35kV输电线路电流电压保护设计(2)概述

合集下载

35KV输电线路

35KV输电线路

35KV输电线路施工组织措施及施工方案XX工程公司年月日第一章:工程概况及特点1.1、概况1.1.1、工程概况:本工程送电线路为新建单回路35KV线路, ××××××变电站35KV送电线路工程由×××××止。

导线选用LGJ-70/10型,全长24.80公里左右。

本线路工程选用单杆、三联杆,杆基共57座。

1.1.2、工程线路走向:×××位于××××流域上部,距乡镇所在地40公里,与××××伐木场交界。

××××—×××35KV 线路,起始于××电站升压站龙门构架,途经道班、×××、××、×××、××××变电站35KV进线龙门构架止。

线路跨越10KV线15次,公路13次,线路全长24.80公里,曲折系数1.12,交通情况一般。

1.1.3、沿线地形地貌情况:本工程沿线地貌为海拔高程160~500米,地形起伏较大,地势相对陡峭;山地、丘陵;工程地表分类如下:名称丘陵山地高山合计比例(%) 20%40%40%1001.1.4、工程承包范围:1.1.4.1、工程量范围:起止桩号××××××××备注基础57基立杆塔基数57基架线长度24.80km接地埋设57基附件安装57基1.1.4.2、材料供应:本工程主要材料和辅材由建阳电力公司供应。

1.1.5、交通情况:建阳×××至×××及其它乡(镇)各级公路,交通情况一般。

35KV变电所继电保护的设计2

35KV变电所继电保护的设计2

1 绪论1.1变电站继电保护的发展变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置,继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。

继电保护发展现状,电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断注入新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。

国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化。

2 设计概述:2.1设计依据:(1)继电保护设计任务书。

(2)国标GB50062-92《电力装置的继电保护和自动装置设计规范》。

(3)《电力系统继电保护》(山东工业大学)。

2.2设计规模:本设计为35KV降压变电所。

主变容量为6300KVA,电压等级为35/10KV。

2.3设计原始资料:2.3.1 35KV供电系统图,如图1所示。

2.3.2系统参数:电源I短路容量:SIDmax=200MVA;电源Ⅱ短路容量:SⅡDmax =250MVA;供电线路:L1=L2=15km,L3=L4=10km,线路阻抗:XL=0.4Ω/km。

图1 35KV系统原理接线图2.3.3 35KV变电所主接线图,如图2所示S Ⅱ SIDL8图2 35KV变电所主接线图2.3.4 10KV母线负荷情况,见下表:3 主接线方案的选择3.1 主接线设计要求电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的,表明高压电气设备之间互相连接关系的传送电能的电路。

电路中的高压电气设备包括发电机、变电器、母线、断路器、隔离刀闸、线路等。

电力系统输电线路的电流电压保护

电力系统输电线路的电流电压保护

(3)无时限电流保护不能保护线路全长, 应采用最不利情况下保护的保护范围来校验保护的灵敏度, 一般要求保护范围不少于线路长度的 15%,如 l min % 15%l AB , l min 从图 3-1 中知也可由解析法求得: 因为 所以
I I OP 1
ES 3 I 2 X S max X 1 l min 3E 1 ( I S X S max ) X 1 2 I OP 1
I l min
第一节 相间短路的电流电压保护 一、无时限电流速断保护(电流保护第I段)
2、无时限电流速断保护的构成
1——电流测量元件 2——否门 3——信号元件 4——闭锁元件,
第一节 相间短路的电流电压保护 一、无时限电流速断保护(电流保护第I段)
4、特殊情况下无时限电流速断保护的整定
第一节 相间短路的电流电压保护 一、无时限电流速断保护(电流保护第I段)
第一节 相间短路的电流电压保护 二、带时限电流速断保护(电流保护第II段)
带时限电流速断保护整定必须遵循以下原则: 第一、在任何情况下,带时限电流速断保护均能保护本线路 的全长(包括本线路的末端),为此,保护范围必须延 伸至相邻的下一线路,以保证在有各种误差的情况下仍 能保护线路的全长; 第二、为了保证在相邻下一线路出口处短路时保护的选择性, 本线路的带时限电流速断保护在动作时间和动作电流两 个方面均必须和相邻线的无时限电流速断保护配合。
第二节 三、3.功率方向元件的构成原理及特性 ⑵幅值比较式功率方向元件
两个相位比较的矢量为 C, D ,其间的相角为
A C D , B =C D







当 900 900 时,一定有 A B; 当 90 0 和 <-90 0 时,一定有 A<B。

35kV电网继电保护

35kV电网继电保护

电力变压器保护
变压器相间短路的后备保护
变压器相间短路的后备:
既是变压器主保护的后备又是相邻母线或线路的后备
保护。 保护形式:
过电流保护、低电压起动的过电流保护、复合电压起
动的过电流保护、负序电流保护和低阻抗保护等。
电力变压器保护
过电流保护:
电力变压器保护
低压启动的过电流保护:
电力变压器保护
变压器过负荷保护
电流Ⅲ段一般做后备保护。 Ⅲ段的后备作用:
1)近后备——同一地点电流I、Ⅱ段拒动的后备
2)远后备——下一个变电站的保护和断路器拒动的后备(防止短路 点不切除)
35kV电网线路保护
4、评价
简单可靠,灵敏性好。 故障靠电源越近,短路电流越大,过电流保护切除故障的时
间越长(不利),故不能作主保护。
5、原理接线 与限时电流速断保护类似,主要区别是:时间继电器的时间整定值 不同。
当变压器内部发生严重故障时,重瓦斯保护动作,瞬 时动作跳开变压器的各侧断路器。
电力变压器保护
瓦斯保护原理接线图
电力变压器保护
轻瓦斯动作值:采用气体容积大小表示;
整定范围通常为:250cm3~300cm3
重瓦斯动作值:采用油流速度大小表示; 整定范围通常为:0.6~1.5m/s。
电力变压器保护
瓦斯保护优缺点:
三段式相间电流保护配置示意图
35kV电网线路保护
阶段(三段)式电流保护的归总原理接线图
阶段式电流保护简单、可靠,在35KV及以下低压配电网络中得到广泛应用。 主要缺点:受电网接线及系统运行方式变化的影响较大。
35kV电网线路保护
阶段(三段)式电流保护的原理展开接线图
35kV电网线路保护

