原子转移自由基聚合理论
原子转移自由基聚合理论
(1)ATRP 介绍王锦山等⑴采用1-苯-1-氯乙烷作为引发剂,氯化亚铜和联吡啶(bpy)的络合物作为催化剂,在130C下引发苯乙烯(St)的本体聚合,反应3h产率可达95%。
理论分子量和实验值符合较好。
为了验证反应的自由基机理,比较了所得聚合物与一般自由基聚合所得聚合物的立构规整度,发现两者比较一致。
并且当加入第二单体丙烯酸甲酯时,成功实现了嵌段共聚,具有明显的活性聚合特征。
由此他们提出了原子转移自由基聚合(ATRP)。
ATRP是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现了对聚合反应的控制。
聚合原理引发阶段,处于低氧化态的转移金属卤化物Mt n,从有机卤化物R-X中吸取卤原子X,生成引发自由基R •及处于高氧化态的金属卤化物Mt n+1-X,自由基R •可引发单体聚合,形成链自由基R-M n • R-M n可从高氧化态的金属配位化合物Mt n+1-X中重新夺取卤原子而发生钝化反应,形成R-M n-X,并将高氧化态的金属卤化物还原为低氧化态的Mt n。
增长阶段,R-M n-X与R-X 一样(不总一样)可与Mt n发生促活反应生成相应的R-M n和Mt n+1-X,R-M n与R-M-性质相似均为活性种,同时R-M n和Mt n+1-X又可反过来发生钝化反应生成R-M n-X和Mt n, 则在自由基聚合反应进行的同时始终伴随着一个自由基活性种与大分子卤化物休眠种的可逆转换平衡反应。
由此可见,ATRP 的基本原理其实是通过一个交替的“促活—失活”可逆反应使得体系中的游离基浓度处于极低,迫使不可逆终止反应被降到最低程度,从而实现可控/“活性”自由基聚合。
引发剂ATRP聚合体系的引发剂主要是卤代烷RX(X=Br,C1),另外也有采用芳基磺酰氯、偶氮二异丁腈等。
RX的主要作用是定量产生增长链。
a碳上具有诱导或共轭结构的RX,末端含有类似结构的大分子(大分子引发剂)也可以用来引发,形成相应的嵌段共聚物。
原子转移自由基聚合概述
原子转移自由基聚合概述1.引言“活性”/可控自由基聚合不同于传统意义上的自由基聚合反应。
它克服了分子量及其分布不可控,难以合成嵌段聚合物等缺陷,做到了分子量可控,分子量分布较窄,聚合物结构可控等一系列要求。
这类聚合反应主要是有效降低了增长活性中心的浓度,抑制了双基终止的发生,延长了自由基的寿命和分子量的统一性;使用快引发的方式,保证不同分子链同时增长。
目前大致有以下几种不同的机理得到了较为深入地研究:基于引发-转移-终止剂(Initiator-chain transfer-terminator)的活性自由基聚合(Iniferter法)、基于氮氧稳定自由基的活性自由基聚合(Living nitroxide-mediated stable free radical polymerization-SFRP)、原子转移自由基聚合(Atom transfer radical polymerization-ATRP)、基于可逆加成碎裂链转移剂的活性自由基聚合(Living radical polymerization in the presence of reversible addition-fragmentation chain transfer-RAFT)和退化转移自由基聚合(degenerative transfer process-DT)等等。
在这些不同的实现“活性”/可控自由基聚合的方法当中,原子转移自由基聚合是目前最有希望实现工业化的一种方法。
2.原子转移自由基聚合概述原子转移自由基聚合是1995年由卡内基梅隆大学Matyjaszewski课题组提出的一种“活性”/可控自由基聚合新机理Wang, J-S; Matyjaszewski, K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117: 5614–5615.。
原子转移自由基聚合在星形聚合物合成中的应用
原子转移自由基聚合在星形聚合物合成中的应用一、本文概述随着材料科学的深入发展,聚合物的合成及其性能优化已成为科研和工业界的重要研究方向。
在众多合成技术中,原子转移自由基聚合(ATRP)因其独特的反应特性,如反应条件温和、反应活性高、聚合度可控等,受到了广泛关注。
特别是其在星形聚合物合成中的应用,不仅丰富了聚合物的种类,还极大地改善了聚合物的性能。
星形聚合物,由于其独特的结构特点,如高支化度、低粘度、良好的溶解性等,被广泛应用于涂料、粘合剂、生物医药等领域。
原子转移自由基聚合技术,通过精确控制聚合过程,能够合成出具有预定结构、性能和功能的星形聚合物,为星形聚合物的制备提供了强有力的技术支撑。
本文旨在探讨原子转移自由基聚合在星形聚合物合成中的应用。
我们将首先介绍原子转移自由基聚合的基本原理和反应特点,然后重点分析其在星形聚合物合成中的具体实现方法、反应条件以及影响因素。
我们还将对原子转移自由基聚合制备的星形聚合物的性能进行评估,并展望其在未来材料科学领域的应用前景。
通过本文的阐述,我们期望能够增进对原子转移自由基聚合在星形聚合物合成中应用的理解,为相关研究和应用开发提供有益的参考和启示。
