第一位顾客在9:30前到达且第二位 顾客在10:00前到达的概率?
i t s n
,
P{N ti 1 N ti 1, i} P{N ti 1 N ti 1} (1 o( h )) [(1 o( h ))
n 1 o ( h ) no ( h )
]
1
h足够小时, N t N s 近似服从B (n, h o(h )) 令h 0时得, N t N s ~ ( (t s ))
dPk 1 ( t ) 已得 Pk 1 ( t ) Pk ( t ) dt
t d [ e Pk 1 ( t )] t 两边同乘 e 得, t Pk 1 ( t )] [ ( t s )] 即 e s dt k!
设X ( ), 即服从参数为的泊松分布。则:
k 1. P ( X k ) e , k 0,1, 2,... k! 2. E ( X ) Var ( X )
3. X 的生成函数(或母函数) g (t ) E ( s X ) e ( s 1) , 0 s 1 证明:(3)g ( t ) E ( s ) s e
第三章:泊松过程
第三章泊松过程
![第三章泊松过程](https://img.taocdn.com/s3/m/1c7937681711cc7931b71685.png)
一、数字特征
RX ( s , t ) E ( X ( s ) X ( t )) s( t 1)
一般泊松过程的有 B X ( s , t ) min( s , t ) 。 有特征函数定义,可得泊松过程的特征函数为
B X ( s , t ) RX ( s , t ) m x ( s )m X ( t ) s
通常,称Wn 为第 n 次事件 A 出现的时刻或第 n 次 Tn 是第 n 个时间间隔,它们都是随 事件 A 的等待时间, 机变量。
定 理 3.2
设 { X (t ), t 0} 是 具 有 参 数 的 泊 松 过 程 ,
Tn (n 1) 是对应的时间间隔序列,则随机变量 Tn (n 1, 2,)
P{ X ( t h) X ( t ) 1} P{ X ( h) X (0) 1}
( h ) eh h ( h)n / n ! 1! n 0
h 1 h o( h ) h o ( h )
P{ X ( t h) X (t ) 2} P{ X ( h) X (0) 2}
于是
Pn ( t h) Pn ( t ) o( h ) Pn ( t ) Pn1 ( t ) h h 令 h 0 取极限得
Pn(t ) Pn (t ) Pn1 (t )
所以
t e Pn (t ) Pn (t ) e Pn1 (t ) t
即
FTn (t ) P{Tn t } 1 e
(由 P0 (0) 1,ln P0 (0) 0 )
得
第三章泊松过程(随机过程刘次华版本)
![第三章泊松过程(随机过程刘次华版本)](https://img.taocdn.com/s3/m/84cf5478cc22bcd127ff0c19.png)
P
W (1) k
W1(2)
0
e
1 x
x1
(1x)k 1
(k 1)!
2e2 ydydx
1k
x e dx k 1 (1 2 ) x
(k 1)! 0
1
1 2
k
32
3.2.3 到达时间Wn的条件分布
3.2 泊松过程的性质
假设在[0, t]内事件A已经发生1次,确定这一事
件到达时间W1的条件分布密度
求
P
W (1) k
W (2) 1
即第一个泊松过程第k次事件发生比第二个泊松过 程第1次事件发生早的概率.
