2020版八年级数学下册 第六章 平行四边形 6.4 多边形的内角与外角和课件 (新版)北师大版
北师大版八年级数学下册6.多边形的内角和与外角和课件
A.270°
B.560° C.1 800° D.1 900°
3.八边形的七个内角都为150°,则第八个内角=____3_0_°__
4.过某个多边形一个顶点的所有对角线,将这个多边形分成5个 三角形,这个多边形是几边形?它的内角和是多少?21·
七边形,内角和为900°
合作探究
1.正三角形(等边三角形)的内角和等于多少度? 每个内角等于多少度?你是怎么计算的? 2.正四边形(正方形)的内角和等于多少度?每个内 角等于多少度?你是怎么计算的?
解:不正确. 设该正多边形的边数为n,如果结果正确,则 145°n=180°(n-2) 解得n= 12
7
6.有两个多边形,边数之比为3﹕4,内角和之比 为1﹕2,求这两个多边形的边数.
3,4
7.如图所示的模板,按规定,AB,CD的延长线相交成 80°的角,因交点不在板上,不便测量,质检员测得 ∠BAE=122°,∠DCF=155°.如果你是质检员,如何 知道模板是否合格?为什么?
拓展延伸
截去一张长方形纸片的一个角后,纸片还剩几个 角?这个多边形的内角和是多少度?与同伴交流.
剪去一张长方形纸片的一个角后,纸片
还剩几个角?这个多边形的内角和是多少度? 与同伴交流.
剪去一张长方形纸片的一个角后,纸片
还剩几个角?这个多边形的内角和是多少度? 与同伴交流.
剪去一张长方形纸片的一个角后,纸片还
3.正五边形、正六边形、正八边形呢···正n边形呢?
知识讲授 正n边形的每个内角度数为: (n 2) 180
n
随堂训练
1.正八边形的每个内角都是( D )
A.60° B.80° C.100° D.135°
2.一个多边形的每个内角均为120°,则这个多边形是( C )
多边形的内角和与外角和-北师大版八年级数学下册课件
正多边形
特点:它们的边( 都相等 ) 它们的内角( 都相等 )
定义:在平面内,内角都相等,边都相等的多边形 叫正多边形
课堂小结
1.多边形的外角及外角和的定义; 2.n边形的内角和为(n-2)×1800
3.多边形的外角和等于360°,与边数无关;
4.在探求过程中我们使用了视察、归纳的数学方法, 并且运用了类比、转化等数学思想。
360° n
正多边形的一个内角=180°-
360° n
360
360
°
°
360
360
°
°
新知归纳
多边形的内角和:所有内角的和。 n边形的内角和为(n-2)×1800
例 求十五边形内角和的度数。 解: (n-2)×1800
=(15-2)×1800 = 23400 答:十五边形的内角和是23400
例:已知一个多边形的内角和是1440O,求这个多边 形的边数。
4.若正多边形的内角和是 540°,则该正多边 形的一个外角为( C )
A.45° B.60° C.72° D.90°
怎样利用多边形的外角和计算正多边形的一 个外(外)角的度数?
正多边形的一个外角=
360° n
正多边形的一个内角=180°- 36n0°
定理 多边形的外角和都等于360°.
正多边形的一个外角=
第六章 平行四边形
6.4.2 多边形的内角和与外角和
多边形
在在在平在平平面平面面内面内内,内,,由,由由四由若五条三干条不条不不在不在在同在同同一同一一直一直直线直线线上线上上的上的的线的线线段线段段首段首首尾首尾尾顺尾顺顺次顺次次连次连 接接连连组组接接成成组组的的成成封封的封闭闭封闭图图闭图形形图形叫叫形叫做做叫做多四做三边边五角形形边形。。形。。
多边形的内角和与外角和 2021-2022学年八年级数学下册(北师大版)
当堂检测
10. 一个多边形的内角和比四边形的内角和多720°, 并且这个多边形的各内角都相等,这个多边形的每 个内角是多少度? 解:设这个多边形边数为n,则
(n-2)•180=360+720, 解得n=8, ∵这个多边形的每个内角都相等,
(8-2)×180°=1080°, ∴它每一个内角的度数为1080°÷8=135°.
······
3 ······ n -3
4
4×180º=720º
······
······
n -2 ( n -2 )·180º
讲授新课
总结归纳
多边形
分割
三角形 转化思想
分割点与多边形的位置关系
顶点
边上 内部 外部
多边形的内角和公式
n边形内角和等于(n-2)×180 °.
讲授新课
1.从多边形的一个顶点可以引出(n-3) 条对角线; 2.从多边形的一个顶点可以把n 边形分成(n-2) 个三角形;
把四边形分成四个三角形:△ABE,△ADE,△CDE,△CBE.
所以四边形ABCD内角和为:
180°×4-(∠AEB+∠AED+∠CED+∠CEB)
=180°×4-360°=360°.
D
A
•
E
B C
讲授新课
方法4:如图,在四边形外任取一点P,连接PA、PB、
PC、PD将四边形变成有一个公共顶点的四个三角形.
讲授新课
1. 判断下面图形是不是正多边形
菱形
Hale Waihona Puke 矩形正方形2.正n边形的一个内角= n 2180
n
讲授新课
北师版八年级下册数学第6章 平行四边形 多边形的外角和
4
4
4
2.【2021·襄阳】正多边形的一个外角等于60°,这个多边形的边数是( ) A.3B.6C.9D.12
B
3.【中考·南通】已知一个多边形的内角和等于它的外角和,则这个多边形的边
数为( )
A.3B.4C.5D.6
B
4.多边形每增加一条边,它的内角和就增加________,外角和1_8_0_°_____. 不变
8.(1)如图①,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去
∠A,则∠1+∠2等于( )
A.90° B.135° C.270° D.315°
C
(2)如图②,已知在△ABC中,∠A=40°,剪去∠A后成了四边形,∠1+∠2 =________;
(3)根据(1)与(2)的求解过程,请你归纳22猜0°想∠1+∠2与∠A的关系是 ________________________;
5.【2021·眉山】正八边形中,每个内角与每个外角的度数之比为( ) A.1∶3 B.1∶2 C.2∶1 D.3D∶1
【点拨】正八边形的内角和为:(8-2)×180°=1080°; 正八边形的每个内角的度数为:1080°÷8=135°; 正八边形的每个外角的度数为:360°÷8=45°; ∴正八边形每个内角与每个外角的度数之比为:135∶45=3∶1. 故选D.
6.【教材P156例2变式】【2021·绥化】一个多边形的内角和是外角和的4倍,则这
个多边形是( )
A.八边形
B.九边形
C
C.十边形
D.十二边形ຫໍສະໝຸດ 【点拨】设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°, 依题意得(n-2)×180°=360°×4,解得n=10, 所以这个多边形是十边形.故选C.