二、原子转移自由基聚合的基本原理原子转移自由基聚合(ATRP)是一种重要的聚合技术,其基本原理涉及自由基的产生、传播和终止等步骤。
在ATRP过程中,一个过渡金属配合物作为催化剂,通过氧化还原反应不断地在低价和高价态之间转换,从而实现自由基的生成和控制。
在引发阶段,引发剂(如卤代烃)与过渡金属配合物(如铜(I)配合物)发生氧化还原反应,生成一个自由基和一个新的过渡金属配合物。
这个自由基随后引发单体聚合,形成链自由基。
在链增长阶段,链自由基与单体发生加成反应,生成一个新的自由基和聚合物链。
同时,过渡金属配合物再次与这个新的自由基发生氧化还原反应,将自由基转移到过渡金属配合物上,形成休眠种。
这个休眠种在适当的条件下可以再次发生氧化还原反应,释放出自由基,继续链增长过程。
原子转移自由基聚合(ATRP)
实验部分
聚甲基丙烯酸甲酯(PMMA)的合成及表征 聚甲基丙烯酸甲酯(PMMA)的合成及表征 大分子引发剂的合成及表征 乙基纤维素接枝甲基丙烯酸甲酯的合成及表征
1.聚甲基丙烯酸甲酯的合成与表征 1.聚甲基丙烯酸甲酯的合成与表征
表1.1 相同情况下单体转化率与反应时间的关系
序号 1 2 3 4
单体质量 5.64 5.64 5.64 5.64
从谱图中可知,1137.95 cm-1和1132.28 cm-1,以及1264.46 cm-1体现了C—O—C的伸缩振动,3441.76 cm-1处的峰较弱,说 明,乙基纤维素上的羟基发生了反应,生成了大分子引发剂。
3.乙基纤维素接枝甲基丙烯酸甲酯的合成与表征 3.乙基纤维素接枝甲基丙烯酸甲酯的合成与表征 • 表3.1接枝共聚物的接枝率随反应时间的关系 接枝共聚物的接枝率随反应时间的关系 反应时间 反应前大 分子引发 剂 4h 0.500 6h 0.500 8h 0.500 10 h 0.500 产物质量 所接单 体总质 量 1.137 0.637 1.411 0.911 1.487 0.987 1.688 1.188 接枝率
结论
• 本实验采用的是一种简便可行,研究价值高,应用前景广的聚合方
法—原子转移自由基聚合(ATRP),通过采用小分子引发剂和大分子引 原子转移自由基聚合(ATRP),通过采用小分子引发剂和大分子引 发剂分别引发甲基丙烯酸甲酯原子转移自由基聚合反应,以此作对比, 小分子和大分子引发过程再分别考察不同反应时间对聚合的影响,从 而证明反应是成功的。 • (1)通过乙基纤维素上的羟基与 2 — 溴异丁酰溴的取代反应,在乙 基纤维素上引入了较多的溴异丁酸酯基团,合成了取代度不同的大分 子引发剂。 • (2)通过PMMA的红外谱图和EC-g-PMMA红外谱图对比说明乙基纤 )通过PMMA的红外谱图和EC- PMMA红外谱图对比说明乙基纤 维素已成功接枝到聚甲基丙烯酸甲酯上。并且,在反应的极限时间内, 接枝率随反应时间增大而增大。且分别采用了两种不同取代度的大分 子引发剂引发了甲基丙烯酸甲酯的原子转移自由基聚合反应,得到了 不同接枝率的EC- PMMA接枝共聚物。证明了ATRP方法能使聚合反 不同接枝率的EC-g-PMMA接枝共聚物。证明了ATRP方法能使聚合反 应做到真正的活性/ 应做到真正的活性/可控。
原子转移自由基聚合
具有活性特征的自由基聚合体系简介
•
年代, 从60年代到90年代,世界各地的高分 子合成化学家陆续开发出一些具有“ 子合成化学家陆续开发出一些具有“活 特征的自由基聚合体系, 性”特征的自由基聚合体系,它们都是 通过前面所提及的前三种可逆钝化平衡 来控制聚合反应的。 来控制聚合反应的。 • 下面我们就分别对这三种方法举例说明。 下面我们就分别对这三种方法举例说明。
2.3 增长自由基与转移剂之间的可逆退化转移
•
•
P• + P1-X •
P1• + P-X
增长自由基(P·)与转移剂(P1-X)反应, ) )反应, • 形成休眠种 P-X 和具有链增长能力的新自由基 P1·, - , P1· 的结构和性质与 P· 相似。 相似。 • 转移剂可以是有机磷化物,烷氧基胺碘代烷等。 转移剂可以是有机磷化物,烷氧基胺碘代烷等。
Molecular Weight
• 分子链越短([I]0越大),分子量分布越宽。 分子量分布越宽。 • 由于自由基浓度[P·]远远低于增长链的总浓度: 远远低于增长链的总浓度:
[P·]<< <<([I]0=[P-R]+[P·]) <<
• 为使所有的链同时增长,活性种和休眠种的转变必 为使所有的链同时增长, 须是快速的,才可以控制聚合物的分子量。 须是快速的,才可以控制聚合物的分子量。 • (kp/kdeact)是控制分子量分布宽度的重要因素, 是控制分子量分布宽度的重要因素, 比值越低,分子量分布越窄。 比值越低,分子量分布越窄。 • 如果自由基失活很慢或不发生,就变成通常的自由 如果自由基失活很慢或不发生, 基聚合。如果引发和转变足够快, 基聚合。如果引发和转变足够快,就可预测聚合度
ATRP
四:ATRP的发展
• ①反向ATRP 常规的A TRP 存在两个缺陷: ① 引发剂为卤化物, 毒性较大; ② 催化剂中的还原态过渡金属离子易被空气中的氧气 氧化, 不易保存及操作.