35KV负荷变电站各个保护定置配置原则

35KV负荷变电站各个保护定置配置原则
电流II段电压定值(Udz2)
1
-30°灵敏角投退(ALM2)
0
电流II段电压投退(UBS2)
1
电流II段方向投退(DBS2)
0
3.电流Ⅲ段保护
电流Ⅲ段定值(Idz3)
与变压器高压侧III段定置相同(注:需则算为进线定值)
延时方式(YSFS)
0
电流Ⅲ段时限(T3)
1
电流Ⅲ段电压定值(Udz3)
70
-30°灵敏角投退(ALM3)
比率制动系数(S)
一般取0.5
谐波制动系数(K2)
一般取0.2
差动平衡系数(Kb)
Kb=1.732*(Un低*N低)/(Un高*N高)
TA断线闭锁投退(TABS)
1
TA二次接线(TAJX)
根据现场接线设置1
4. 差流越限保护
差流越限定值(Iyx)
0.5倍的最小动作电流
差流越限时限(Tyx)
5~10S
进线不投重合闸
重合闸同期角(Ach)
进线不投重合闸
重合闸方式(Mch)
进线不投重合闸
抽取电压相别(TUx)
进线不投重合闸
遥控合闸方式(Myh)
进线不投重合闸
6.零序电流保护(R1版)
零序电流定值(I0dz)
一般不投0.12
零序电流时限(T0)
一般不投5
零序电流跳闸(I0TZ)
一般不投0
7.零流I段
保护(R2版)
0.1
零序时限(Tlx)
10
跳闸控制字(LXTZ)
0
8低电压保护
低电压定值(Udy)
50
低电压时限(Tdy)
0.5
9过电压保护
过电压定值(Ugy)

35KV变电站继电保护初步设计

35KV变电站继电保护初步设计

目录第一章本课程设计的重要任务 (1)第二章课程设计任务书 (2)第三章课程设计内容及过程 (4)1 变电所继电保护和自动装置规划 (4)1.1系统分析及继电保护规定: (4)1.2本系统故障分析: (4)1.3 10kv线路继电保护装置: (4)1.4主变压器继电保护装置设立: (4)1.5变电所的自动装置: (5)1.6本设计继电保护装置原理概述: (5)2 短路电流计算 (6)2.1系统等效电路图: (6)2.2基准参数选定: (7)2.3阻抗计算(均为标幺值): (7)2.4短路电流计算: (7)3 主变继电保护整定计算及继电器选择 (8)3.1瓦斯保护: (8)3.2纵联差动保护: (8)3.3过电流保护: (10)3.4过负荷保护:.................................................................... 错误!未定义书签。

3.5冷却风扇自起动: ............................................................ 错误!未定义书签。

第四章课程设计总结............................................................................ 错误!未定义书签。

参考文献 ................................................................................................ 错误!未定义书签。

第一章本课程设计的重要任务(1)本设计为35KV降压变电所。

主变容量为6300KVA,电压等级为35/10KV;(2)搜集原始资料;(3)完毕对本系统的故障分析;(4)对10kv线路继电保护装置、主变压器继电保护装置设立、变电所的自动装置的设计;(5)对短路电流的整定与计算;(6)主变继电保护整定计算及继电器选择;(7)完毕设计报告。

35kV输电线路典型设计课件

35kV输电线路典型设计课件
100 850
5.28° 11.75°
34.26°
R300
R300
44.44°
18.10° 8.26°
R650
5.28° 11.75°
34.26°
R300
R300
44.44° 18.10°
8.26°
R650
100 850
R650 R650 R650
35B13系列转角塔
100 850
R650
950 950
9-24
24
3 35B01~35B22-J3(SJ3) 300 450 / 40~60
9-24
24
4 35B01~35B22-J4(SJ4) 300 450
/ 60~90
9-24
24
混凝土杆规划设计条件
序 号
杆塔名称
水平 垂直 档距 档距 Kv (m) (m)
转角度 数(°)
塔高 (m)
计算高度 (m)
9-21
21
5.9 杆塔荷载及组合
➢遵照 《66kV及以下架空电力线路设计规范》 GB 50061-2019、《架空送电线路杆塔结构设计技术规定》 DL 5154-2019 、《架空送电线路钢管杆设计技术规定》 DL 5130-2019 。
➢各直线杆塔的塔身风荷载按照最高呼称高计算,线 条风荷载按照最高呼称高减3m计算。耐张塔均按照最 高呼称高计算。 ➢耐张塔前后挂点垂直荷载按照3:7分配,且应考虑 一侧上拔情况,其上拔垂直荷载按照设计垂直档距的 50%计算。
35kV部分采用导线、地线型号:
导线型号 地线型号
LGJ-95/20
GJ-35
LGJ-150/25
GJ-35
LGJ-185/30 LGJ-240/30 LGJ-300/25 LGJ-300/40