6.4--多边形的内角和与外角和(第1课时)
∵五边形的内角和为(5-2)×180°=540°, ∴13x+11x+9x+7x+5x=540. 解得x=12. ∴最大角为13x°=156°,最小角为5x°=60°.
(1)通过本节课的学习,你学到了哪些知识和方法? (2)你认为这节课中最大的收获是什么? (3)你还有哪些疑惑或不足? 知识: 多边形内角和公式;
4.一个多边形的内角和为1440°,则它是
十 边形.
解析:(n-2)·180°=1440°,解得n=10.故填十.
5.已知一个五边形的五个内角的度数的比是13∶11∶9∶7∶5, 求这五个内角中的最大角和最小角.
解析:设这五个内角的度数分别为13x°,11x°,9x°,7x°,5x°,再根据五 边形的内角和为(5-2)×180°=540°列方程求解.
4.根据四边形的内角和的求法,你能否求出五边形的内角和呢?
方法1:如图(1)所示,连接AD,AC,五边形的内角和 为:3×180°=540°.
方法2:如图(2)所示,连接AC,则五边形的内角和 为:360°+180°=540°.
方法3:如图(3)所示,在AB上任取一点F, 连接FC,FD,FE,则五边形的内角和 为:4×180°-180°=540°.
八年级数学·下 新课标[北师]
第六章 平行四边形
4 多边形的内角和与外角和 (第1课时)
问题思考
学习新知
1.前面我们研究了平行四边形的性质和判定,上一节
又研究了三角形的中位线定理,现在请同学们回忆一下, 三角形的内角和是多少度?
2.四边形的内角和呢?四边形的内角和是怎么得到的? 3.下图中广场中心的边缘是一个五边形,你能设法求出它 的五个内角的和吗?与同伴交流.
多边形的内角和与外角和课件北师大版数学八年级下册
4 一个多边形的内角和比其外角和的2倍多180°,则该多边形
的对角线的条数是( )
A.12
B.13
C.14
D.15
5 已知:如图,在四边形ABCD中,∠A=∠C=90°,BE平分 ∠ABC,DF平分∠ADC.BE与DF有怎样的位置关系?为什么?
谢谢大家!
多边形的外角和等于360°
随堂训练
1 五边形的外角和等于( A.180° C.540°
) B.360° D.720°
2 已知一个正多边形的每个外角等于60°,则这个正多边
形是( )
A.正五边形
B.正六边形
C.正七边形
D.正八边形
3 已知一个多边形的内角和等于它的外角和,则这个多边形的
边数为( )
∠2+∠ABC=180°, ∠3+∠BCD=180°, ∠4+∠CDE=180°, ∠5+∠DEA=180°,
想一 想 如果广场的形状是四边形、三角形,那么结果会怎样?
1 多边形内角的一边与另一边的反向延长线所组成的角叫做 这个多边形的外角. 2 在每个顶点处取这个多边形的一个外角,它们的和叫做这 个多边形的外角和.
第六章 平行四边形
6.4 多边形的内角和与外角和
1 情景导入
三角形的内角和是多少?
在平面内,由若干不在同一直线上的线段首尾顺次连接组成的
封闭图形叫做多边形.
边
. 对角线
内角
.
.
顶点
.
外角
.
2 课堂活动 知识点一 多边形的内角和 某小区健身广场中心的边缘是一个五边形(如图),你能求出它 的五个内角的和吗?
再沿直线前进10 m,又向左转30°……照这样走下去,小亮第
一次回到出ቤተ መጻሕፍቲ ባይዱ地A点时,他一共走了_1__2_0__m__.
北师大版(新)八年级下册数学6.4多边形的内角和与外角和(2)
2.如果广场的形状是八边形呢?
第三环节 多边形的外角与外角和
1._____________________________________________叫做这个多边形的外角。
2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?
【教学重点】多边形外角和定理的探索和应用.
【教学难点】灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.
第一环节 创设情境,引入新课
问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。
(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?
(2)他每跑完一圈,身体转过的角度之和是多少?
挑战自我:
1.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?
2.在n边形的n个内角中,最多能有几个钝角?最多能有几个锐角?
第五环节 课时小结
多边形的外角及外角和的定义;
多边形的外角和等于3纳的数学方法,并且运用了类比、转化等数学思想.
课后反思:
课题:第8课时多边形的内角和与外角和(2)
教师个性化设计、学法指导或学生笔记
教学目标:【知识与技能】经历探索多边形的外角和公式的过程;会应用公式解决问题;
【过程与方法】培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力.
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造.
方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形…的外角和开始探究;
北师大版数学八年级下册第六章 平行四边形 复习ppt(共28张PPT)
随堂练习
1.下列图形:矩形、菱形、等腰梯形、正方形中对 称轴最多的是( D )
A.矩形 B.菱形 C.等腰梯形 D.正方形
2.如图,平行四边形ABCD中,∠A的平分线AE交 CD于E,AB=5,BC=3,则EC的长是( B )
A.1
B.2
C.1.5
D.3
3.如图所示,直线l过正方形ABCD的顶点B. A,C两 点到直线l的距离分别为5和12, 则正方形的边长是__1_3_.
多边形的内角和与外角和
(1)n边形的内角和为_(_n_-__2_)·_1_8_0_°_ (n≥3).
(2)正多边形的每个内角都相等,都等于 (n-2)·180° ______n_______.
(3)多边形的外角和为__3_6_0_°_,它与边数的 多少无关.
例5 如图,在正五边形ABCDE中,连接BE,则 ∠ABE的度数为( B ) A.30° B.36° C.54° D.72°
例2 如图,已知点E、C在线段BF上,BE=CF, ∠B=∠DEF,∠ACB=∠F,求证:四边形ABED 是 平行四边形.
证明:∵BE=CF, ∴BE+EC=CF+EC,即BC=EF, 又∵∠B=∠DEF,∠ACB=∠F, ∴△ABC≌△DEF, ∴AB=DE, ∵∠B=∠DEF, ∴AB∥DE,∴四边形ABED是平行四边形.
∴∠FCD=∠CDE,∴FC//DE.
∴四边形DECF是平行四边形.
F
D
(2)DE=5
B
CE
7.已知:如图,BC是等腰三角形BED 底边ED的高,四边形ABEC是平行四边形. 求证:四边形ABCD是矩形.