四:ATRP的发展
• ①反向ATRP 王锦山博士和Matyjaszewski采用了偶氮二异 丁腈为引发剂, 氧化态的过渡金属卤化物 (CuX2) 与bpy的络合物为催化剂, 进行苯乙烯 的反向ATRP
四:ATRP的发展
• ②由非均相反应向均相反应的转变 Matyjaszewski等为增进卤化亚铜在聚合体系中的溶解性, 在配 体联吡啶的4, 4′—位上引入可溶性的侧链。他们利用4, 4′—二—特丁基—2, 2′—联吡啶(dTbpy)、4, 4′—二—正 庚基—2, 2′—联吡啶(dHbpy)、4, 4′—二(5—壬基) —2, 2′—联吡啶(dNbpy) 代替联吡啶, 实现了均相的A TRP, 所得 的PSt 和聚丙烯酸酯聚合物的分子量分布明显降低。对12溴 代乙苯作引发剂的St 聚合, 得到的聚合物分子量可达105, 多分 散系数低至1.04~ 1.05。而目前商品化的用于凝胶渗透色谱柱 标样的PSt (由阴离子聚合制备) 的多分散系数为1.03~ 1.05。。
三:ATRP的优缺点
• (一)ATRP的优点 (1)适于ATRP的单体种类较多:大多数单体 如甲基丙烯酸酯,丙烯酸酯,苯乙烯和电荷 转移络合物等均可顺利的进行ATRP,并已 成功制得了活性均聚物,嵌段和接枝共聚物。
三:ATRP的优缺点
• (一)ATRP的优点 (2)可以合成梯度共聚物:例如Greszta等曾用 活性差别较大的苯乙烯和丙烯腈,以混合一 步法进行ATRP,在聚合初期活性较大的单 体进入聚合物,随着反应的进行,活性较大 的单体浓度下降,而活性较低的单体更多地 进入聚合物链,这样就形成了共聚单体随时 间的延长而呈梯度变化的梯度共聚物
原子转移自由基聚合(ATRP)简介
原子转移自由基聚合(ATRP)简介1引言聚合物合成的控制一般指对聚合物结构和分子量的控制。
活性聚合可以得到分子量分布极窄的聚合物,是制备结构明晰的聚合物的理想方法。
与传统聚合相比,活性聚合具有如下特征:(1)一级动力学特征,即聚合速率与时间呈线性关系;(2)聚合物的目标分子量可事先设计,且聚合物数均分子量随单体转化率的增长而线性增长;(3)分子量分布窄;(4)聚合物链末端在单体耗尽后仍能保持活性,再次加入单体可继续引发增长。
活性聚合最早报道于1956年,Szwarc课题组以萘钠为引发剂,在低温四氢呋喃溶剂中实现了苯乙烯的阴离子聚合,即为高分子科学史上的第一例活性聚合。
因聚合物溶液在反应停止后保存数月仍能引发新的单体进行聚合,因而被称为“活性”聚合。
这一聚合方法率先实现了对聚合物分子量的控制性,亦为功能化聚合物结构设计的研究开辟了新思路。
但阴离子聚合反应有其难以避免的局限性,如:需要高纯度试剂,反应条件极为苛刻,聚合体系必须严格无水无氧,反应不能含有其他杂质,单体适用性也十分有限。
20世纪末期,高分子科学家逐渐将目光转向了“活性”自由基聚合(LRP)。
1982年Otsu课题组报道了引发-转移-终止剂聚合法(Iniferter),该方法中Iniferter试剂可产生两种活性不同的自由基,活性较高的自由基引发单体聚合,活性较低的自由基不能引发聚合,而是与增长自由基发生链终止。
通过这一策略有效降低了增长自由基的浓度,从而实现了“活性”聚合。
此后,人们发现建立活性种与休眠种之间的可逆平衡,以此控制体系中增长自由基的浓度,是实现“活性”自由基聚合的关键所在。
遵循这一思路,人们逐渐实现了各种各样的“活性”自由基聚合方法,如氮氧稳定自由基聚合法(NMP),原子转移自由基聚合法(ATRP),可逆加成断裂转移聚合法(RAFT),单电子转移自由基聚合法(SET-LRP)等。
原子转移自由基聚合(Atom Transfer Radical Polymerization,ATRP)是1994至1995年由Matyjaszewski和Sawamoto等人同时提出的一种聚合方法。
原子转移自由基聚合ATRP
+
M
n t
L
+M
kp
终 止 反 应 (T erm ination)
kt
R-M n + R-M m
R-M
+
XM
n+1 t
L
R-M n +
XM
n+1 t
L
+M kp
R-M n+m -R
+
R-M
H n
R-M
= n
偶合终止
歧化终止
3. ATRP法
ATRP涉及的引发催化体系方便易得,研究报道非常活跃, 应用方面主要涉及指定分子量的窄分布聚合物的合成、嵌段和 接枝等结构明确的聚合物的合成等。ATRP的不足之处:催化剂 用量高,不易除净。
并与理论计算值接近,分子量分布较窄。
3. ATRP法
ATRP机理 示意图
卤素原子从有机卤 化物到金属络合物 (盐)、又从金属络 合物(盐)转移到自 由基的反复循环的 原子转移过程。
反应体系中的自由 基浓度维持在一个 极低的水平大大抑 制了自由基的链转 移和链终止反应, 同时又能维持足够 的聚合反应速率。
络 合 反 应 (C om plexation, F orm ation of C atalyst)
M
n t
+
L
M tnL
引 发 反 应 (Intiation R eaction)
R-X
+
M
n t
L
R
+
XM
n+1 t
L
+M
ki +M
R-M-X
+
M
原子转移自由基聚合ppt课件
聚合单体
目前已经报道旳可进行ATRP聚合旳单体有: (1)苯乙 烯及取代苯乙烯,如对氟苯乙烯,对氯苯乙烯,对
星状聚合物旳制备
采用多官能团化合物作为引起剂制备星状聚合物
p(BPEM)-star-(pnBA)n
接枝和梳状聚合物旳制备
(1)大分子单体技术:用ATRP制得旳带乙酸乙烯基旳 聚苯乙烯大分子单体,进行自由基聚合,即可得到 相应旳梳状聚合物。
(2)大分子引起剂技术:具有多种ATRP引起侧基旳均 聚物作为ATRP引起剂,进行ATRP聚合即可得到 侧基长度基本一致均一旳梳状聚合物。
PDI 1.17 1.17 1.22 1.14
含末端官能团旳聚合物制备
末端带有卤原子旳聚合物:
根据原子转移自由基聚合原理,用有机卤化物RX作为 引起剂时,产物旳末端带有卤原子,而卤原子本身就 是一种官能团。如用1-苯基氯乙烷或1-苯基溴乙烷作引 发剂进行旳苯乙烯旳聚合,产物为末端带有卤原子旳 聚苯乙烯。如引起剂为1,4-二氯(溴)甲基苯,产物 分子链两端均为卤原子旳聚苯乙烯。
利。
反向原子转移自由基聚合(RATRP)
特点:使用老式旳自由基引起剂如过氧化苯甲酰(BPO), 用高价态旳过渡金属配合物作催化剂。
ATRP技术旳应用
1.制备窄分子量分布聚合物 2.制备末端官能团聚合物 3.制备嵌段共聚物 4.制备星状聚合物 5.制备接枝和梳状聚合物 6.制备梯度共聚物 7. 固体表面接枝嵌段共聚物制备
高分子合成新技术---------
原子转移自由基聚合(ATRP)
具有十分广阔的应用前景.
精选ppt
23
采用原子转移自由基引发体系引发带卤原子的双 官能团单体, 可以得到超支化聚合物.
利用对氯甲基苯乙烯在CuCl和bpy存在下的自引 发均聚反应合成相对分子质量可达150 000的高支化 聚苯乙烯
1基94的7年竞在争曼反应彻、斯非特水大体学系获中物过理硫化酸学盐博士学
位的引,发194过9年程、因研高分究子化化学键学反离应解、能而气相获得科
高M分. M子S化zw学a方rc面最著学1和应9名5博液、2的年士相阴成起学中离就,位自子:;由聚任1同基合纽95年的、约6年任反自州发该应由立现校活基大阴研性离学离究、子林子员笼化学活。蔽学院性效等教聚。授, 合。用这个方法可制19得56单~分19散64高年分任子研、究嵌教段授共。聚物、其他 “分子设计”而成的19高69分年子在国内外几个大学任教授或讲学
替的“促活--失活”可逆反应使得体系 中
的游离基浓度处于极低, 迫使不可逆终
止反应被降到最低程度, 从而实现“活
性”/可控自由基聚合.