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计

35Kv输电线路的继电保护设计在电力系统中,35kV输电线路扮演着重要的角色,负责将发电厂产生的电能传输到各个用电点。

然而,由于外部环境、设备老化等原因,输电线路可能会出现故障,导致电力系统的不稳定甚至瘫痪。

为了确保电力系统的安全稳定运行,35kV输电线路的继电保护设计至关重要。

本文将深入探讨35kV输电线路继电保护的设计原则、方法和应用。

首先,我们需要了解什么是继电保护。

继电保护是电力系统中一种自动保护装置,它通过检测电力系统中的异常信号,如电流、电压、功率等,来判断系统是否存在故障。

一旦检测到故障,继电保护会发出信号,触发断路器等设备,切断故障点与系统的连接,从而保护电力系统的安全运行。

在35kV输电线路的继电保护设计中,我们需要遵循以下原则:1. 快速响应:继电保护应能够迅速响应输电线路的故障,切断故障点与系统的连接,避免故障扩大。

2. 准确判断:继电保护应能够准确判断输电线路的故障类型和位置,避免误判和漏判。

3. 可靠操作:继电保护应具备高度可靠性,确保在任何情况下都能正常工作。

4. 易于维护:继电保护应具备易维护性,便于日常检查、调试和更换。

在35kV输电线路的继电保护设计中,常用的方法包括电流保护、电压保护、距离保护和差动保护等。

这些方法各自有其特点和适用场景。

1. 电流保护:电流保护是通过检测输电线路中的电流变化来判断故障的存在。

当电流超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

2. 电压保护:电压保护是通过检测输电线路中的电压变化来判断故障的存在。

当电压超过或低于设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

3. 距离保护:距离保护是通过检测输电线路中的阻抗变化来判断故障的存在。

当阻抗超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

4. 差动保护:差动保护是通过比较输电线路两端的电流和电压差异来判断故障的存在。

当差动电流或差动电压超过设定值时,继电保护会触发断路器等设备,切断故障点与系统的连接。

35KV输电线路保护设计-35KV输电线路保护

35KV输电线路保护设计-35KV输电线路保护

摘要电力系统的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。

但是一旦发生故障如不能及时有效控制,就会破坏稳定运行,造成大面积停电,给社会带来灾难性的严重后果。

随着电力系统的迅速发展,大量机组、超高压输变电的投入运行,对继电保护不断提出新的更高要求。

继电保护是电力系统的重要组成部分,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段。

因此,加强线路继电保护非常重要。

根据线路继电保护的要求,给35KV的输电线路设计合适的继电保护。

本次课程设计首先介绍了继电保护的作用和发展,然后详细介绍了35KV线路主保护及后备保护的选择与整定,35KV线路三相一次重合闸及防雷保护,最后介绍35KV系统的微机保护。

关键词:继电保护;主保护;整定;微机保护目录1 继电保护的作用和发展 (1)1.1 继电保护的作用 (1)1.1.1 继电保护在电力系统中的作用 (1)1.1.2 继电保护的基本原理和基本要求 (1)1.2 继电保护的发展 (2)2 35KV线路主保护选择与整定 (4)2.1 电流、电压保护整定计算考虑原则 (4)2.1.1 电流、电压保护的构成原理及使用范围 (4)2.2 电流闭锁电压保护 (5)3 35KV线路后备保护选择与整定 (12)4 35KV线路三相一次重合闸 (17)5 线路及变压器防雷保护 (18)6 微机保护 (19)6.1 微机保护的软硬件组成 (19)6.1.1微机保护的特点 (19)6.1.2微机保护装置硬件结构 (19)6.1.3微机保护的软件组成 (20)6.2 微机保护的算法 (21)6.3 35KV系统微机保护配置 (22)总结 (24)致谢 (25)参考文献 (26)1继电保护的作用和发展1.1 继电保护的作用1.1.1 继电保护在电力系统中的作用电力系统在生产过程中,有可能发生各类故障和各种不正常情况。

其中故障一般可分为两类:横向不对称故障和纵向不对称故障。

35kV输电线路电流电压保护设计(2)

35kV输电线路电流电压保护设计(2)

辽宁工业大学电力系统继电保护课程设计(论文)题目: 35kV输电线路电流电压保护设计(2)院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:课程设计(论文)任务及评语续表注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算。

摘要电力系统在运行中,可能发生各种故障和异常运行状态。

故障和异常运行状态都可能在电力系统中引起事故。

较其他电气元件,输电线路是电力系统中最容易发生故障的一环。

故障一旦发生,必须迅速而有选择性的切除故障区段,使非故障区段正常供电,这是保证电力系统安全运行的最有效方法之一。

实现这些功能的就要靠继电保护装置。

随着微机技术的发展及现代社会对供电可靠性的提高,微机保护装置正日益普遍的用于电力系统中。

1.无论传统继电保护还是现代微机保护,其基本任务都是:(1)当电力系统被保护元件发生故障时,保护装置应能自动、迅速、有选择性的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。

(2)当电力系统被保护元件出现异常运行状态,能根据运行维护的条件,而动作于发出信号,减负荷或跳闸。

可见,继电保护对保证系统安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。

因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,以满足现代电力系统安全稳定运行的要求,理应得到我们的重视。

2.对电力系统继电保护的基本要求:动作于跳闸的继电保护,在技术上一般应满足四个基本要求,即选择性、速动性、灵敏性和可靠性。

(1)选择性继电保护动作的选择性是指保护动作装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

(2)速动性快速的切除故障可以提高电力系统并列运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。

因此,在故障发生时,应力求保护装置能迅速动作切除故障。

35KV架空输电线路初步设计方案

35KV架空输电线路初步设计方案

35KV架空输电线路初步设计方案第二部分 工程概况-、设计情况随着经济发展,负荷增加,近年来,用户对供电可靠性的要求不断提高,为避免因线路故障及检修造成对XX变电站停电及线路网架要求,该线路的建设必要性非常大。

