金属塑性成形原理PPT课件
课件塑性加工原理塑性与变形总课件参考.ppt
1.镦粗时组合件的变形特点 2.基本应力的分布特点 3.第一类附加应力的分布特点
*
上课课件
3. 4. 2 平辊轧制时金属的应力及变形特点
1.基本应力特点 2.变形区内金属质点流动特点 3.平辊轧制时,第一类附加应力的分布特点
*
上课课件
3. 4. 3 棒材挤压时的应力及变形特点
1.棒材挤压时的基本应力状态 2 .棒材挤压时的金属流动规律 3 .棒材挤压时的附加应力
变形程度ε
应力σ
σsb
σsn
图3-25 拉伸时真应力与变形程度的关系 1)无缺口试样拉伸时的真应力的曲线 2)有缺口样拉伸的真应力曲线
*
上课课件
3. 3. 4 残余应力
1.残余应力的来源 2.变形条件对残余应力的影响 3.残余应力所引起的后果 4.减小或消除残余应力的措施 5.研究残余应力的主要方法
*
上课课件
2.最大摩擦条件 当接触表面没有相对滑动,完全处于粘合状 态时,单位摩擦力( )等于变形金属流动 时的临界切应力k,即: = k 3.摩擦力不变条件 认为接触面间的摩擦力,不随正压力大小而变。其单位摩擦力是常数,即常摩擦力定律,其表达式为: =m·k 式中,m为摩擦因子
第3章 金属塑性加工的宏观规律
§3. 1 塑性流动规律(最小阻力定律) §3. 2 影响金属塑性流动和变形的因素 §3. 3 不均匀变形、附加应力和残余应力 §3. 4 金属塑性加工诸方法的应力与变形特点 §3. 5 塑性加工过程的断裂与可加工性
*
上课课件
§3.1 塑性流动规律(最小阻力定律)
上课课件
3. 2. 2 变形区的几何因素的影响
变形区的几何因子(如H/D、H/L、H/B等)是影响变形和应力分布很重要的因素。
金属塑性成形课件
2023-11-06•金属塑性成形概述•金属塑性成形工艺•金属塑性成形设备•金属塑性成形技术的发展趋势•金属塑性成形过程中的缺陷与质量控制目•金属塑性成形实例分析录01金属塑性成形概述金属塑性成形是一种使金属材料发生塑性变形,以获得所需形状、尺寸和性能的加工方法。
金属塑性成形广泛应用于机械制造、航空航天、汽车、电子等领域,是一种重要的材料加工技术。
金属塑性成形的定义金属塑性成形可以制造出复杂形状的零件,并且能够获得较高的精度和表面质量。
与切削加工相比,金属塑性成形具有更高的材料利用率和更低的能耗。
金属塑性成形过程中材料的变形是均匀的,因此可以避免应力集中和裂纹等缺陷。
金属塑性成形的特点03金属塑性成形的基本原理包括应力状态、屈服准则、塑性流动规律等。
金属塑性成形的基本原理01金属塑性成形的原理是基于金属的塑性变形规律,即在外力作用下,金属材料会发生形状和尺寸的变化。
02在金属塑性成形过程中,材料的变形受到应力状态、变形温度、变形速度等因素的影响。
02金属塑性成形工艺自由锻工艺自由锻是利用冲击力或静压力使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。
定义特点流程应用自由锻具有较大的灵活性,可以生产形状各异的锻件,但生产效率较低,适用于单件或小批量生产。
自由锻的流程包括坯料准备、加热、变形和锻后冷却。
自由锻主要用于大型锻件和难变形材料的加工,如轴、轮毂、法兰等。
模锻工艺模锻是利用模具使金属坯料变形,并施加外力将其锻造成所需形状和尺寸的锻造方法。
定义模锻具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具制造成本较高。
特点模锻的流程包括坯料准备、加热、放入模具、变形、锻后冷却和修整。
流程模锻广泛应用于中小型锻件的生产,如齿轮、轴套、法兰等。
应用板料冲压工艺板料冲压是利用冲压机将金属板料变形,并施加外力将其冲制成所需形状和尺寸的加工方法。
定义板料冲压具有较高的生产效率,且能获得较为精确的形状和尺寸,但模具对材料的厚度和硬度有一定要求。
金属塑性成形PPT课件
(Mg、Zn、Cd、α-Ti)
3.2塑性成 形机理
滑移