精选ppt
14
Hale Waihona Puke ATRP 在高分子设计中的应用
星形 聚合物
接枝 聚合物
ATRP 技术
超支化 聚合物
其它类型 聚合物
嵌段 聚合物
精选ppt
15
嵌段聚合物
嵌段聚合物具有独特的结构和性能, 可用作稳定剂、乳化剂、分散剂等, 而 且在聚合物的改性共混等方面有着广泛 的应用.
精选ppt
16
活性聚合技术在合成嵌段共聚物方 面具有明显的优势,可以制得预定结构 的共聚物。与其它“活性”自由基聚合
相 比,原子转移自由基聚合的反应条件较 为温和,适用单体广泛,而对杂质不太 敏感。
第2讲原子转移自由基活性聚合
端官能化聚合物的用途: 经扩链或交联合成高分子量聚合物,如热塑性弹性体, 液体橡胶,粘合剂等,改变加工方式。(缩聚反应) 经共聚合成梳形接枝共聚物,或交联网络(大分子交 联剂)(加成聚合反应)
• ATRA是有机化学中形成C—C键的有效方法。1963年,铜 催化下,烯类或共轭烯类化合物与烷基卤化物的加成反应, 生成1:1的加成产物。
CuCl + CCl4
. + CCl3 CH2 CH-R
+ CuCl2 CCl3
. CCl3 CH2 CH CuCl2 CCl3
R
CH2 CH Cl + CuCl
1-氯代苯乙烷为引发剂、氯化亚铜与2,2—联二吡啶的络 合物为催化剂,在130℃条件下进行苯乙烯的聚合,获得 了窄分布的聚合物,具有活性聚合的特征。D<1.1
CH3 CH Cl
CuCl2
Ph
2
• 原子转移自由基聚合的概念源于有机化学中的过渡金属催化 原子转移自由基加成 (Atom TransferRadical Addition, ATRA)
配位剂的作用:
① 稳定过渡金属,与过渡金属配位后对其氧化还原电位产 生影响,从而调节催化剂的活性。② 增加过渡金属盐催 化剂在有机相中的溶解性。
N配体,多齿配体,联吡啶,多乙烯多胺类 P配体,PPh3 O配体,有机酸,邻苯二甲酸等。
早期的配位剂是联二吡啶,与卤代烷、卤化铜组成引发体系: 非均相体系,用量大,引发效率低,产物分子量分布较宽 现采用多胺(如N,N,N’,N’’,N’’-五甲基二亚乙
原子转移自由基聚合基本原理及最新进展
此被称为 “可逆的 A TRP”或 “反向的 ATRP”[ 12 ] ;
其二是不用过渡金属络合物 (盐 ) 作催化剂 , 自
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
系 , [ y22, 23 ] 也是研究与应用较多的 A TRP 体系 。其
动力学研究可概括为 :
Rp
=
-
d [M ] / dt = kp [ P˙
] [M ]
=
kapp p
[M ]
-
dln [M
]
/dt
=
kapp p
其中
kapp p
是表观增长速率常数
。稳定自由基浓
度 [ P· ]可由表观增长速率常数和自由基增长速率
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
第 3期
曹健等 : 原子转移自由基聚合基本原理及最新进展
93
B r) ,
M
n t
为过渡金属络合物=k[RX ]o a[ CuX ]o b
[L ]o c
[ CuX2 ]o d
在均相催化体系中 ,
表观增长速率常数
kapp p
与
引发剂 、卤化亚铜和配位体的浓度成正比 , 而与卤
化铜的浓度成反比. 对 St、MA、MMA、BA 等多
种单体的动力学研究表明 : 当转化率达到 90%时 ,
由于自引发 、不可逆转移和终止反应形成的链少于
基 , 所以称为原子转移自由基聚合 。由于已有实验 证明某些基团也可发生类似的转移自由基反应 , 故 王锦山等把这样一种反应称为 “原子 (基团 ) 转
原子转移自由基聚合
在利用ATRP 合成嵌段共聚物方面, 已成功的合成了油溶性嵌段共聚物、两 亲性嵌段共聚物,含功能单体单元的嵌 段共聚物、含氟嵌段共聚物、含硅嵌段 共聚物和热塑性弹性体等。
两亲性嵌段共聚物:聚苯乙烯-b-聚甲基丙烯酸叔丁酯(PS-b-PMAA)的合成
接枝共聚物
接枝共聚物往往可以用作乳化剂、 增容剂、表面活性剂、相转移催化剂、 抗静电剂及生物医学材料等, 其性能往 往优于同类型的嵌段共聚物.
ATRP 仍存在一些问题。目前的ATRP 体 系还不能有效地用于一些低活性单体,如乙 烯、α-烯烃、氯乙烯和醋酸乙烯酯等。由于 丙烯羧类单体中的羧基能与ATRP 体系中的催 化剂——过渡金属卤化物(CuBr, CuCl)反应, 并且使胺类配体质子化,导致催化剂中毒,因 此无法直接用ATRP 合成此类聚合物。
采用原子转移自由基引发体系引发带卤原子的双官能团单体, 可以得到超支化聚合物. 利用对氯甲基苯乙烯在CuCl和bpy存在下的自引 发均聚反应合成相对分子质量可达150 000的高支化聚苯乙烯
其它类型聚合物
此外, 还可用ATRP 技术制备出聚合物刷 子、有机/无机杂化材料等高分子功能材料。
如M arcHusseman等用带有原子转移自由 基引发基团的硅烷在硅表面发生ATRP, 制得烯 类单体的均聚物刷及嵌段或无规聚合物刷子, 用于控制聚合物的表面性质.