29
3.2 泊松过程的性质
解
设
W (1) k
的取值为x,W1(2)
的取值为y,
fWk(1)
(
x)
1e
0
1 x
,
(1
(k x
x ) k 1 1)! 0
,
x
0
fW1( 2)
(
y)
2e
2
0 ,
y, y
nn
P
P[X[(Xt) (tX(0h))]
nX(tj)|]X([tX (ht))XX(t()0)]j
j0j 0
PnX|(tX(ht )hX)(t)X (jt) j PX(t h) X(t)
n
P[X(t) X(0)] n j | X(t h) X(t)10 j j0
3.1 泊松过程的定义
D[ X (s)] (E[ X (s)])2
s(t s) s (s)2 s(t 1)
17
3.2 泊松过程的性质
BX (s, t) RX (s, t) mX (s)mX (t) s 若t s,则BX (s, t) t, 从而 BX (s, t) min(s, t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N (t )
设
X (t )
Yk ,
t 0
是复合泊松过程,则
k 1
1.若E(Y12)<∞,则
E [ X ( t )] tE [Y1 ], D [ X ( t )] tE [Y1 ]
2
例题: 设移民到某地区定居的户数是一个泊松过程,平均 每周内有2户定居,但每户的人口数是随机变量,一 户4人概率为1/6,一户3人概率为1/3,一户2人概率 为1/3,一户1人概率为1/6,求5周内移民到该地区 的人口的数学期望与方差。 解:
1. N(t) ≥0; 2. N(t)取正整数值以及0; 3. 若s<t,则N(s) ≤N(t); 4. 当s<t时,N(t)-N(s)等于区间(s,t]中发生的 “事件A”的次数。
计数过程N(t)是独立增量过程 如果计数过程在不相重叠的时间间隔内,事件A 发生的次数是相互独立的。 计数过程N(t)是平稳增量过程 若计数过程N(t)在(t,t+s]内(S>0),事件A发 生的次数N(t+s)-N(t)仅与时间差s有关,而与t无 关。
定义3.2:
称计数过程{X(t),t≥0}为具有参数λ >0的泊松过 程,若它满足下列条件:
1. X(0)=0;
2. X(t)是(平稳)独立增量过程;
3. 在任一长度为t的区间中,事件A发生的次 数服从参数λ>0的泊松分布,即对任意s,t≥0, 有
P { X (t s ) X ( s ) n} e
0
exp{ [ m X ( t s ) m X ( t )]},
n 0
或
P { X (t ) n} [ m X ( t )] n!
n
exp{ m X ( t )},
例题3.8
(1 cos t ) 设{X(t),t≥0}是具有跳跃强度 2 的非齐次泊松过程(ω ≠0),求E[X(t)]和 D[X(t)]。
t
( t ) n!
n
,
n 0 ,1,
泊松过程同时也是平稳增量过程
E [ X ( t )] t
表示单位时间内事件A发生的平均个数,故称 为泊松过程的速率或强度
定义3.3:
称计数过程{X(t),t≥0}为具有参数λ>0的泊松过 程,若它满足下列条件: 1. X(0)=0; 2.{X(t),t≥0}是泊松过程,,令X(t)表示t时刻事件 A发生的次数,Tn表示从第(n-1)次事件A发生 到第n次事件A发生的时间间隔。
定理3.2:
设{X(t),t≥0}为具有参数λ的泊松过程,{Tn,n≥1} 是对应的时间间隔序列,则随机变量Tn是独立 同分布的均值为1/λ的指数分布。 即:对于任意n=1,2, …事件A相继到达的时间 间隔Tn的分布为
例题3.4 设在[0,t]内事件A已经发生n次,且0<s<t,对 于0<k<n,求P{X(s)=k|X(t)=n} 解:
例题3.5设在[0,t]内事件A已经发生n次,求 第k(k<n)次事件A发生的时间Wk的条件概率 密度函数。
例题3.6
设{X1 (t),t ≥0}和{X2 (t),t ≥0}是两个相互独立的 泊松过程,它们在单位时间内平均出现的事件 (1 ) Wk 数分别为λ 1和λ2,记 为过程X1(t)的第k次事 (2) W1 件到达时间, 为过程X2(t)的第1次事件到达 (1 ) (2) 时间,求 P {W k W 1 }
复合泊松过程
定义3.5: 设{N(t),t≥0}是强度为λ 的泊松过程, {Yk,k=1,2,…}是一列独立同分布随机变量, 且与{N(t),t≥0}独立,令
N (t )
X (t )
Y
k 1
k
,
t 0
则称{X(t),t≥0}为复合泊松过程。
N(t) Yk X(t) 在时间段(0,t]内来到商店的顾客数 第k个顾客在商店所花的钱数 该商店在(0,t]时间段内的营业额
第三章 泊松过程
泊松过程定义 泊松过程的数字特征 时间间隔分布、等待时间分布及到达时间的 条件分布 复合泊松过程 非齐次泊松过程
例如: • 电话交换机在一段时间内接到的呼叫次数;
• 火车站某段时间内购买车票的旅客数;
• 机器在一段时间内发生故障的次数;
计数过程 定义:
称随机过程{N(t),t≥0}为计数过程,若N(t)表示 到时刻t为止已发生的“事件A”的总数,且 N(t)满足下列条件:
(t )
1
解:E[X(t)]= D[X(t)]
t 0
(s)ds
1 2
t 0
1 2
(1 c o s ( w s )) d s s in ( w t ))
(t
1 w
例题3.9 设某路公共汽车从早上5时到晚上9时有车发 出,乘客流量如下:5时按平均乘客为200 人/时计算;5时至8时乘客平均到达率按线 性增加,8时到达率为1400人/时;8时至18 时保持平均到达率不变;18时到21时从到 达率1400人/时按线性下降,到21时为200 人/时。假定乘客数在不相重叠时间间隔内 是相互独立的。求12时至14时有2000人来 站乘车的概率,并求这两个小时内来站乘车 人数的数学期望。 解:
m
X 2 X
( t ) E [ X ( t )] t ( t ) D [ X ( t )] t
R X ( s , t ) E [ X ( s ) X ( t )] s ( t 1)
一般情况下,泊松过程的协方差函数可表示为
B X ( s , t ) min( s , t )
3.