证明:∵BC是等腰三角形BED底边ED 的高,∴BC⊥ED,EC=CD. 又∵四边形ABEC是平行四边形,
第6章平行四边形 题型解读6 多边形的内角和与外角和计算题型北师大版八年级数学下册
《平行四边形》题型解读6 多边形的内角和与外角和计算题型【知识梳理】1.多边形的内角和公式:(n-2)×180º;2.多边形的外角和会等于360º,它是个定值,与边数无关;3.正多边形的定义:每条边均相等,每个内角均相等的多边形是正多边形;【典型例题】例1.正十边形的每一个内角的度数为_______【解析】:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;例2.一个五边形的内角和为________【解析】:根据正多边形内角和公式:180°×(5﹣2)=540°,一个五边形的内角和是540度,例3.已知一个多边形的内角和是900º,则这个多边形是____边形。
【解析】依多边形内角和公式求解,即(n-2)×180º=900º,解得n=7,∴这个多边形是七边形。
例4. 已知一个多边形的每个内角均是108º,则这个多边形是____边形。
【解析】依平角定义及多边形外角和公式求解,由内角是108º可得它的外角是72º, 360º÷72º=5∴这个多边形是五边形。
例5.若正多边形的一个外角是60°,则该正多边形的内角和为______【解析】:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.例6. 已知一个多边形的内角和等于它的外角和的2倍,则这个多边形是____边形。
【解析】依多边形内角和公式及外角和公式求解,即(n-2)×180º=720º,解得n=6,∴这个多边形是六边形。
例7.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.【解析】:从某个多边形的一个顶点出发的对角线共有2条,则将多边形分割为3个三角形.所以该多边形的内角和是3×180°=540°.例8.一个正多边形的每个外角为60°,那么这个正多边形的内角和是 .【解析】:这个正多边形的边数为360°÷60°=6,所以这个正多边形的内角和=(6﹣2)×180°=720°.例9.已知正n 边形的每一个内角为135°,则n= .【解析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多 边形的边数.多边形的外角是:180°﹣135°=45°,n=360°÷45°=8例10.若一个多边形的每个外角都等于30°,则这个多边形的边数为 .【解析】:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,∴多边形的边数是360°÷30°=12,例11.如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .【解析】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.解:n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°.例12.将一个多边形截去一个角后,形成另一个多边形,这个新的多边形内角和为720º,则原多边形的边数为____【解析】一个多边形截去一个角,存在三种情况:①减少一条边;②增加一条边;③边数不变,所以需分三种情况进行讨论.由多边形内角和公式可得:(n-2)×180º=720º,解得n=6,∴新多边形是六边形。
北师大版八年级数学下册教案 6-4 多边形的内角和与外角和
6.4多边形的内角和与外角和教学目标【知识与技能】1.理解并能够说出多边形的内角和定理,且能够应用它证明或解决相关问题;2.理解并能够说出多边形的外角及外角和定理,且能够综合应用多边形的内角和定理、外角和定理证明或解决有关问题.【过程与方法】经历多边形的内角和定理、外角和定理的探究过程,体会把未知转化为已知进行探究的数学思想,提高自己的探究能力.【情感、态度与价值观】体验猜想得到证实的喜悦感和成就感,在解题中感受生活中数学的存在,体验数学的探索性和创造性.教学重难点【教学重点】多边形内角和定理、外角和定理的探索和应用.【教学难点】灵活运用多边形的内角和定理和外角和定理解决简单的实际问题,利用转化思想解决问题.教学过程一、问题导入三角形的内角和是多少?外角和是多少?三角形是边数最少的多边形,那么n边形的内角和、外角和分别是多少呢?二、合作探究探究点1多边形的内角和典例1已知正n边形的每一个内角都等于144°,则n为()A.9B.10C.12D.15[解析]∵正n边形的每一个内角都等于144°,∴根据题意得144n=(n-2)×180,解得n=10.[答案]Bn边形的内角和为(n-2)×180°,因为正多边形的每一个内角都相等,所以正n边形的每一个内角为(n−2)×180°.这类问题常常利用方程思想,利用多边形的内角和公式列方程求角的度数.n探究点2多边形的外角及多边形的外角和典例2一个多边形的每一个内角都相等,并且每个外角都等于和它相邻的内角的一半.求这个多边形的边数.[解析]设内角为x,则外角为1x.2x=180°,解得x=120°,由题意得x+12x=60°,∴12=6.∴这个多边形的边数为36060【技巧点拨】多边形的外角和等于360°,因为多边形的外角是一个“固定值”,不随边数的变化而变化,因此在求边数的时候,利用多边形的外角和比利用多边形的内角和要简便一些.三、板书设计多边形的内角和与外角和多边形的内角和与多边形的内角和为(n−2)×180°外角和{多边形的外角和为360°教学反思本节课突出对多边形的内角和与外角和定理的探究与推导过程,探究过程既有类比的方法,又有承接多边形内角和的新方法;既是新知识的学习过程,又是旧知识的拓展过程.。
新安县第九中学八年级数学下册第六章平行四边形4多边形的内角和与外角和第1课时多边形的内角和教案新版北