ATRP技术展望
ATRP 技术的出现开辟了活性聚合的新 领域。 ATRP 技术集自由基聚合与活性聚合 的优点于一体,既可像自由基聚合那样进行 本体、溶液、悬浮和乳液聚合,又可合成具 有预定结构的聚合物,此外还有一个非常有 用的特点,即不需要经过复杂的合成路线, 因此具有十分广阔的应用前景。
但也必须指出
我们可以可以预知
原子转移自由基共聚(ATRP)反应的实例及研究进展
原子转移自由基共聚(ATRP)反应的研究进展摘要:活性自由基聚合是目前高分子科学中最为活跃的研究领域之一。
原子转移自由基聚合(A TRP)反应是实现活性聚台的一种颇为有效的途径,也是高分子化学领域的最新研究进展之一。
ATRP的独特之处在于使用了卤代烷作引发剂,并用过渡金属催化剂或退化转移的方式,有效地抑制了自由基双基终止的反应。
ATRP可以同时适用于非极性和极性单体,可以制备多种结构形式的、结构清晰的高分子化合物。
可实现众多单体的活性/可控自由基聚合。
介绍了ATRP的研究进展,包括ATRP反应的特点、聚合反应机理、应用、研究现状及前景展望。
关键词:原子转移自由基聚合,机理,反应体系,共聚,研究进展活性聚合是高分子化学的重要技术,是实现分子设计,合成一系列结构不同、性能特异的聚合物材料,如嵌段、接枝、星状、梯状、超支化等特殊结构的聚合物的重要手段.活性聚合可分为阳离子活性聚合、阴离子活性聚合、配位活性聚合、活性自由基聚合等.迄今为止发展最完善的是阴离子活性聚合,然而,阴离子活性聚合对反应条件要求苛刻、可聚合的单体也较少,应用范围很有限.与其它类型聚合反应相比,活性自由基聚合集活性聚合与自由基聚合的优点为一身,不但可得到相对分子量分布极窄,相对分子量可控,结构明晰的聚合物,而且可聚合的单体多,反应条件温和易控制,容易实现工业化生产.所以,活性自由基聚合具有极高的实用价值,受到了高分子化学家们的重视.但是,自由基聚合存在与活性聚合相矛盾的基元反应或副反应,使聚合过程难以控制。
因此,自由基的活性聚合或可控聚合一直是人们努力探索的课题。
受有机合成中利用过渡金属催化原子转移自由基加成合成新的c—c键方法的启发,1995年,王锦山博士在卡内基一梅隆大学首次提出了原子转移自由基聚合(ATRP)的概念,并成功地将其应用于合成结构可控的聚合物,从而实现了活性自由基聚合领域的历史性突破,引起了世界各国高分子学家的极大兴趣。
第三章原子转移自由基聚合
现,是“活性”自由基聚合领域的历史性
突破。
三.自由基可控聚合的难点及解决对策
基于绝大多数有商业价值的聚合物产品是由 自由基聚合反应而得这样一个事实,自由基 活性(可控)聚合的研究与发展决定着整个 活性聚合研究的方向、前途和命运。也只有 活性与可控自由基聚合的大规模工业化,才 能充分体现活性聚合的意义和作用。
性聚合(living polymerization)概念(具有划
时代意义的发现)
三个特征:
(1)可通过控制单体和引发剂的投料量来控制 所得聚合物的聚合度。 (2)在第一单体的转化率达到100%时,再加 入其它单体,可合成具有预定结构的嵌段共聚 物
(3)得到官能团聚合物(含大分子单体)
10年后,Shell 公司开发出SBS和SIS热塑性
发体系是非均相体系,用量较大,引发效
率不高,产物的相对分子质量分布也较宽。
Matyjaszewski等人采用烷基取代的联二吡
啶代替第一代ATRP技术中的联二吡啶,
Haddleton 等人采用2-吡啶醛缩亚胺为配位
剂,都实现了ATRP的均相反应。
程广楼等人则将邻菲咯啉用于苯乙烯和甲
基丙烯酸甲酯等单体的ATRP聚合,大大提
第二讲
原子转移自由基聚合
二.活性聚合和可控聚合
任何连锁聚合反应均含有三个主要的基元
反应:链引发反应、链增长反应和链终止 反应。 由于存在链终止反应(含不可逆链转移反 应),传统链式聚合方法一般不能控制聚 合物分子的结构和大小,而且通常相对分 子质量分布很宽。
ATRP
24/0142/210/241/14
5
• 这些由过渡金属化合物与配体为催化剂,有机卤化物为引 发剂引发不饱和乙烯单体进行自由基聚合的过程,具有有 机合成反应中原子转移自由基加成反应(Atom transfer radical addition, ATRA)的特征,故这种类型的聚合, Matyjaszewski称之为原子转移自由基聚合(Atom transfer radical polymerization, ATRP),或者称之为催化引发原子 转移自由基聚合(Catalyzed Initiated Atom Transfer Radical Polymerization,CIATRP)
10
a)苯乙烯及取代苯乙烯
如对氟苯乙烯、对氯苯乙烯、对溴苯乙烯、对甲基苯乙烯、 间甲基苯乙烯、对氯甲基苯乙烯、间氯甲基苯乙烯、对三氟 甲基苯乙烯、间三氟甲基苯乙烯、对叔丁基苯乙烯等。
b)(甲基)丙烯酸酯
如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙 烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异冰 片酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸二 甲氨基乙酯等;
24/0142/210/241/14
31
体系的其它两个研究热点
(1)研究催化体系、引发剂、单体的结构、溶剂 及反应温度与ATRP反应常数的关系,目的是为 了选择和设计合适的配体、开发更为有效的催 化体系以及确定合适的ATRP反应条件。 (2)研究并探索克服与ATRP反应同时发生的各类 副反应的有效方法。
由于SR&NI ATRP体系利用传统自由基引发剂分解 产生有机自由基对催化体系进行活化,此过程中 不可避免产生少量均聚物,因此通过这种体系不 能获得纯净的嵌段共聚物。
24/0142/210/241/14
原子转移自由基聚合