非齐次泊松过程的均值函数为
m
X
(t )
t
( s ) ds
0
定理3.5: 设{X(t),t≥0}为具有均值函数 非齐次泊松过程,则有
P { X (t s ) X (t ) n} [ m X ( t s ) m X ( t )] n!
n
m
X
(t )
t
( s ) ds
D [ X (5)] tE [Y ] 1 0
43 6
例题:设交换机每分钟接到电话的次数 X(t)是强度为λ的泊松过程。求
1、两分钟内接到3次呼叫的概率。
2、第二分钟内接到第3次呼叫的概率。
作业 3.1, 3.3, 3.5
fW
n 1 ( t ) t , e (t ) ( n 1) 0,
t 0 t 0
n
证明
证明:
到达时间的条件分布
假设在[0,t]内时间A已经发生一次,我们要确 定这一时间到达时间W1的分布。
P {W 1 s | X ( t ) 1} ?
到达时间的条件分布
FT
n
1 e t , ( t ) P {T n t } 0,
t 0 t 0
其概率密度为
证明
fT
n
e t , (t ) 0,
t 0 t 0
证明:
所以,T1服从均值为1/λ的指数分布。
所以,T2也服从均值为1/λ的指数分布。
同理可以证明:对于任意的n=1,2,…,事件相继到 达的时间间隔Tn也服从均值为1/λ的指数分布
解:
到达时间的条件分布
解:
0, FW | X ( t ) 1 ( s ) s , 1 t 1, s0 0 st st
分布函数
概率密度函数
fW
1|X
1 , ( t ) 1 ( s ) t 0,
0 s t 其它
设{X(t),t≥0}是泊松过程,已知在[0,t]内事件A 发生n次,求这n次到达事件W1<W2, …<Wn的 联合概率密度函数。 解:
等待时间Wn的分布
等待时间Wn是指第n次事件A出现的时刻(或第 n次事件A的等待时间)
W
n
n
Ti
i 1
因此Wn是n个相互独立的指数分布随机变量之和。
定理3.3: 设{Wn,n≥1}是与泊松过程{X(t),t≥0}对应的 一个等待时间序列,则Wn服从参数为n与 λ 的Г 分布(也称爱尔兰分布),其概率 密度为
3. X(t)满足下列两式:
P { X ( t h ) X ( t ) 1} h o ( h ) P { X ( t h ) X ( t ) 2} o ( h )
(2)证明定义3.2和定义3.3是等价的。
泊松过程的数字特征
设{X(t),t≥0}是泊松过程,对任意的t,s∈[0, ∞),且 s<t,有 E [ X ( t ) X ( s )] D [ X ( t ) X ( s )] t s 由于X(0)=0,所以
解:
非齐次泊松过程
允许速率或强度是t的函数
定义3.4:
称计数过程{X(t),t≥0}为具有跳跃强度函数 λ (t)的非齐次泊松过程,若它满足下列条件:
1. X(0)=0;
2. X(t)是独立增量过程;
P { X ( t h ) X ( t ) 1} ( t ) h o ( h ) P { X ( t h ) X ( t ) 2} o ( h )
N (t )
X (t )
Y
i 1
i
P {Y 1} P {Y 4} P {Y 2} P {Y 3}
1 6 1 3
则:
E [Y ]
15 6
E [Y ]
2
43 6
E [ X (5)] tE [Y ] 1 0