本工程线路全线经过地带为平原,沿线植被主要是农田、粮林间作带。

根据通许县城城市整体规划,经过与县城规划部门实地查看,规划部门允许该线路走径。

电压等级:35KV线路回数:本期采用单回路架设线路长度:35KV输电线路工程单回5.98kM。

导地线型号:导线LGJ-185/30;二、气象条件根据本地区高压输电线路多年运行经验。

本工程线路所选气象条件为线路所通过地区30年一遇的数值(其值详见下表)。

气 象 条 件 一 览 表气象条件类别 气 温( ℃ )风 速(m / s)覆冰厚度(m m)最高气温 + 40 0 0 最低气温 - 20 0 0最大风速 - 5 28.12米/秒(基准高离地面10米)覆冰情况 - 5 10 导线10 地线15年均气温 + 15 0 0 外过电压 + 15 10 0 过电压 + 15 15 0 安装情况 - 10 10 0 安装情况 0.9g/cm3雷暴日 ≤40第三部分 设计说明书第一章.导线及避雷线部分导线是固定在杆塔上输送电流的金属线,由于经常承受着拉力和风、冰、雨、雪及温度变化的影响,同时还受空气中化学杂质的侵蚀,所以导线的材料除了应有良好的导电率外,还有足够的机械强度和防腐性能。

导线和地线:根据规划,新建线路全部采用LGJ-185/30。

导线:按GB1179-83标准推荐用LGJX-185/30钢芯铝(稀土)绞线。

地线:根据Q/GDW179-2008)《地线采用镀锌钢绞线时与导线配合表》选用GJ-35(1×7) 镀锌绞线。

导地线定货标记:导线:LGJX-185/30 GB1179-83稀土钢芯铝绞线地线:GJ-35:1×7-2.6导地线参数表项目 参数 参数型号 LGJX-185/30 GJ-35标称截面铝/钢(mm2) 185/30 37.15结构根数/直径(mm)铝 28/2.88钢 7/2.50 7×2.6计算截面(mm2) 铝 181.34钢 29.59 37.15合计 210.93 37.15外径(mm) 18.88 7.8直流电阻不大于(欧姆/千米) 0.1592计算拉断力(N) 64250 43688计算质量(kg/千米) 732.6 318.2弹性系数(N/ mm2) 78400 181300线膨胀系数(1/℃) 18.8×10-6 11.5×10-6 交货长度不小于(m) 2000 1000注:拉断力取计算拉断力的95%。

35KV降压变电所继电保护设计

35KV降压变电所继电保护设计

35KV降压变电所继电保护设计35KV降压变电所继电保护设计引言降压变电所是输电线路与配电线路之间的重要组成部分,起到将高电压输电线路的电压降低至适合配电网的电压水平的作用。

为了确保降压变电所的运行安全和稳定,继电保护系统在其中起着至关重要的作用。

本文将针对35KV降压变电所继电保护设计进行详细探讨。

一、继电保护的基本原理继电保护是一种用来保护电力系统设备免受电流过大、电压过高、频率不稳定等异常情况造成的损坏的系统。

其基本原理是通过在电网中布置感应元件(如电流互感器、电压互感器等)检测电流、电压等参数,并根据这些参数的变化来触发保护装置,切断故障电路,保护变电设备的安全运行。

二、降压变电所继电保护设计的要求1. 保护性能要求高。

由于降压变电所处于电力系统的输电与配电之间的过渡区域,其部分电流和电压参数高于配电线路,因此继电保护系统需要具备较高的抗干扰能力,能够准确快速地识别和保护故障。

2. 系统可靠性要求高。

降压变电所所处地域一般是电力负荷比较密集的地区,电网运行的可靠性要求较高。

因此,继电保护系统需要具备较高的可靠性,能够正常运行并及时发现、切除故障。

3. 考虑灵活性和扩展性。

降压变电所的规模和负荷有可能随着用电需求的变化而增加,因此继电保护系统需要具备一定的灵活性和扩展性,以便满足未来的需求。

三、继电保护的主要功能在35KV降压变电所的继电保护设计中,主要应包含以下功能:1. 电缆故障保护电缆故障保护是降压变电所继电保护系统中最重要的功能之一。

通过设置不同的保护区域,可以实现对电缆线路中的短路、接地故障的保护。

2. 变压器保护降压变电所主要功能是将高压输电线路的电压降低到适合配电的电压,因此变压器是降压变电所的核心设备。

继电保护系统需要对变压器进行过电流、过温度、过电压等故障的保护。

3. 线路保护降压变电所连接着输电线路和配电线路,因此对输电线路和配电线路进行继电保护是非常重要的。

主要包括对线路的过流、短路、接地等故障进行保护。

(完整word版)35KV线路继电保护课程设计

(完整word版)35KV线路继电保护课程设计

XXXXXXXXXXXXXXXXXXXX学院《35KV线路继电保护》课程设计姓名:系别:专业:班级:学号:指导老师:起止时间XXXX年X月XX日至XXXX年X月X摘要本次继电保护设计是35KV线路继电保护的配置及整定计算设计.本文首先介绍了此次设计要点,根据给定35KV线路网络的接线图及参数,进行短路电流进行整定计算,制定出反应其输电线路上相间短路、接地短路故障的继电保护配置方案。