3 金属塑性 成形
滑移带 500倍
26
3.2塑性成 形机理 滑移
3 金属塑性 成形
27
3.2塑性成 形机理 滑
移
3 金属塑性 成形
28
3.2塑性成 形机理 滑移
3 金属塑性 成形
辊锻,楔横轧, 辗环,辊弯
7
3.1塑性成 形概述
塑性成形类型
3 金属塑性 成形
8
3.1塑性成 形概述
3 金属塑性 成形
体积成形
体积成形主要是指那些利用锻压设备和工、模具 ,对金属坯料(块料)进行体积重新分配的塑性 变形,得到所需形状、尺寸及性能的制件。
主要包括锻造(Forging)和挤压(Extrusion )两大类。
日 常 用 品
3
汽 车 覆 盖 件
飞
冲压成形产品示例—— 高科技产品
机 蒙 皮
4
5
6
3.1塑性成 形概述
3 金属塑性 成形
锻压3塑(性Met成al 形for分gin类g and stamping)
1.体积成形 (Bulk Metal Forming):
1.1 锻造 (Forging)
1.1.1自由锻造 1.1.2模锻
用伸长率δ、断面收缩率ψ表示:
δ= (L1-L0)/ L0 ×100% ψ=( S0-S1)/S0×100%
22
3.2塑性成
3 金属塑性
形机理
成形
2.金属塑性变形的实质
金 体—属——原—子显微组织——晶 典型晶格结构:
金属塑性成形原理金属塑性变形的物理基础PPT课件
• 较强相体积分数高于70%,该相变为基体相
第45页/共97页
弥散型两相合金的塑性变形
当第二相以细小弥散的微粒均匀分布于基体相
中时,将产生显著的硬化现象
•
沉淀强化(时效强化):第二相微粒是通过对过饱和固溶体的时效处理而沉淀析出并产生强化
•
相协调。
第39页/共97页
二、塑性成形的特点
❖
❖
❖
受晶界和晶粒位向的影响较大
多晶体塑性变形的抗力比单晶体高;
多晶体内晶粒越细,晶界总面积就越大,金属强度越高,塑性越好。
多晶体变形不均匀性
晶粒受位向和晶界的约束,变形先后不一致,导致变形不均匀。
由于变形不均匀,晶粒内部和晶粒之间存在不同的内应力,变形结束后不会
交滑移
• 对于螺型位错,所有包含位错线的晶面都可能成为滑移面。
• 交滑移:螺形位错的柏氏矢量具有一定的灵活性,当滑移受阻是,可离开原滑移
面而沿另一晶面继续移动
• 双交滑移:发生交滑移的位错,滑移再次受阻,而转到与第一次的滑移面平行的
的晶面继续滑移
• 刃型位错不可能产生交滑移
第31页/共97页
位错塞积
原子能量随位置的变化为一余弦函数。
❖ 通过计算晶体的临界剪切应力,并与实际的临界
剪切应力进行比较,人们发现,理论计算的剪切
强度比实验所得到的剪切强度要高一千倍以论
为了解释这种理论值和实际值的差别,1934年泰
勒()、奥罗万(E.Orowan)、和波兰伊
(M.Polanyi)几乎在同一时间内,分别提出了位
当退火状态的低碳钢试样拉伸到超过屈服点发生少量塑性变形
金属的超塑性变形PPT课件
目 录
• 引言 • 金属的超塑性变形概述 • 金属的超塑性变形机理 • 超塑性变形工艺 • 超塑性变形的影响因素 • 超塑性变形的应用实例 • 未来展望与研究方向
引言
01
主题简介
金属的超塑性变形是一种特殊的 材料行为,指金属在特定条件下
展现出极高的塑性变形能力。
这种能力使得金属在变形过程中 不会引发断裂或过多的能量耗散。
超塑性变形在金属加工、制造和 材料科学等领域具有广泛的应用
前景。
目的和意义
了解超塑性变形的原理和机制,有助于更好地应用这种材料行为,优化金属制品的 性能。
研究超塑性变形有助于推动材料科学的发展,为新材料的研发和应用提供理论支持。
通过深入探讨超塑性变形的机理,可以揭示金属材料的内在特性,为金属加工和制 造提供新的思路和方法。
织结构和性能。
应用
广泛应用于钛合金、铝合金、镁 合金等轻质合金的加工和性能优
化。
超塑性变形的影响因
05
素
材料成分与组织
材料成分
超塑性变形的性能与金属材料的成分密切相关。例如,某些合金元素可以提高超 塑性变形的稳定性和延伸率。
组织结构