• 拓展功能性聚合物的合成与应用:随着科技的不断发展,对功能性聚合物的需 求不断增加。未来研究可进一步探索利用原子转移自由基聚合技术合成具有特 殊功能和性能的功能性聚合物,并拓展其在生物医学、光电子等领域的应用。
功能性聚合物的合成与应用
利用原子转移自由基聚合技术,成功合成了一系列具有特殊功能和性能的功能性聚合物, 如生物相容性聚合物、光响应性聚合物等,拓展了聚合物的应用领域。
对未来研究的建议
• 深入研究反应机理和动力学:尽管对原子转移自由基聚合反应机理已有一定了 解,但仍需深入研究反应过程中的详细步骤、影响因素以及动力学行为,以更 好地指导聚合反应的设计和优化。
ABCD
催化剂残留问题
在聚合过程中,催化剂可能残留在聚合物中,影 响聚合物的性能和稳定性。
难以实现高分子量聚合物的合成
由于ATRP的链转移反应,难以实现高分子量聚 合物的合成。
改进方向探索
开发高效催化剂
研究新型高效、低残留的催化剂,降低催化剂用 量和成本,同时提高聚合效率和聚合物性能。
提高聚合物的功能性
生物探针与传感器
利用原子转移自由基聚合技术,可以合成具有生 物探针和传感器功能的聚合物材料,用于生物分 子检测和成像分析。
原子转移自由基聚合
05
的优缺点及改进方向
优点分析
活性聚合
适用单体范围广
原子转移自由基聚合(ATRP)是一种活性聚 合方法,可以合成具有预定分子量和窄分子 量分布的聚合物。
ATRP适用于多种类型的单体,包括乙烯基 单体、丙烯酸酯、甲基丙烯酸酯等,为合 成不同性能的聚合物提供了灵活性。
原子转移自由基聚合原理
1.2.2 基本原理以RX/CuX/bpy体系(其中RX为卤代烷烃、bpy为2、2’-联二吡啶、CuX为卤化亚铜)引发ATRP反应为例,典型的ATRP的基本聚合反应如下[6]: 引发阶段:R-X+CuX/bpy→R·+CuX2/bpy(X=CI、Br)R·+monomer→P1·增长阶段:P n-X+CuX/bpy→P n+I·终止阶段:P n·+P m·→P n+m or (P n H+P m H)在引发阶段,处于低氧化态的CuX和bpy络合物从R-X中夺取卤原子生成初级自由基R·及CuX2/bpy高氧化态络合物休眠种。
初级自由基再引发单体生成单体自由基即活性种。
活性种既可以继续引发单体进行活性聚合,也可从休眠种上夺取卤原子、自身变成休眠种。
用“活性”自由基聚合制备结构可控的聚合物,要求链增长自由基稳态浓度低,关键在于休眠种和活性种之间((P n-X+CuX/bpy与P n十CuX2/bpy)建立一个快速的动态平衡。
由于这种聚合反应中的可逆转移包含着卤原子从卤化物到金属络合物,再从金属络合物转移到自由基的原子转移过程,所以称之为原子转移聚合;同时,由于其反应活性种为自由基,所以称之为A TRP。
ATRP方法主要以简单的有机卤化物为引发剂,过渡金属络合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立动态平衡,实现对聚合反应的控制。
ATRP的基本原理其实是通过一个交替的“活化—去活”可逆反应使得体系中游离基浓度处于极低,迫使不可逆终止反应被降低到最低程度,而链增长反应仍可进行,从而实现“活性”聚合[7]。
由于在这种聚合反应中,只是将自由基活性种的浓度加以控制,链终止和链转移被极大地抑制了,所以这种聚合反应只能是可控聚合或“活性”聚合,而不是真正的活性聚合。
同时,在这种可控聚合反应中包含着卤原子从卤化物到金属络合物(盐)、再从金属卤化物转移到自由基这样一个反复循环的原子转移过程, 加之反应活性种为自由基,所以称为原子转移自由基聚合。
原子转移自由基聚合
1.2 原子转移自由基的应用1.2.1合成新的高分子材料ATRP技术作为一种新颖的精密聚合反应, 是大分子设计的有效工具。
许多烯烃单体已成功地用ATRP合成出结构确定的均聚物、无规共聚物、交替共聚物、梯形共聚物、嵌段/接枝共聚物和新型的聚合物刷, 星型、树枝状大分子及有机/无机杂化材料[6]。
1.2.2合成窄分子量分布聚合物ATRP已使多种不同单体及其衍生物实行有效的可控聚合,其中分子量分布已有低至 1.04的报道, 而商业上用活性阴离子聚合得到的GPC标样一般为l.03-1.05。
许多有机卤化物/CuX (X为Cl,Br) /2, 2’- bpy引发体系均可得到分子量分布为1.1-1.2的均聚物。
最近Matytjaszewski等采用ATRP方法, 获得了许多窄分布的均聚物, 分子量分布Mw/Mn<1.1。
他们所用的单体包括苯乙烯、(甲基)丙烯酸烷基酯、丙烯腈、氟化丙烯酸酯等[7]。
1.2.3合成末端官能团聚合物用有机卤化物作为引发剂的ATRP的产物末端分别为引发剂残基和卤原子, 而卤原子本身就是一种官能团, 由此还可以演变成其他官能团, 例如胺基、羧基、叠氮基、烯丙基等如果用带有另一种官能团Z (如—OH,—COOH,—CH=CH2)的有机卤化物作为引发剂, 则100%的聚合物末端带上官能团Z。
如用2-氯-醋酸乙烯作为引发剂引发苯乙烯聚合, 得到的聚合物末端带有醋酸乙烯单元, 这是一种大分子单体, 可用于制备接枝共聚物。
如果Z是标记基团的话, 可很方便地制备出各种标记聚合物, 供物理化学研究使用。
1.2.4合成无规及梯度共聚物梯度共聚物的分子结构可以用下图形象地表示:●●●●O●●●OO●●OOO●OOOO●MonomerA O MonomerB张兆斌利用ATRP技术, 首次实现了含氟单体与不含氟单体的可控无规共聚,得到了组成和分子量可设计、窄分布的甲基丙烯酸含氟酯与苯乙烯的无规共聚物[8]。
苯乙烯的原子转移自由基聚合
[]]t k M M app p =0ln 实验七 苯乙烯的原子转移自由基聚合一、实验目的1.通过苯乙烯的原子转移自由基聚合实验,进一步了解单分散可控聚合物的制备基本原理,2.熟悉功能高分子的基本制备方法,同时了解可控聚合的影响因素。
二、实验原理原子转移自由基聚合(atomtransfer radical polymerization 简称ATRP )是1995年首先由王锦山和Matyjaszewski 等人报道的一种新型自由基活性聚合(或叫可控聚合)方法。