通过对所配置的继电保护进行整定计算和校验,论证继电保护配置的正确性,并对部分输电线路继电保护回路进行了设计。

【关键词】短路电流整定计算输电线路继电保护目录摘要1第一章概述1.1 课程设计的目的1 1.2 课程设计的要求1 1。

3 课程设计的内容1 1。

4 设计步骤2第二章短路电流和电流保护的整定的计算2.1 设计的基本资料 3 2.2 短路电流的计算4 2.2。

1 电线路的阻抗计算4 2。

2.2AB三段式电流保护的整定值计算及灵敏度的校验5 2.2.3AD段三段式保护整定计算及灵敏度的校验6 2.3 三段式电流保护的交直流的展开图8 2。

4 单向接地故障零序电压保护9第三章继电器和互感器的选择3.1 继电器设备选择10 3。

2 互感器的变比10总结11参考文献12第一章概述1.1课程设计的目的:通过设计,是学生掌握和应用电力系统继电保护的设计、整定计算、资料整理查询和电气绘图等使用方法。

在此过程中培养学生对各门专业课程整体观念综合能力,通过较为完整的工程实践基本训练,为全面提高学生的综合素质及增强工作适应能力打下一定的基础.1.2课程设计的的要求:设计说明书在撰写时,文句要力求精炼简明,深入浅出,通顺易读。

计算过程的撰写要求:计算方法正确、参数取值合理,严格执行国家和行业现行的技术规范和标准;数据真实、可靠,公式选用合适,计算结果正确、可信,书写规范、工整。

对于图纸,要求按工程图标准绘制,图面要求排列整齐、布置合理、清洁美观。

35kV线路加变压器保护改造后35kV侧二次电压、电流回路分析

35kV线路加变压器保护改造后35kV侧二次电压、电流回路分析

35kV线路加变压器保护改造后 35kV侧二次电压、电流回路分析摘要:在此次线路加变压器的保护改造中,电压回路和电流回路做为此次改造不可缺少的一部分,在线变组本侧保护中电压和电流十分重要。

电压、电流不仅参与计量还参与保护。

本侧电流回路的正确与否直接影响到线变组全部保护及计量故障录波电流向量的正确性,以及现场安全自动装置动作逻辑是否满足系统实际运行工况,是否满足运行需求,在保证装置动作的准确性可靠性前提下帮助运行人员在系统发生接地故障的时能够快速准确的切除故障线路保证系统在运其它设备正常运行。

关键词:电压回路;电流回路;PT;CT;CT准确级DOI:10.13335/j.1000-3673.pst.2014.01.论文序号引言:此次改造之前及本次改造时也曾发生过电压回路故障。

因为电压回路参与了保护,计量,同期,以及电压作为电能质量标准之一,所以在一次系统运行的工况下二次电压是否正常变得极其重要。

值班人员对全站的电压回路熟悉程度决定了排除二次电压回路故障的速度。

1二次电压回路分析1.1开关柜二次电压回路母线PT柜间隔1号站Ⅰ、Ⅱ母PT一次侧中性点直接接地,2号站Ⅰ、Ⅱ母PT一次侧中性点经电容接地,电容两端并接勉谐装置的高压直流继电器在开口电压大于15V时动作吸合达到一次消谐的目的,开口接有勉谐装置的能量箱达到微机二次消谐,PT三相电压及开口电压均引致保护室电压转接屏。

本次改造的35kV1、2号站开关柜间隔分别布有本站Ⅰ、Ⅱ母PT引出的两组电压回路;原来旧的保护屏顶部布有屏顶电压小母线用于旧的保护及测控。

此次改造后的电压回路分别引自与原保护室电压转接屏,电压转接屏包括两个站4条母线PT引出的4组电压(A、B、C、N,L、N)。

本次电压转接屏接入新的小电流选线装置、母线PT勉谐装置三相电压,勉谐装置零序电压直接引自PT柜,以及1、2号站所有线变组改造保护屏电压。

1.2保护屏电压回路本次改造将电压转接屏4组电压分别引致新的保护室1、2号站公共测控2-21n用于后台机画面电压监视。

35KV线路保护

35KV线路保护

35KV输电线路继电保护设计作者:鄢凯指导教师:陕春玲教学单位:三峡大学葛洲坝集团电力有限责任公司摘要:35KV输电线路继电保护主要是阶段式电流保护,即第Ⅰ段为电流速断保护,第Ⅱ段为限时电流速断保护,第Ⅲ段为过电流保护。

它以第Ⅰ段和第Ⅱ段作为主保护,以第Ⅲ段作为辅助保护。

当第Ⅰ、Ⅱ段灵敏系数不够时,可采用电流、电压联锁速段保护。

第Ⅰ段保护动作时间短,速动性好,但其动作电流较大,不能保护线路全长,保护范围最小;第Ⅱ段保护有较短的动作时限,而且能保护线路全长,却不能作为相邻元件的后备保护;第Ⅲ段保护的动作电流较前两段小,保护范围大,既能保护本线路的全长又能作为相邻线路的后备保护,灵敏性最好,但其动作时限较长,速动性差。

使用Ⅰ段、Ⅱ段、Ⅲ段组成的阶段式电流保护的主要优点是简单、可靠,并且在一般情况下能够满足快速切除故障的要求。

阶段式电流保护,在灵敏系数能满足要求时,用于35KV中性点非直接接地电网的线路上,作为相间短路的保护。

在35KV线路继电保护的设计中,还用到了单相接地保护,一般采用无选择性的绝缘监视信号装置。

关键词:35KV线路阶段式电流保护单相接地保护整定计算原理接线图评价及应用前言电力系统继电保护技术,是随电力系统的发展而发展起来的一门专业技术。

电力系统的发展,使发电设备容量和供电范围不断扩大,电压等级不断提高,电力系统的网络也越来越复杂。

这对于保证电力系统安全、可靠、稳定运动必不可少的继电保护技术,便提出了越来越高的要求,从而也就有了电力系统继电保护原理和装置从简单到复杂的发展过程。

再次我们所介绍的继电保护原理及装置主要用于35KV输电线路中。

35KV电力系统属中性点非直接接地系统,其中性点或经消弧线圈接地或不接地;对于相间短路和单相接地,由于接地电流小,三相电压仍能保持平衡,对用户没有很大的影响。

因此,单相接地保护一般动作于信号,但单相接地对人身和设备的安全产生危害时,就应动作于断路器跳闸,故均应装设相应的继电保护装置,一般由具有阶梯时限特性的多段式保护构成。