4 多边形的内角和与外角和第1课时多边形的内角和1.经历探索多边形内角和公式的过程,发展学生的合情推理能力,培养由特殊到一般的探究能力.2.掌握多边形的内角和定理,发展学生的演绎推理能力,并会运用解决问题,培养灵活运用知识的能力.3.通过观察、分析、把多边形问题转化为三角形问题,体会转化思想在几何知识中的应用.重点掌握多边形内角和定理.难点多边形内角和公式的应用.一、情境导入问题1:如图①,三角形三个内角的和等于多少度?问题2:如图②,图③,正方形、长方形的内角和等于多少度?问题3:如图④,对于一般的四边形,它的内角和是否也等于360°?你是怎么得到的?二、探究新知活动一:探究五边形的内角和问题1:健身广场中心的边缘是一个五边形,你能类比求四边形内角和的方法求出它的五个内角的和吗?问题2:小明和小亮利用下面的图形,求出了五边形的五个内角的和,说说他们是怎么做的?还可以怎么做?图①图②处理方式:学生分小组讨论、交流,小组代表发表小组讨论的结果.预设学生回答:1.五边形的内角和等于540°.2.如图①,小明连接对角线把五边形分割成三个三角形,所以五边形的内角和是180°×3=540°.如图②,小亮在五边形内部取一点,连接这点和各个顶点,把五边形分割成五个三角形,五个三角形的内角和是180°×5=900°,然后再减去一个周角的度数360°,得到五边形的度数为900°-360°=540°.其他思路①:如图③,在五边形的任意一边上取一点,把五边形分割成四个三角形,四个三角形的内角和是则有180°×4=720°,然后再减去一个平角的度数180°,得到一个五边形的度数为720°-180°=540°.其他思路②:如图④,在五边形外取一点,则有180°×4=720°,然后再减去外部一个三角形内角和度数180°,得到一个五边形的度数为720°-180°=540°.活动二:想一想1.按照活动一中的小明的方法,六边形能分成多少个三角形?…n边形呢?你能确定n边形的内角和吗?(n是大于或等于3的自然数)小组讨论后完成表格.多边形边数分割后的图形分成三角形的个数内角和规律3456……………n2.按照活动一中的小亮的方法再试一试.处理方式:学生动手画一画,分一分,教师对有困难的同学给予指导.预设学生回答:(1)六边形可分成4个三角形,七边形可分为5个三角形,…,n边形可分为(n-2)个三角形.六边形内角和为720°,七边形内角和为900°,…,n边形的内角和为(n-2)个三角形的内角和(n-2)·180°(n ≥ 3).多边形边数分割后的图形分成三角形的个数内角和规律3 1 180°180°4 2 360°360°5 3 540°540°6 4 720°720°……………n …n-2(n-2)·180°(n-2)×180°(2)利用小亮的方法得出的结论是:n×180°-360°=(n-2)·180°.多边形边数分割后的图形分成三角形的个数内角和规律3 1 180°180°4 4 360°360°55 540° 540°66 720° 720° … … … … … n…n(n -2) ·180°n ×180°-360° =(n -2)×180°定理: n 边形的内角和等于(n -2)·180°. 活动三:想一想1.正三角形(等边三角形)的内角和等于多少度?每个内角等于多少度?你是怎么计算的?2.正四边形(正方形)的内角和等于多少度?每个内角等于多少度?你是怎么计算的? 3.正五边形、正六边形、正八边形、…、正n 边形呢?处理方式:让学生小组内讨论、交流后归纳总结得出结论,教师适时给予思路点拨和引导.正三角形每个内角为:(3-2)×180°3=60° ;正四边形每个内角为:(4-2)×180°4=90° ;正五边形每个内角为:(5-2)×180°5=108° ;正六边形每个内角为:(6-2)×180°6=120° ;正八边形每个内角为:(8-2)×180°8=135° ;正n 边形每个内角为:(n -2)×180°n.三、举例分析例1 如图所示,在四边形ABCD 中,∠A +∠C=180°,∠B 与∠D 有怎样的关系?处理方式:学生独立完成,教师适时指导点拨.解:∵∠A+∠B+∠C+∠D =(4-2)×180°=360°, ∴∠B +∠D=360°-(∠A+∠C)=360°-180°=180°. ∴∠B 与∠D 互补.例 2 剪去一张长方形纸片的一个角后,纸片还剩几个角?这个多边形的内角和是多少度?与同伴交流.预设学生可能回答:(1)如图①所示,剪下一个角后,纸片剩下5个角,得到的五边形内角和为(5-2)×180°=180°.(2)如图②所示,剪下一个角后,纸片剩下4个角,得到的四边形内角和为(4-2)×180°=360°.(3)如图③所示,剪下一个角后,纸片剩下3个角,得到的三角形内角和为180°.四、练习巩固1.若一个多边形的每个内角都为120°,则这个多边形的边数是( )A.9 B.8 C.7 D.62.一个多边形的内角和为1 080°,则这个多边形的边数为( )A.9 B.8 C.7 D.63.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( )A.5 B.5或6C.5或7 D.5或6或74.正十二边形每个内角的度数为________.5.有两个多边形,边数之比为3∶4,内角和之比为1∶2,求这两个多边形的边数.五、课堂小结通过本节课的学习,你有什么收获?六、课外作业1.教材第154页“随堂练习”.2.教材第155页习题6.7第1、3、4题.这节课的学习内容通过创设情境问题得以构建和发展,体现了新课程目标理念的开放性原则.在新课讲授过程中注意探究了从三角形、四边形到多边形内角和知识的形成,最后形成规律,有利于学生对多边形内角和的理解.不足之处:1.这节课给学生提供的探究思考与交流的时间和空间并不足,展示交流的机会不够充分,有的同学没有表现的机会;2.本节课学生小组活动的准备、具体实施、归纳交流、评价等环节设计不够完善.第4课时等边三角形的判定[知识与技能]理解等边三角形的判别条件及其证明 , 理解含有30°角的直角三角形性质及其证明 , 并能利用这两个定理解决一些简单的问题.[过程与方式]经历运用几何符号和图形描述命题的条件和结论的过程 , 建立初步的符号感 , 发展抽象思维.[情感态度]在数学活动中获得成功的体验 , 锻炼克服困难的意志 , 建立自信心.[教学重点]等边三角形判定定理的发现与证明.[教学难点]了解反证法的基本证明思路 , 并能简单应用.一.情景导入 , 初步认知1.等腰三角形的性质和判定定理是什么?2.等边三角形作为一种特殊的等腰三角形 , 具有哪些性质呢?又如何判别一个三角形是等边三角形呢?[教学说明]开门见山 , 引入新课 , 同时回顾 , 也为后续探索提供了铺垫.二.思考探究 , 获取新知1.一个三角形满足什么条件时是等边三角形?一个等腰三角形满足什么条件时是等边三角形?请证明自己的结论 , 并与同伴交流.[教学说明]学生自主探究等腰三角形成为等边三角形的条件 , 并交流汇报各自的结论 , 教师适时要求学生给出相対规范的证明 , 概括出等边三角形的判别条件 , 并引导学生总结.2.用含30°角的两个三角尺 , 你能拼成一个怎样的三角形?能拼出一个等边三角形吗?在你所拼得的等边三角形中 , 有哪些线段存在相等关系 , 有哪些线段存在倍数关系 , 你能得到什么结论?说说你的理由.[教学说明]学生通过动手操作、观察 , 找出一些线段存在相等关系.从而得出结论 , 并加深印象.在直角三角形中 , 如果一个锐角等于30° , 那么它所対的直角边等于斜边的一半.[归纳结论]〔1〕三个角都相等的三角形是等边三角形 ; 〔2〕有一角是60°的等腰三角形是等边三角形. 三.运用新知 , 深化理解 1.见教材P11例32.已知 : 如以下图 , 在Rt △ABC 中 , ∠C=90° , BC=21AB .求证 : ∠BAC=30°证明 : 延长BC 至D , 使CD=BC , 连接AD. ∵∠ACB=90° , ∴∠ACD=90°. 又∵AC=AC .