材料的微观组织结构对超塑性变形行为具有显著影响。细晶、孪晶、相变等结构 特征可以增强超塑性变形能力。
应力状态的影响
超塑性变形通常在较低的应力状态下进行,这有助于材料在变形过程中保持较 好的延展性。
温度的影响
超塑性变形的温度范围通常较高,这有助于原子扩散和晶界滑移等过程,从而 促进材料的塑性变形。
超塑性变形工艺
04
热超塑性变形
定义
热超塑性变形是一种在高温下进行的塑性变形过程,金属 在特定的温度范围内表现出良好的延展性和低流变应力, 从而能够实现大塑性变形而不破裂。
《金属塑性成形方法》课件
目录
CONTENTS
• 金属塑性成形方法简介 • 金属塑性成形的基本原理 • 金属塑性成形的主要方法 • 金属塑性成形的质量控制 • 金属塑性成形技术的发展趋势
01 金属塑性成形方法简介
CHAPTER
金属塑性成形的基本概念
金属塑性成形是一种通过施加外 力使金属材料发生塑性变形,从 而获得所需形状和性能的加工方
大型金属件和复杂形状的金属件制造,如轴、齿轮、连杆等。
模型锻造
要点一
总结词
通过将金属坯料放置在模具中,在高温和高压下使其发生 塑性变形,从而获得所需形状和尺寸的金属件。
要点二
详细描述
模型锻造是一种常见的金属塑性成形方法,通过将金属坯 料放置在模具中,在高温和高压下使其发生塑性变形,从 而获得所需形状和尺寸的金属件。模型锻造过程中,金属 坯料在高温和高压下发生变形,内部晶粒结构发生变化, 从而提高了金属的力学性能。模型锻造适用于中小型金属 件制造,如齿轮、轴承、气瓶等。
过程稳定可控。
在线检测
采用先进的在线检测技术,对成形 过程中的产品进行实时检测,及时 发现并处理问题。
成品检测
对成形后的产品进行全面的检测, 包括尺寸、外观、性能等,确保产 品质量符合要求。
05 金属塑性成形技术的发展趋势
CHAPTER
高性能金属材料的开发与应用
高强度钢
通过合金化、热处理等手段提高 钢材的强度和韧性,用于制造轻
流动法则与加工硬化
流动法则是描述金属在塑性成形过程中应力的分布规律。加工硬化是指 在塑性成形过程中,随着变形的进行,材料的强度和硬度逐渐提高的现 象。
金属塑性变形的工艺基础
塑性成形的基本方法
金属塑性成形课件
液压成形可以提高锻件精度、降低成本、减少模具制造时间,适用于生产大型、 复杂形状的锻件。但需要使用专门的液压设备和液态介质,成本较高。
粉末冶金
粉末冶金基本工艺
粉末冶金是将金属粉末作为原料,通过压制、烧结等工艺制 成具有一定形状和性能的制品。
粉末冶金特点
粉末冶金可以生产出高精度、高密度、高性能的制品,适用 于生产复杂形状的零件。但生产周期长、成本高,且对于大 型零件来说存在一定的局限性。
制品翘曲
优化坯料加热和模具设计,改善制品冷 却条件,减少翘曲变形。
工艺优化与改进方法
优化工艺参数
引进新工艺
通过试验和模拟等方法,确定最佳的工艺参 数组合,提高产品质量和生产效率。
积极推广新工艺,提高生产效率和产品质量 ,降低生产成本。
自动化与智能化
持续改进
引入自动化和智能化设备,提高生产过程的 稳定性和效率,降低人为因素对产品质量的 影响。
03
针对不同的产品要求,灵活调整工艺参数
模具设计
1
根据产品要求和工艺方案,进行模具设计计算
2
确定模具的结构形式、材料、尺寸和精度要求 等
3
对模具进行强度、刚度和稳定性等方面的校核
计算机辅助工艺设计
01
利用计算机辅助工艺设计软件,进行工艺模拟和优化
02
根据模拟结果,对工艺方案、工艺参数和模具等进行调整和优
3
非晶合金材料
具有高强度、高硬度、耐磨、耐蚀等优点,是 制造精密部件的理想材料。
高精度与高效率成形技术
精密塑性成形技术
采用高精度模具、精确控制成形工艺参数等方法,使金属坯料达到高精度、 高化工艺流程、采用多工位成形、高速压制等手段,提高生产效率,降 低生产成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变的总量 锻造时:压下量 Δh=H-h