35KV变电站设计说明书

35KV变电站设计说明书

目录一、课程设计目的、要求和依据 (4)(一)课程设计的目的 (4)(二)对课程设计的要求 (4)(三)课程设计所依据的文件 (4)二、课程设计内容。

、 (5)三、短路电流计算 (5)四、电网继电保护配置设计 (5)(-)继电保护配置的一般原则 (6)(二)35千伏中性点不接地电网的继电保护配置原则 (7)l、相间短路保护 (7)2、单相接地保护 (8)3过负荷保护 (8)(三)配置方案的考虑 (8)五、整定计算方法 (9)(一)相间短路的电流电压保护 (9)1、瞬时电流速断保护的整定计算— (9)2、瞬时电流电压联锁速断保护的整定计算 (11)3、限时电流速断保护的整定计算 (12)一1 一4、限时电流电压联锁速断保护的整定计算--------------------(14)5、定时限时电流保护的整定计算---------------------------------(l7)6、低电压闭锁定时限过电流保护的整定计算------------------(18)(二)相间短路的距离保护------------------------------------------(20)1、距离保护动作阻抗的整定计算----------------------------------(20)2、阻抗继电器动作阻抗的计算--------------------------------------(22)(三)单相接地的零序保护---------------------------------------------(23)1、绝缘监视装置-----------------------------------------------------(23)2、零序电流保护--------------------------------------------------------(23)(四)过负荷保护------------------------------------------------------(24)六、35千伏电网继电保护配置图的绘制--------------------------(24)七、35千伏线路继电保护回路设计---------------------------------(24)(一)继电保护回路设计的内容------------------------------------(24)1、继电保护回路和整个二次回路的关系-----------------------(24)2、继电保护回路的设计---------------------------------------------(25)(二)继电器及并联附加电阻的选择----------------------------(26)1、电流、电压继电器的选择---------------------------------------(27)2、功率继电器的选择------------------------------------------------(28)3、接地继电器的选择-----------------------------------------------(28)4、时间继电器的选择------------------------------------------------(28)5、中间继电器的选择------------------------------------------------(28)6、信号继电器及附加并联电阻-------------------------------------(29)(三)35千伏线路保护回路接线图的绘制-----------------------(31)八设计说明书的编写 (32)九、附录 (32)附录一《水电站继电保护》课程设计任务书 (32)附录二《小型水力发电站设计规范》摘录 (35)附录三《火力发电厂、变电所二次接线设计技术规定(强电部分)》摘录 (35)附录四水轮发电机运算曲线数字表 (41)附录五继电保护及自动装置图形符号 (43)附录六电力系统回路上的回路编号 (47)附录七常用继电器技术数据 (48)十、符号说明及补充说明 (63)(一)符号说明 (63)(二)补充说明 (64)十一、附图 (64)35千伏金中线控制、测量回路接线图 (64)一、课程设计目的、要求和依据(一)课程设计的目的1.在巩固《水电继电保护》课程所学理论知识的基础上,锻炼学生运用所学知识分析和解决生产实际问题的能力。

35KV线路保护

35KV线路保护

35KV输电线路继电保护设计作者:鄢凯指导教师:陕春玲教学单位:三峡大学葛洲坝集团电力有限责任公司摘要:35KV输电线路继电保护主要是阶段式电流保护,即第Ⅰ段为电流速断保护,第Ⅱ段为限时电流速断保护,第Ⅲ段为过电流保护。

它以第Ⅰ段和第Ⅱ段作为主保护,以第Ⅲ段作为辅助保护。

当第Ⅰ、Ⅱ段灵敏系数不够时,可采用电流、电压联锁速段保护。

第Ⅰ段保护动作时间短,速动性好,但其动作电流较大,不能保护线路全长,保护范围最小;第Ⅱ段保护有较短的动作时限,而且能保护线路全长,却不能作为相邻元件的后备保护;第Ⅲ段保护的动作电流较前两段小,保护范围大,既能保护本线路的全长又能作为相邻线路的后备保护,灵敏性最好,但其动作时限较长,速动性差。

使用Ⅰ段、Ⅱ段、Ⅲ段组成的阶段式电流保护的主要优点是简单、可靠,并且在一般情况下能够满足快速切除故障的要求。

阶段式电流保护,在灵敏系数能满足要求时,用于35KV中性点非直接接地电网的线路上,作为相间短路的保护。

在35KV线路继电保护的设计中,还用到了单相接地保护,一般采用无选择性的绝缘监视信号装置。

关键词:35KV线路阶段式电流保护单相接地保护整定计算原理接线图评价及应用前言电力系统继电保护技术,是随电力系统的发展而发展起来的一门专业技术。

电力系统的发展,使发电设备容量和供电范围不断扩大,电压等级不断提高,电力系统的网络也越来越复杂。

这对于保证电力系统安全、可靠、稳定运动必不可少的继电保护技术,便提出了越来越高的要求,从而也就有了电力系统继电保护原理和装置从简单到复杂的发展过程。

再次我们所介绍的继电保护原理及装置主要用于35KV输电线路中。

35KV电力系统属中性点非直接接地系统,其中性点或经消弧线圈接地或不接地;对于相间短路和单相接地,由于接地电流小,三相电压仍能保持平衡,对用户没有很大的影响。

因此,单相接地保护一般动作于信号,但单相接地对人身和设备的安全产生危害时,就应动作于断路器跳闸,故均应装设相应的继电保护装置,一般由具有阶梯时限特性的多段式保护构成。