∴△ACB ≌△ACD(SAS). ∴AB=AD . ∵CD=BC , ∴BC=21BD . 又∵BC=21AB , ∴AB=BD . ∴AB=AD=BD ,即△ABD 是等边三角形. ∴∠B=60°.在Rt △ABC 中 , ∠BAC=30°.3.如以下图 , △ABC 是等边三角形 , BD = CE , ∠1 =∠2.求证 : △ADE 是等边三角形证明 : ∵△ABC 是等边三角形, ∴AB=AC.在△ABD 与△ACE 中,AB=AC,∠1 =∠2,BD = CE,∴△ABD ≌△ACE 〔SAS 〕. ∴∠EAD=∠BAC=60°,EA=DA.∴△ADE 是等边三角形(有一角是60°的等腰三角形是等边三角形).4.如以下图 , 在Rt △ABC 中 , ∠B = 30° , BD = AD , BD = 12 , 求DC 的长.解 : 在Rt △ABC , ∠B = 30° ∵BD = AD∴∠B =∠BAD= 30° ∴∠ADC=60°. ∵∠C=90°, ∴∠DAC=30°.在Rt △ADC 中,∠DAC=30° ∴CD=21AD(在直角三角形中 , 如果一个锐角等于30° , 那么它所対的直角边等于斜边的一半).∵BD = AD=12, ∴CD=6.[教学说明]变式训练,巩固新知.注意几何语言.熟练运用直角三角形的有关性质. 四.师生互动 , 课堂小结掌握证明与等边三角形、直角三角形有关的性质定理和判定定理. 五.教学板书布置作业:教材〞习题1.4”中第3、5题.通过反复练习 , 学生対本节课的知识掌握的较好 , 就是几何过程不够严密 , 有待加强.2.2.2 平行四边形的判定第1课时平行四边形的判定定理1,2【知识与技能】1.经历探究平行四边形判定方法的过程,掌握平行四边形的判定方法.2.会判定一个四边形是不是平行四边形.【过程与方法】经历“观察——猜想——验证——说明——建模”探索过程和思维过程,丰富学生从事数学活动的经历,感受数学思考过程的条理性及解决问题策略的多样性.【情感态度】在观察分析探究问题过程中发现主动探索、独立思考的习惯.【教学重点】探索平行四边形的两种判别方法.【教学难点】平行四边形的判别方法的理解和应用.一、创设情境,导入新课提问 1.平行四边形的定义是什么?它有什么作用?2.平行四边形具有哪些性质?3.平行四边形的对边相等、对角相等、对角线互相平分,那么反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?【教学说明】以问题的形式来唤起学生的回忆,引起学生的思考,同时为后面的学习作好了充分的准备.教师讲课前,先让学生完成预习.二、思考探究,获取新知问题1 平行四边形的判定定理1思考教材第44页“动脑筋”【教学说明】让学生明白通过已学的平移的性质得到平行四边形的判定定理1,这样既复习了旧知识,又得出了新的结论.例:教材第45页“例5”【教学说明】给学生一个好的范本,如何利用平行四边形的判定定理1进行逻辑推理和规范的证明.问题2 平行四边形的判定定理2思考教材第45页“动脑筋”【教学说明】让学生自己动手、实验,亲历将两两相等的铅笔和钢笔作为对边得到平行四边形这个知识发生的过程,并通过观察猜想经历知识发展形成的过程,体验了“发现”知识的情系,变被动接受为主动探究.例:教材第46页“例”6【教学说明】加深平行四边形的判定定理2的理解,同时加强对它的运用.三、运用新知,深化理解1.下列条件中不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BCB.AB∥CD,AB=CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC2.如图,在□ABCD中,E、F分别是AB、CD边上的点,且BE=DF,要证明四边形AECF 是平行四边形,可证明。
八年级下册数学6.4-多边形的内角和与外角和2
6.4.2多边形的内角和与外角和
学习目标 情境导入 讲授新课
巩固提升 归纳总结 当堂检测 课后作业
学习目标:
1.了解多边形的外角定义,并能准确找出多边形的外角.
2.掌握多边形的外角和公式,利用内角和与外角和公式 解决实际问题.
学习目标 复习回顾 讲授新课
巩固提升 归纳总结 当堂检测 课后作业
苏炳添为亚洲9秒关口第一人,是继刘翔之后中国田径赛场上的新纪录.
学习目标 情境导入 讲授新课
巩固提升 归纳总结 当堂检测.
学习目标 情境导入 讲授新课
巩固提升 归纳总结 当堂检测 课后作业
问题解决
(1)小明每从一条街道转到下一条街道时,身体转过的
解:∵多边形的外角和为360°, 而每一个外角为24°, ∴多边形的边数为360°÷24°=15, ∴小丽一共走了:15×10=150米.
学习目标 情境导入
课堂小结
例题讲解
巩固提升 归纳总结 当堂检测 课后作业
1.多边形的外角及外角和的定义;
2.多边形的外角和等于360°;
3.在探求过程中我们使用了观察、归 纳的数学方法,并且运用了建模、转化 等数学思想.
角是哪个角?
∠1,∠2,∠3,∠4,∠5
(2)他每跑完一圈,身体转过 的角度之和是多少?
1+2+3+4+5
1A
B
5
2
E
(3)你能求出 1+2+3+4+5的结果吗?
C3
4 D
学习目标 情境导入 讲授新课
集思广益
巩固提升 归纳总结 当堂检测 课后作业
学习目标 情境导入 讲授新课
北师版八年级下册数学第6章 平行四边形 第1课时 多边形的内角和
感悟新知
例2 如图,在四边形ABCD中,∠A+∠C=180°. ∠B与∠D有怎样的关系?
知1-练
解:∵∠A+∠B+∠C+∠D =(4-2)×180°=360°, ∴∠B+∠D =360°-(∠A+∠C) =360°-180°=180°.
感悟新知
归纳
如果四边形一组对角互补,那么另一组 对角也互补.
线条数
0
分割出 的三角 形的个 1数
知1-讲
多边形的 内角和
1×180º
1
2
2×180º
2
3
3×180º
3
4
4×180º
……
n-3
……
……
n-2
(n-2)×180º
感悟新知
一般地,从n边形的一个顶点出发,可以作(n-3) 条对角线,它们将n边形分为(n-2)个三角形,n边形 的内角和等于180°×(n-2).
形的边数是( ) B
A.6B.12
C.16D.18
知2-练
感悟新知
3. 若一个正n边形的每个内角为144°,则这个正
n边形的所有对角线的条数是( ) C
A.7B.10
C.35D.70
知2-练
课堂小结
多边形的内角和
(1)正n边形的每个内角都相等,都等于
n
2
180 .
(2)n边形的内角和与边数有关,每增加一条边,n 内角
感悟新知
归纳
知2-讲
(1)已知多边形的内角和求边数n的方法:根据多边形 内角和公式列方程:(n-2)×180°=内角和,解 方程求出n,即得多边形的边数;
(2)已知正多边形每个内角的度数k求边数n的方法:根据 多边形内角和公式列方程:(n-2)×180°=kn,解方 程求出n,即得多边形的边数.