它以卤代化合物为引发剂,过渡金属化合物配以适当的配体为催化剂,使可进行自由基聚合的单体进行具有活性特征的聚合。
它的基本原理是利用卤原子在聚合物增长链与催化剂之间的转移,使反应体系处于一个休眠自由基和活性自由基互变的化学平衡中,降低了活性自由基的浓度,使固有的终止反应大为减少,从而使聚合反应具有活性特征,可以得到一般自由基聚合难以得到的窄分布、分子量与理论分子量相近的聚合物,为自由基活性聚合开辟了一条崭新的途径。
理论上,ATRP 聚合的数均聚合度应为[][]X R M X n −Δ= (1) 其中[R —X]为引发剂浓度.ATRP 聚合的速率方程符合一般自由基聚合的速率方程:[][][]M p kp dt M d R p ⋅=−=令[]⋅=p k k p app p (2) 则[][]M k dt M d app p =−,将此式积分得 由此式可见, k app p 可由ln [M ]0/[M]对t 作图求得.进而可由式(2) 求得活性自由基浓度[P ·]。
三、实验试剂及仪器1 试剂苯乙烯(使用前减压蒸馏脱除阻聚剂)、氯化苄、氯化亚铜、2,2’-联吡啶、甲苯、二苯醚、四氢呋喃、甲醇2 仪器四口瓶(100ml ),球形冷凝管,水浴锅,搅拌马达与搅棒,温度计(100℃),量筒,布氏漏斗,抽滤瓶,氮气瓶。
四、实验步骤在100mL四口瓶中加入50mL蒸馏水,2mL 5%聚乙烯醇和10g NaCl,待全部溶解后在冰盐浴冷却下真空脱气-充氮,反复三次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)ATRP介绍王锦山等[1]采用1-苯-1-氯乙烷作为引发剂,氯化亚铜和联吡啶(bpy)的络合物作为催化剂,在130℃下引发苯乙烯(St)的本体聚合,反应3h产率可达95%。
理论分子量和实验值符合较好。
为了验证反应的自由基机理,比较了所得聚合物与一般自由基聚合所得聚合物的立构规整度,发现两者比较一致。
并且当加入第二单体丙烯酸甲酯时,成功实现了嵌段共聚,具有明显的活性聚合特征。
由此他们提出了原子转移自由基聚合(ATRP)。
ATRP是以简单的有机卤化物为引发剂、过渡金属配合物为卤原子载体,通过氧化还原反应,在活性种与休眠种之间建立可逆的动态平衡,从而实现了对聚合反应的控制。
聚合原理引发阶段,处于低氧化态的转移金属卤化物Mt n,从有机卤化物R-X中吸取卤原子X,生成引发自由基R·及处于高氧化态的金属卤化物Mt n+1-X,自由基R·可引发单体聚合,形成链自由基R-M n·。
R-M n·可从高氧化态的金属配位化合物Mt n+1-X中重新夺取卤原子而发生钝化反应,形成R-M n-X,并将高氧化态的金属卤化物还原为低氧化态的Mt n。
增长阶段,R-M n-X与R-X一样(不总一样)可与Mt n发生促活反应生成相应的R-M n·和Mt n+1-X,R-M n·与R-M·性质相似均为活性种,同时R-M n·和Mt n+1-X又可反过来发生钝化反应生成R-M n-X和Mt n,则在自由基聚合反应进行的同时始终伴随着一个自由基活性种与大分子卤化物休眠种的可逆转换平衡反应。
由此可见,ATRP的基本原理其实是通过一个交替的“促活—失活”可逆反应使得体系中的游离基浓度处于极低,迫使不可逆终止反应被降到最低程度,从而实现可控/“活性”自由基聚合。
引发剂ATRP聚合体系的引发剂主要是卤代烷RX(X=Br,C1),另外也有采用芳基磺酰氯、偶氮二异丁腈等。
RX的主要作用是定量产生增长链。
α-碳上具有诱导或共轭结构的RX,末端含有类似结构的大分子(大分子引发剂)也可以用来引发,形成相应的嵌段共聚物。
另一方面,R的结构应尽量与增长链结构相似。
卤素基团必须能快速且选择性地在增长链和转移金属之间交换。
Br和Cl均可以采用,采用Br的聚合速率大于Cl[2]。
金属催化剂及配体第一代ATRP催化剂为CuX(其中X为Br,Cl),此后有人采用了RuⅡ,RhⅡ,NiⅡ,FeⅡ,ReⅤ等过度金属卤化物[3]。
而最早采用的配位剂是联二吡啶(bpy),后来有了dNbipy,PMDETA,BDE,BPMODA和Me6TREN等高活性的催化剂配体。
它们一方面可以作为催化剂的载体,另一方面和金属形成络合物,增强金属催化剂在有机单体(或溶剂)中的溶解性。
现在ATRP最大的缺点就是反应产物中的金属催化剂及其配体不好清除。
科学家们想了很多的办法,其中最简单的一种方法就是减少催化剂的使用量[4]。
这样一方面需要寻找更高活性的催化剂,另一方面也要利用一种新的技术来减少催化剂的使用量。
Matyjaszewski等[5]采用了一种新的聚合方法—电子增强活性种的原子转移自由基聚合(ARGET ATRP)。
该方法通过在聚合体系中加入少量的还原剂,就可以将催化剂的氧化态还原为还原态,从而使得金属催化剂从新参与催化,形成一个氧化—还原的循环过程,从而大大降低了催化剂的使用量。
单体与其它活性聚合相比,ATRP可以进行本体、溶液、和非均相体系聚合,具有最宽的单体选择范围,这也许是ATRP最大的魅力所在。
目前已经报道的可通过ATRP聚合的单体有二大类:苯乙烯及取代苯乙烯:如对氟苯乙烯、对氯苯乙烯、对溴苯乙烯、对甲基苯乙烯、间甲基苯乙烯、对三氯甲基苯乙烯、间三氯甲基苯乙烯、对叔丁基苯乙烯等。
(甲基)丙烯酸酯:如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸二甲氨基乙酯等、(甲基)丙烯酸-2-羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸缩水甘油酯、乙烯基丙烯酸酯。
至今为止,采用ATRP技术尚不能使烯烃类单体、二烯烃类单体、氯乙烯和醋酸乙烯等单体聚合。
(2)ATRP的应用用ATRP法可制备嵌段聚合物、星型聚合物、超支化聚合物、接枝与刷型聚合物,另外ATRP的引发基团已被成功地固定在了多种无机粉体和黏土矿物材料的表面。