35kV输电线路距离保护设计说明

35kV输电线路距离保护设计说明

.科技大学电力系统继电保护课程设计题目:35kV输电线路距离保护设计学生:学号:专业:班级:完成时间:目录科技大学课程设计任务书1摘要 (5)前言 (6)第一章概述71.1继电保护的基本概念71.2继电保护的基本任务71.3电力系统对继电保护的基本要求71.4继电保护发展历史8第二章设计容及过程102.1 电力系统距离保护102.1.1距离保护概念及适用围102.1.2距离保护的时限特性102.2 阻抗继电器102.2.1阻抗继电器的动作特性112.2.2阻抗继电器的实现方法112.3 距离保护的整定的计算142.3.1 35KV双回路线路的继电保护的原理图152.3.2距离保护的整定162.4本设计的具体计算202.4.1距离保护Ⅰ段的整定计算202.4.2距离保护Ⅱ段的整定计算和校验202.4.3距离保护Ⅲ段的整定计算和校验21第三章总结203.1距离保护的优缺点和应用围203.2设计心得20参考文献22科技大学课程设计任务书摘要:电力是当今世界使用最为广泛、地位最为重要的能源之一,电力系统的安全稳定运行对国民经济、人民生活乃至社会稳定都有着极为重大的影响。

电力系统继电保护是反映电力系统中电气设备发生故障或不正常运行状态而动作于断路器跳闸或发生信号的一种自动装置。

电力系统继电保护的基本作用是:全系统围,按指定分区实时地检测各种故障和不正常运行状态,快速及时地采取故障隔离或告警信号等措施,以求最大限度地维持系统的稳定、保持供电的连续性、保障人身的安全、防止或减轻设备的损坏。

随着电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。

随着电力系统的迅速发展。

大量机组、超高压输变变电的投入运行,对继电保护不断提出新的更高要求。

继电保护是电力系统的重要组成部分,被称为电力系统的安全屏障,同时又是电力系统事故扩大的根源,做好继电保护工作是保证电力系统安全运行的必不可少的重要手段,电力系统事故具有连锁反应、速度快、涉及面广、影响大的特点,往往会给国民经济和人民生活造成社会性的灾难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁工业大学电力系统继电保护课程设计(论文)题目: 35kV输电线路电流电压保护设计(2)院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:课程设计(论文)任务及评语续表注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算。

摘要电力系统在运行中,可能发生各种故障和异常运行状态。

故障和异常运行状态都可能在电力系统中引起事故。

较其他电气元件,输电线路是电力系统中最容易发生故障的一环。

故障一旦发生,必须迅速而有选择性的切除故障区段,使非故障区段正常供电,这是保证电力系统安全运行的最有效方法之一。

实现这些功能的就要靠继电保护装置。

随着微机技术的发展及现代社会对供电可靠性的提高,微机保护装置正日益普遍的用于电力系统中。

1.无论传统继电保护还是现代微机保护,其基本任务都是:(1)当电力系统被保护元件发生故障时,保护装置应能自动、迅速、有选择性的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。

(2)当电力系统被保护元件出现异常运行状态,能根据运行维护的条件,而动作于发出信号,减负荷或跳闸。

可见,继电保护对保证系统安全、稳定和经济运行,阻止故障的扩大和事故的发生,发挥着极其重要的作用。

因此,合理配置继电保护装置,提高整定和校核工作的快速性和准确性,以满足现代电力系统安全稳定运行的要求,理应得到我们的重视。

2.对电力系统继电保护的基本要求:动作于跳闸的继电保护,在技术上一般应满足四个基本要求,即选择性、速动性、灵敏性和可靠性。

(1)选择性继电保护动作的选择性是指保护动作装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。

(2)速动性快速的切除故障可以提高电力系统并列运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。

因此,在故障发生时,应力求保护装置能迅速动作切除故障。

(3)灵敏性继电保护的灵敏性,是指对于其保护范围内发生故障或者不正常运行状态的反应能力。

满足灵敏性要求的保护装置应该是在事先规定的保护范围内部故障时,不论短路点的位置、短路的类型如何,以及短路点是否有过渡电阻都能敏锐感觉,正确反应。

(4)可靠性保护装置的可靠性是指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作,而在任何其他该保护不该动作的情况下,则不应该误动作。

本文主要对35KV输电线路方向电流保护进行分析与设计,对电气元件在最大运行方式和最小运行方式下的电流进行整定计算后,进行分析,判断是否需要安装方向元件,并在绘制方向电流保护原理图后进行仿真,最后达到安全稳定的保护电力系统运行的要求。

关键词:继电保护;电流电压保护;电力系统;保护元件目录第1章绪论 (1)1.1输电线路电流保护概述 (1)1.2本文设计内容 (1)第2章输电线路电流保护整定计算 (2)2.1 电流Ι段整定计算 (2)2.1.1 动作电流的整定 (2)2.1.2 灵敏度校验 (3)2.1.3 动作时间的整定 (3)2.2 电流Ⅱ段整定计算 (4)2.3电流Ⅲ段整定计算 (4)第3章电流保护原理图的绘制与动作过程分析 (6)3.1电流三段式保护原理接线图 (6)3.2 电流三段式原理展开图 (7)第4章 MATLAB建模仿真分析 (8)第5章课程设计总结 (10)参考文献 (11)第1章绪论1.1输电线路电流保护概述电力系统的输、配电线路因各种设备原因、自然原因、人工操作不当等原因可能会发生相间或相地短路故障,因此,必须有相应的保护装置来反映这些故障,并控制故障线路的断路器,使其跳闸以切除故障。