八年级数学下册《多边形的外角和》教案、教学设计
3.课后作业:布置与本节课相关的课后作业,巩固所学知识,提高学生的应用能力。
五、作业布置
为了巩固本节课所学知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
1.基础题:
(1)计算以下多边形的外角和,并简要说明计算过程:
(3)实施分层教学法,针对不同水平的学生设计不同难度的练习题,使每位学生都能得到有效的训练和提升。
2.教学过程:
(1)导入新课:通过复习多边形内角和的知识,引导学生思考多边形外角和的性质,为新课学习做好铺垫。
(2)探究新知:组织学生进行小组合作,利用学具和图形,引导学生发现多边形外角和定理,并理解其与相邻内角的关系。
(四)课堂练习,500字
1.设计不同难度的练习题,让学生1)计算给定多边形的外角和;
(2)利用外角和性质解决实际问题;
(3)拓展题目:探讨多边形内角和与外角和的关系。
2.教师巡回指导,解答学生疑问,及时发现问题并进行针对性的辅导。
(五)总结归纳,500字
1.学生总结:让学生回顾本节课所学内容,分享自己的学习心得和收获,对多边形外角和的性质及其应用进行总结。
4.拓展题:
(1)了解并掌握多边形内角与外角的关系,探究内角和与外角和之间的关系。
(2)阅读相关资料,了解多边形外角和性质在数学竞赛中的应用。
作业要求:
1.学生需独立完成作业,确保作业质量。
2.注意解题过程的规范性和逻辑性,要求书写工整、清晰。
3.家长签字确认,教师将定期检查作业完成情况,并进行反馈。
(三)情感态度与价值观
1.培养学生积极的学习态度,使学生体会到数学学习的乐趣,增强学习数学的信心。
北师大版八年级数学下册《平行四边形——多边形的内角和与外角和》教学PPT课件(2篇)
A.1800° B.540 °
C.720 °
D.710 °
3.一个多边形从一个顶点可引对角线3条,这个多边形
内角和等于( B )
A.360°
B.540 ° C.720 ° D.900 °
课堂小结
多边形的 内角和
内角和计 算公式
(n-2) × 180 °(n 是不小于3的 任意整数)
第六章 平行四边形 6.4 多边形的内角和与外角和
问题2:运用所学的知识,证明自己的推论.
已知:四边形ABCD.
A
求证:∠A+∠B+∠C=∠D=360°.
证明:如图,连接AC,
所以四边形被分为两个三角形,
所以四边形ABCD内角和为
B
180°×2=360°.
D C
课程讲授
1 多边形的内角和
问题3:你能仿照求四边形内角和的方法,选一种方法求五 边形和六边形内角和吗?
??
内角和
180° 360° 360° ?360°
课程讲授
1 多边形的内角和
问题1:根据前面所学的知识,我们已经知道三角形, 正方形和长方形的内角和,那么任意一个四边形的内角 和是否为一个定值呢?
D
A
提示:可将四边形分割成两个三角形.
归纳:四边形ABCD的内角和是 360°.
B
C
课程讲授
1 多边形的内角和
E
A
A
F
B
E
B
D
C
D
C
课程讲授
1 多边形的内角和
E
A
A
B
B
D
F E
C
D
C
归纳:五边形的内角和是540°.六边形的内角和是720°.
北师版八年级下册6.4多边形及内角和(含答案详解)
北师版八年级下册6.4多边形及其内角和1基本概念⑴多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.⑵多边形的边:组成多边形的各条线段叫做多边形的边.⑶多边形的顶点:每相邻两边的公共端点叫做多边形的顶点.⑷多边形的对角线:在多边形中,连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.⑸多边形的内角:多边形相邻两边组成的角叫做它的内角.⑹多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.⑺正多边形:各个角相等,且各条边都相等的多边形叫做正多边形.⑻凸多边形:如果多边形的任何一边所在直线都使余下的边都在这条直线的同一侧的多边形.2基本性质⑴稳定性.⑵内角和与外角和定理.如下图,n边形的内角和为(2)180n≥,多边形的外角和都是360︒.n-⨯︒(3)⑶ n 边形的对角线:一个顶点有(3)n -条对角线,共有(3)2n n-条对角线. ⑷ 不特别强调多边形都指凸多边形,凸多边形的每个内角都小于180︒.模块一 多边形的对角线【例1】 如果一个多边形共有27条对角线,则这个多边形的边数是 . 【解析】略 【答案】9.【巩固】已知从n 边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边之长.【解析】提示:根据对角线条数先判断边数,在设未知数列方程求解. 【答案】567891011,,,,,,.【巩固】已知一个多边形的对角线的条数为边数的2倍,求该多边形的边数. 【解析】提示:设边数为x ,则()322x xx -=.【答案】7【例2】 一个多边形的对角线的条数与它的边数相等,这个多边形是( )边形.分割成(n-2)个三角形求内角和n 个平角-内角和【解析】设多边形有n条边,则根据题意可列:(3)2n nn-=,解得n1=5,n2=0(舍去),故多边形的边数为5.【答案】C.【巩固】一个n边形的边数增加一条,那么它的对角线增加条.【解析】略【答案】1;【例3】从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()【解析】从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n-2).【答案】C【巩固】一个多边形,把一个顶点与其它各顶点连接起来,把这个多边形分成了12个三角形,则这个多边形的边数()【解析】通过分析可知,n-2=12,则n=14.【答案】A.模块二多边形的内角和与外角和内角和【例4】已知一个多边形的内角和是540︒,则这个多边形是( )A.四边形B.五边形C.六边形D.七边形【解析】略【答案】B.【巩固】一个多边形共有14条对角线,则它的内角和为___________.【解析】一个n 边形,从一个顶点出发,有()3n -条对角线,故共有()132n n -条对角线,于是有()13142n n -=,从而7n =,∴这个三角形的内角和为()72180900-⋅︒=︒【答案】900︒【例5】 在四边形ABCD 中,60D ∠=︒,B ∠比A ∠大20︒,C ∠是A ∠的2倍,求A ∠,B ∠,C ∠的大小. 【解析】设(度),则,.根据四边形内角和定理得,. 解得,,∴,,.【答案】,,【巩固】如图,已知在一次科技活动中,需要将一张面积为210cm 的四边形四角都剪去一个扇形的区域,扇形的半径均为1cm ,求剩余纸张的面积.【解析】四边形ABCD 的内角和为360︒,故四个扇形的面积和等于π,∴剩余纸张的面积为10π-. 【答案】10π-【例6】 一个凸多边形的内角中,最多有 个锐角.x A =∠20+=∠x B x C 2=∠360602)20(=++++x x x 70=x ︒=∠70A ︒=∠90B ︒=∠140C ︒=∠70A ︒=∠90B ︒=∠140C DCB A【答案】3【巩固】如果一个多边形的边数增加1倍后,它的内角和是2160︒,那么原来多边形的边数是 . 【解析】略 【答案】7【巩固】如下图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都大于2,则第n 个多边形中,所有扇形面积之和是 (结果保留π).