Ma- ndal等[6]通过室温下在Au纳米颗粒表面甲基丙烯酸甲酯的ATRP聚合形成了具有核壳结构的Au/PMMA复合微球。
Kamata等[7]更进一步,通过在金纳米微粒的表面包覆一层多孔二氧化硅,然后通过ATRP在二氧化硅的表面接枝甲基丙烯酸苯甲酯形成Au/ SiO2/PbzMA的双层壳的核壳结构。
然后通过用HF溶解二氧化硅壳层,就形成了具有特殊结构的中空的Au/PbzMA核壳结构。
由于甲基丙烯酸羟乙酯基聚合物采用传统方法制备不易得到,因而本文将采用ATRP法可控合成甲基丙烯酸羟乙酯基聚合物,以期得到高质量产品。
(3)ATRP的最新进展尽管ATRP法可以合成分子量分布较窄的聚合物,但由于在这过程中采用了过渡金属催化剂且不好清除,因而污染比较严重,有待进一步改善。
现在有关于原子转移自由基聚合(ATRP)引发-活化-失活过程的最新研究进展,包括RATRP体系克服了常规ATRP体系中低价态过渡金属催化剂容易氧化的问题,AGET ATRP体系显著降低了过渡金属化合物的用量,ARGET ATRP体系中残存的过渡金属催化剂仅为(1~50)×10- 6,很多情况下不需要进行后处理,使其适合工业化生产成为可能。
同时介绍了ATRP在表面接枝上的应用,表面引发ATRP反应能改善材料的表面特性,同时具有接枝链分子量及分布可控和高接枝率的优点,使其在很多方面都获得了广泛的应用,包括使材料表面图案化、提高材料表面的生物相容性、制备梳型的聚合物刷以及在纳米磁铁矿和真丝表面引发的ATRP反应。
新型ATRP引发体系常规ATRP反应需要大量的低价态过渡金属催化剂((1000~10000)×10- 6),不仅对聚合系统要求严格,而且脱除催化剂的后处理工艺复杂,因此限制了其推广使用。
为克服此问题,采用三(2-甲基胺基)乙胺(Me6TREN)、五甲基二乙烯三胺(PMDETA)、4,4,-二(5-壬基)2,2,-联吡啶(dN-bpy)或三(2-吡啶)甲基胺(TPMA)等配位能力更强的多齿胺类配体代替传统的联吡啶配体,使得ATRP催化剂的活性提高了103~105倍,然而催化剂的用量却不能相应减少,否则会对聚合反应失去控制。
后来人们致力研究ATRP反应的引发-活化-失活过程,从而开发出一系列新型引发体系,逐渐克服了上述问题,使之成为一种适合工业化大生产的活性聚合技术。
RATRP 引发体系针对ATRP的缺点,Matyjaszewski等[8, 9]提出了新的引发体系——反向ATRP(RAT RP)。
RATRP用传统引发剂(如偶氮双异丁腈、AIBN)代替卤化物,用高价过渡金属络合物代替原来的催化体系,从而避免了上述两个缺点。
RATRP体系克服了常规ATRP体系中低价态过渡金属催化剂容易氧化的问题,更适合工业化大生产的需要。
后来人们又发现在RATRP体系中使用碳碳类引发剂(如2,3-二氰基2,3-二苯基丁二酸二乙酯,简称DCDPS)可产生浓度适中的有机自由基,因此较偶氮类或过氧化物类引发剂更有利于对聚合反应的控制。
目前,已经成功利用RATRP方法合成出多种聚合物[10,11],然而RATRP体系没有减少过渡金属催化剂的用量,适用的聚合温度范围较窄,而且高活性催化体系(如CuBr2/Me6TREN)不适用这种体系,无法合成嵌段类聚合物。
AGETATRP 体系通过电子转移生成催化剂的原子转移自由基聚合( Activator generated by electron transfer ATRP,简称AGET ATRP) 的聚合体系可克服ATRP 和RATRP聚合体系的缺陷[12],因为这种聚合体系采用稳定的还原剂(如维生素C(Vc))与高价过渡金属的络合物作为催化体系[13,14]。
在该体系中不再需要添加其他有机配体,可使甲基丙烯酸甲酯较快地发生聚合反应,反应不但有良好的可控性而且还可在有氧环境中进行。
还原剂是用来减少高氧化态过渡金属络合物的用量,而不是用来引发新的增长链(并非有机自由基),用AGET ATRP 制备嵌段共聚物时没有产生均聚物,理论上很多还原剂都可以使用。
从早期的报道中得知,在正常的ATRP 聚合体系中加入适量的铜粉,CuⅡ通过与Cu0之间的电子转移再生为CuⅠ,增加聚合的速率[15]。
后来又陆续发现2-乙基己酸亚锡(Sn(EH)2)[13]、抗坏血酸[12]、三乙胺[16]等都可显著提高ATRP反应速率,反应原理与零价铜类似,即CuⅡ与还原剂反应生成CuⅠ。
AGET ATRP体系显著降低过渡金属络合物的用量,而且由于还原剂的存在,微量的氧对反应不会造成影响,因此这种方法特别适合在水相和微乳液体系中进行[17,18]。
AGET ATRP体系显著降低了过渡金属化合物的用量,然而残留在聚合产物中的金属离子含量仍然较高。
Matyjaszewski研究组设想:如果在ATRP体系中存在将高价态过渡金属不断转化为低价态的物质,则初始加入的过渡金属化合物的用量可大大减少。
基于如上设想,Matyjaszewski于2006年提出ARGET ATRP这种新型引发体系[17]。
ARGET ATRP体系ARGET ATRP体系是在AGET ATRP的基础上发展而来,理论上适合AGETATRP的还原剂同样适用ARGET ATRP,包括有机联氨的衍生物、酚、单糖、抗坏血酸以及无机的SnⅡ、Cu0等,在条件理想的状态下,一些含氮的配体也可作为还原剂,近期这种还原剂是研究的热点[19,20]。
良好控制下,丙烯酸酯聚合时需要50×10- 6的过渡金属络合物,而苯乙烯聚合时仅需要10×10-6[21,22]。
由于ARGET ATRP体系中含有过量还原剂,因此少量氧气的存在不会影响聚合反应的可控进行,这两点对于实现ATRP 方法的工业化生产尤其有利。
ARGET ATRP体系用微量氧化态金属络合物和过量的还原剂迅速产生低价态的金属络合物,一些能影响聚合物分子量和链末端功能的副反应也减少了[23]。
然而,过量的还原剂不会产生新的自由基,使AGET ATRP体系更适合制备嵌段共聚物,且微量的氧对聚合反应不会产生影响,使ATRP体系的工业化成为可能,成为活性可控自由基聚合工业化的重要突破[24]。