而且,对各种不同电压等级的线路应该装设不同的相间短路和接地短路的保护。

对于35KV及以上的电力设备和线路故障,应有主保护和后备保护;对于电压等级在220KV及以上的线路,应该考虑或者必须装设双重化的主保护,对于整个线路的故障,应该无延时控制其断路器跳闸。

线路的相间短路、接地短路保护主要有电流电压保护,方向电流电压保护,接地零序电流电压保护,距离保护和纵联保护等。

而其中电流电压保护主要包括带方向判别和不带方向判别的相间短路电流电压保护、带方向判别和不带方向判别的接地短路电流电压保护。

他们分别用于双电源网络、单电源环形网络及单电源辐射网络的线路上切除相间或接地短路故障。

1.2 本文设计内容方向电流保护用于双电源网络和单电源环形网络时,在构成、整定、相互配合等问题上还有以下特点:在保护构成中增加功率方向测量原件,并与电流测量元件共同判别是否在保护线路的正方向上发生故障。

本次设计主要对保护段的Ι段动作电流的整定、灵敏度的校验、动作时间的整定、方向电流Ⅱ段的整定计算和方向电流Ⅲ段动作时间整定计算,绘制方向电流保护原理图,并对动作过程进行分析。

以及运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算等。

第2章 输电线路电流保护整定计算2.1 电流Ι段整定计算2.1.1 动作电流的整定Ω=⨯==244.06021L L X X ,Ω=⨯=164.0403L XΩ=⨯=124.030BC X ,Ω=⨯=124.030CD X , Ω=⨯=84.020DE X所以,最大运行方式的等值阻抗为:()()()()Ω=++=++=14152524241525212121min 3G G L L G G X X X X X X X最小运行方式的等值阻抗为:()()()()Ω=++=++=17161024253311max 3L G L G X X X X XC 母线最大短路电流为:KA =+=+=82.01214337min 3max BC s kC X X E IC 母线最小短路电流为:KA =+⨯=+⨯=64.012173372323max 3min BC s kC X X E I 同理,D 母线最大短路电流为:KA =++=++=56.0121214337min 3max CD BC s kD X X X E ID 母线最小短路电流为:KA =++⨯=++⨯=45.01212173372323max 3min CD BC s kD X X X E I E 母线最大短路电流为:KA =+++=+++=46.08121214337min 3max DE CD BC s kE X X X X E IE 母线最小短路电流为:KA =+++⨯=+++⨯=38.081212173372323max 3minDE CD BC s kE X X X X E I 保护1,2,3的第I 段动作电流分别为:KA =⨯=⋅=552.046.02.1max 1kE Irel I op I K I KA =⨯=⋅=672.056.02.1max 2kD I rel I op I K I KA =⨯=⋅=984.082.02.1max 3kC I rel I op I K I2.1.2 灵敏度校验Ω-=---⨯=---=49.6121216552.023723max 31min 1CD BC Iop s X X X I E xl Ω-=--⨯=--=470.01216672.023723max 32min 2BC Iop s X X I E xl Ω=-⨯=-=800.216984.023723max 33min 3X I E xl Iop s 所以,0%100min 11<⨯=DEIsenX xl K,不满足灵敏度要求。

,0%100min22<⨯=CDI sen X xl K ,不满足灵敏度要求。

%15%3.23%10012800.2%100min 33>=⨯=⨯=BC I senX xl K,满足灵敏度要求。

2.1.3 动作时间的整定由上述过程可知,保护1,2,3的I 段动作时间分别为:s 01=I op I ,s 02=I op I ,s 03=Iop I2.2 电流Ⅱ段整定计算对于保护2的电流保护II 段动作电流应与相邻线路DE 电流保护的I 段配合,即2min 12b I op II rel II op K I K I ⋅=,12min =b K所以,KA =⨯=63.01552.015.12IIop I3.171.063.045.02min <===IIop kD II sen I I K ,不满足灵敏度要求。

所以断路器2处电流保护II 段与断路器1处的II 段配合,但因1处没有保护II 段,所以不满足要求。

对于保护3的电流保护的II 段的动作电流应与相邻线路CD 电流保护的I 段配合,即KA =⨯=⋅=77.01672.015.13min 23b Iop II rel II op K I K I 3.183.077.064.03min <===IIop kC II sen I I K ,不满足灵敏度要求。

所以,断路器3处电流保护II 段与断路器2处电流保护II 断配合,即KA =⨯=⋅=72.0163.015.13min 23b IIop II rel II op K I K I 3.189.072.064.03min <===IIop kC II sen I I K ,不满足灵敏度要求。

s 13=IIop I2.3电流Ⅲ段整定计算整定保护1,2,3的过电流保护定值,假定母线E 过电流保护动作电流时限为0.5s,确定保护1,2,3过电流保护的动作时限,校验保护1作近后备,保护2,3作远后备的灵敏度。

因为max rel L ress IIIIIIopI K K K I ⋅⋅=所以KA =⨯⨯=⋅⋅=029.713585.05.115.1maxrel 1DE re ssIII III op I K K K I KA =⨯⨯=⋅⋅=059.1427085.05.115.1max rel 2CD re ss III IIIop I K K K IKA =⨯⨯=⋅⋅=235.22311085.05.115.1max rel 3BC re ss III IIIop I K K K I因为假定母线E 过电流保护动作的时限为0.5s,即s 5.0e =IIIop I ,所以保护1,2,3整定时间分别为:s 1e 1=∆+=t I I III op III op s 5.112=∆+=t I I III op III op s 223=∆+=t I I III op III op3.100535.0029.7138.01min 1<===III op kE III sen I I K,不满足灵敏度要求。

2.100267.0059.14238.02min 2<===IIIop kE IIIsen I I K ,不满足灵敏度要求。

相关文档
最新文档