【解析】略 【答案】π2n . 外角和【例7】 若一个正多边形的一个外角是40︒,则这个正多边形的边数是( )A .10B .9C .8D .6【解析】略 【答案】B【答案】已知一个五边形的外角度数之比为1:2:3:4:5,求它的内角大小.第3个第2个第1个【答案】60︒,84︒,108︒,132︒,156︒;【例8】 如右图,小明从点A 出发,向前走2米,左拐20︒,再向前走2米,再左拐20︒,如此下去,小明能否回到出发点A ?如果能,第一次回到出发点共走了多少路程?【解析】略【答案】能,36m .【例1】 如图,讲六边形ABCDEF 沿直线GH 折叠,使点A B ,落在六边形CDEFGH 内部,则下列结论正确的是( )A .()129002C D E F ∠+∠=︒-∠+∠+∠+∠B .()1210802CDEF ∠+∠=︒-∠+∠+∠+∠ C .()12720C D E F ∠+∠=︒-∠+∠+∠+∠ D .()1123602C D E F ∠+∠=︒-∠+∠+∠+∠ 【解析】如图,设FA 的延长线与CB 的延长线交于点P ,'GA 的延长线与'HB 的延长线交于点'P ,连接'PP ,由对称性知,12'22'APP BPP ∠=∠∠=∠,,A222220︒20︒20︒B'A'21FEDC BA∴122APB ∠+∠=∠, 又∵()540APB C D E F ∠=︒-∠+∠+∠+∠,∴()1210802C D E F ∠+∠=︒-∠+∠+∠+∠.【答案】B模块三 正多边形与镶嵌知识点播:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【例9】 下列多边形中,不能够单独铺满地面的是( )A .正三角形B .正方形C .正五边形D .正六边形【解析】用一种正多边形镶嵌,只有正三角形,正方形,正六边形三种正多边形能镶嵌成一个平面图案.不能铺满地面的是正五边形.【答案】C .【巩固】若限于用同一种正多边形磁砖镶嵌(要求镶嵌的正多边形的边必须与另一正多边形的边重合),则不能镶嵌成一个平面的正多边形磁砖的形状是( ) A 、正三角形 B 、正方形 C 、正六边形 D 、正八边形【解析】A 、正三角形的每个内角是60°,能整除360°,能密铺;B 、正方形的每个内角是P'PB'A'21FEDCB A90°,4个能密铺;C、正六边形的每个内角是120°,能整除360°,能密铺;D、正八边形的每个内角为:180°-360°÷8=135°,不能整除360°,不能密铺.【答案】D.【例10】有下列五种正多边形地砖:①正三角形;②正方形;③正五边形;④正六边形;⑤正八边形,现要用同一种大小一样、形状相同的正多边形地砖铺设地面,其中能做到此之间不留空隙、不重叠地铺设的地砖有()A.4种B.3种C.2种D.1种【解析】①正三角形的每个内角是60°,能整除360°,能够铺满地面;②正方形的每个内角是90°,能整除360°,能够铺满地面;③正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能够铺满地面;④正六边形的每个内角是120°,能整除360°,能够铺满地面;⑤正八边形的每个内角为:180°-360°÷8=135°,不能整除360°,不能够铺满地面.【答案】B.【巩固】下列平面图形中,不能镶嵌平面的图形是()A.任意一种三角形B.任意一种正方形C.任意一种正五边形D.任意一种正六边形【解析】∵用一般凸多边形镶嵌,用任意的同一种三角形或四边形能镶嵌成一个平面图案,∴A、B能镶嵌平面的图形;C、任意一个正五边形的内角为108°,不能镶嵌平面的图形;∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图∴D能镶嵌平面的图形.【答案】C.【例11】下述美妙的图案中,是由正三角形、正方形、正六边形、正八边形中的三种镶嵌而成的为()A、B、C、D、【解析】A、从一个顶点处看,由正六边形和正三角形镶嵌而成的;B、从一个顶点处看,由正方形和正三角形镶嵌而成的;C、从一个顶点处看,由正六边形和正方形镶嵌而成的;D、从一个顶点处看,由正三角形、正方形、正六边形三种镶嵌而成的.【答案】D.【巩固】张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是()A、B、C、D、【解析】∵能够铺满地面的图形是内角能凑成360°,∵正三角形一个内角60°,正方形一个内角90°,正五边形一个内角108°,正六边形一个内角120°,只有正五边形无法凑成360°.【答案】C.【巩固】小莹家的地面是由一个小正方形和四个等腰梯形这样的正方形地板砖镶嵌而成的,小莹发现地板上有正八边形图案,那么地板上的两个正八边形图案需要这样的地板砖至少()A.8B.9C.11D.12【解析】由于正方形的一个内角为90°,同一顶点处等腰梯形的一个内角为:(360-90)÷2=135°,而八边形的内角为:180-360÷8=135°,那么小正方形的边长即为八边形的边长,画图如下.【答案】A.【例12】黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n个图案中,黑色正三角形和白色正六边形的个数分别是()A、n2+n+2,2n+1B、2n+2,2n+1C、4n,n2-n+3D、4n,2n+1【解析】第1个图案中,黑色正三角形和白色正六边形的个数分别是4,2×1+1=3;第2个图案中,黑色正三角形和白色正六边形的个数分别是2×4=8,2×2+1=5;第3个图案中,黑色正三角形和白色正六边形的个数分别是3×4=12,2×3+1=7;…第n个图案中,黑色正三角形和白色正六边形的个数分别是4n,3+(n-1)×2=2n+1.【答案】D.1. 请你分别在下列多边形的同一顶点出发画对角线:想一想:依此规律可以把10边形分成()个三角形.【解析】四边形可分割成4-2=2个三角形;五边形可分割成5-2=3个三角形;六边形可分割成6-2=4个三角形;七边形可分割成7-2=5个三角形,同理,10边形可分割成10-2=8个三角形【答案】82. 一凸n边形最小的内角为95︒,其它内角依次增加10︒,则n=_________.【解析】这个凸n边形的内角由小到大依次为95105115125︒︒︒︒⋅⋅⋅⋅⋅⋅,,,,它的外角依次为857565554535︒︒︒︒︒︒⋅⋅⋅⋅⋅⋅,,,,,而这六个外角之和为857565554535360︒+︒+︒+︒+︒+︒=︒∴6n=.【答案】63. 已知小娟家的地板全由同一形状且大小相同的地砖紧密地铺成.若此地砖的形状是一正多边形,则下列何者不可能是此地砖的形状()课后作业A.正三角形B.正方形C.正五边形D.正六边形【解析】A、正三角形的每个内角是60°,能整除360°,能密铺;B、正方形的每个内角是90°,4个能密铺;C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺;D、正六边形的每个内角是120°,能整除360°,能密铺.【答案】C.。
八年数学下册第6章平行四边形集训课堂测素质多边形的内角和外角和习题课件新版北师大版
莉莉的解法:从四边形中剪去一个三角形,剩余部分是三 角形,其内角和为180°. 佳佳的解法:剩余部分是四边形,其内角和为360°. 请问莉莉和佳佳的解法是否正确?如果不正确,请写出正 确解法.
解:莉莉和佳佳的解法不正确.正确解法如下: 如图①,剩余部分是三角形,其内角和为180°; 如图②,剩余部分是四边形, 其内角和为360°; 如图③,剩余部分是五边形, 其内角和为540°.
17 (10分)如图是两个小朋友在探究某多边形的内角和时 的一段对话,请根据他们的对话内容判断他们是在求 几边形的内角和?少加的内角为多少度?
解:1 140°÷180°=6……60°, 则边数是6+1+2=9. 所以他们是在求九边形的内角和. 180°-60°=120°, 所以少加的那个内角为120°.
11 从多边形的一个顶点所引的对角线把这个多边形分成 7个三角形,则这个多边形共有___2_7____条对角线.
12 【中考·广安】如图,正五边形ABCDE中,对角线AC 与BE相交于点F,则∠AFE=____7_2_°__.
13 如图,在四边形ABCD中,∠A=100°,∠C=70°.将 △BMN沿MN翻折得到△FMN,若MF∥AD,FN∥DC, 则∠B=________. 95°
(2)若n边形变为(n+x)边形,发现内角和增加了360°,用 列方程的方法确定x. 解:依题意, 得(n-2)×180°+360°=(n+x-2)×180°, 解得x=2.
19 (10分)如图,从四边形ABCD中剪去一个三角形(只剪一 刀),剩余的部分是几边形?请画出示意图(边数相同的 情况只需画一个示意图),并写出剩余部分多边形的内 角和.
2 【教材P155习题T1变式】从多边形的任意一个顶点出发
可以画出4条对角线,则该多边形的边数为( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 2 180
(2)正n边形的每个内角是_____n____.
2.多边形外角和
结论:
(1)多边形的外角:多边形内角的一边与另一边的 ___反__向__延__长__线____所组成的角. (2)多边形的外角和都等于___3_6_0_°____.
360
(3)正n边形的每个外角等于___n_____.
解:∵n边形的内角和是(n-2)·180°, ∴2 210÷180=12……50, 则正多边形的边数是13+2=15, 故这个多边形的内角和为(15-2)×180°=2 340°.
解:(1)720°=(n-2)×180°, n-2=4,n=6.
(2)小明的说法不对.
理由:∵当θ取820°时,820°=(n-2)×180°,
解得:n= 59 ,
9
∵n应为整数,∴θ不能取820°,
故小明的说法不对.
知识点二 多边形的外角和(P156例2拓展) 【典例2】(2019·资阳中考)若正多边形的一个外角是 60°,则这个正多边形的内角和是___7_2_0_°____.
【学霸提醒】 多边形内角和的三点注意
(1)多边形的内角和是指n个内角的度数之和. (2)多边形的内角和为(n-2)·180°,且内角和为180° 的整数倍.
(3)由多边形的边数可以求出其内角和,由多边形的内 角和也可以求出多边形的边数.
【题组训练】 1.六边形的内角和是 ( B ) A.540° B.720° C.900° D.1 080°
【基础小练】
请自我检测一下预习的效果吧!
1.从n边形的一个顶点出发作对角线,这些对角线把这
个n边形分成的三角形个数为 ( D )
A.(n+1)个
B.n个
C.(n-1)个
D.(n-2)个
2.一个五边形的内角和为 A.540° B.450° C.360° D.180°
(A)
3.若一个多边形的每个外角都等于30°,则这个多边形 的边数为___1_2___. 4.一个多边形的内角和等于900°,求这个多边形的边数.
★3.(2019·益阳中考)若一个多边形的内角和与外角 和之和是900°,则该多边形的边数是___5___.
★★4.(2019·镇江京口区月考)一个多边形的每个内 角都相等,并且其中一个内角比它相邻的外角大100°, 求这个多边形的边数.
解:设每个内角度数为x度,则与它相邻的外角度数为 180°-x°, 根据题意可得x-(180-x)=100,解得x=140. 所以每个外角为40°, 所以这个多边形的边数为360°÷40°=9. 答:这个多边形的边数为9.
4 多边形的内角和与外角和
【知识再现】 1.在平面内,由若干不在同一直线上的线段___首__尾__顺__次__ 连接组成的___封__闭____图形叫做多边形. 2.在多边形中,连接___不__相__邻____的两个顶点的线段叫 做多边形的对角线.
3.在平面内,内角都___相__等____,边都___相__等____的多边形 叫正多边形.
【火眼金睛】 一个多边形的内角和为1 800°,求该பைடு நூலகம்边形的边数.
正解:设该多边形的边数为n,可得: (n-2)·180=1 800,解得:n=12, ∴该多边形的边数为12.
【一题多变】 若一个多边形的一个外角与它所有内角和为1 160°, 求这个多边形的边数. 解:∵一个多边形的一个外角与它所有内角和为1 160°,1 160÷180=6……80, ∴n-2=6,解得:n=8.
【新知预习】 阅读教材P153~ 156,完成探究过程, 归纳有关结论: 1.多边形内角和定理 (1)多边形的内角和:从n边形的一个顶点出发可以引 ___(_n_-_3_)___条对角线,这些对角线把n边形分割成_(_n_-_2_)_ 个三角形,因此n边形的内角和为___(_n_-_2_)_·__1_8_0_°____.
【母题变式】 【变式一】(变换问法)一个n边形的所有内角与它的一 个外角的和等于2 000°.求这个外角的度数.
解:2 000÷180=11……20. 故这个外角的度数为20°.
【变式二】(变换条件、问法)一个多边形除去一个内 角后,其余所有内角之和为2 210°,求这个多边形的内 角和与边数.
解:设多边形为n边形,由题意,得: (n-2)·180°=900°, 解得n=7, ∴这个多边形的边数为7.
知识点一 多边形内角和定理(P153例1拓展) 【典例1】如图,在五边形ABCDE中, ∠A+∠B+∠E=300°,DP,CP分别平 分∠EDC,∠BCD,则∠P的度数是 ( C ) A.50° B.55° C.60° D.65°
【学霸提醒】 多边形的外角和不是所有外角的和,是在每一个顶点处 取一个外角.多边形的外角和是个定值,不会随边数的 变化而变化.
【题组训练】
1.若正多边形的一个内角是150°,则该正多边形的边 数是 ( B )
A.6
B.12
C.16
D.18
★2.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且 ∠1=∠2=∠3=∠4=75°,则∠AED的度数是( A ) 世纪金榜导学号 A.120° B.115° C.105° D.100°
★2.从一个n边形的同一个顶点出发,分别连接这个顶
点与其余各顶点,若把这个多边形分割成6个三角形,
则n的值是 ( C )
A.6
B.7
C.8
D.9
★★3.(2019·济宁中考)如图,该硬币边缘镌刻的正 九边形每个内角的度数是___1_4_0_°____.
★★4.已知n边形的内角和θ=(n-2)×180°. (1)当θ=720°时,求出边数n. 世纪金榜导学号 (2)小明说,θ能取820°,这种说法对吗?若对,求出边 数n;若不对,说明理由.