负面上,指向坐标轴负向; △负号(-):正面上,指向坐标轴负向;
负面上,指向坐标轴正向; 按此规定,正应力分量以拉为正。以压为负。 与材料力学中关于切应力分量正负号的规定不同。
8
材料力学中采用左螺旋定则判断切应力的方向 ,以后应力莫尔圆中会采用
左螺旋定则: 左手包住单元体,四个指 头指向切应力方向,大拇 指的方向代表正负。
6
◇应力分量下标的规定: △两个下标相同是正应力分量,如σxx △两个下标不同表示切应力分量,如τxy △ 第一个下标表示作用的平面,第二个下标表示
作用的方向
写成矩阵形式:
7
◇应力分量的符号规定: △正面:外法线指向坐标轴正向的微分面叫 做正面,反之称为负面。 △正号(+):正面上,指向坐标轴正向;
第三章 金属塑性变形的力学基础
第一节 应力分析 第二节 应变分析 第三节 平面问题和轴对称问题 第四节 屈服准则 第五节塑性变形时应力应变关系 第六节 真实应力—
1
第一节 应力分析
一、外力和应力 (一) 外力 ◇面力:作用在金属表面的力。如物体表
面的分布力、正压力和摩擦力等。 ◇体积力:作用在金属物体每个质点上的
4
5
(2) 多向受力下的应力分量
多向受力时,仅仅用某一方位切面上的应力还 不足以全面地表示出一点的受力情况,需引入 单元体和点的应力状态的概念。
◇单元体 设在直角坐标系oxyz 中有一承受任意力系的物 体,过物体内有任意点Q 总能找到三个互相垂直的 微分面组成无限小的平行 六面体,称为单元体。
△工程切应变:单位长度上的偏移量或 两棱边所夹直角的变化量,称为工程切 应变,也叫相对应变。
△ 切应变:工程切应变的一半也叫切应 变
32
33
△大变形l0到ln (l0 , l1 , l2 …ln ),可 以近似地看作是各个阶段相对应变之和, 即:
△上式反映了物体变形的实际情况,故称为 自然应变或对数应变。
37
38
39
Байду номын сангаас
40
41
42
43
44
45
(五)小应变几何方程
46
47
◇位移增量和应变增量 ◇位移增量:如果物体在变形过程中,
在一个极短的时间dt内,其质点产生极 小的位移变化量称为位移增量。 ◇应变速率张量:单位时间内的应变称
为应变速率,俗称变形速度,用 εij表示
48
(八)塑性加工中常用的变形量计算方法
34
△对数应变: 塑性变形过程中,在应 变主轴方向保持不变的情况下应变增 量的总和
△对数应变能真实地反映变形的积累 过程,所以也称真实应变,简称为真 应变。
35
36
(2) 对数应变为可叠加应变,而相对应 变为不可叠加应变。
(3) 对数应变为可比应变,相对应变为 不可比应变。拉伸和压缩数值悬殊大, 不具有可比性。
9
由于单元体处于静力平衡状态,故绕单 元体各轴的合力矩必须等于零,由此可 以导出切应力互等定理
故九个应力分量只有六个是独立的。 ,,
10
二、点的应力状态 ◇点的应力状态是指受力物体内一点任意
微分面上所受的应力情况。 ◇下面将证明若已知过互相垂直的微分面
上的九个应力分量,则可求出过该点任 意微分面上的应力分量该点的应力状态 完全被确定。
缩)时的拉伸(或压缩)应力σ1; 3) 等效应力并不代表某一实际平面上的应力
,因而不能在某一特定的平面上表示出来; 4) 等效应力可以理解为代表一点应力状态中
应力偏张量的综合作用。
26
(八) 应力莫尔圆 ◇ 莫尔(Mohr)在1914年提出来的。 ◇ 应力莫尔圆是点应力状态的几何表示法
若已知某点的一组应力分量或主应力, 就可以利用应力莫尔圆通过图解法来确定 该点任意方位平面上的正应力和切应力。
27
28
第二节 应变分析
(一) 位移和应变 ◇位移:变形体内任一点变形前后的直线
距离称位移。
图3-22 受力物体内一点的位移及其分量
29
30
◇ 应变及分量
△名义应变:又称相对应变或工程应变, 用来 表示变形的大小,可分正应变和切 应变。
图3-24 单元体在xoy坐标平面内的应变
31
△正应变:线元单位长度的变化叫做正 应变,一般用ε表示。
20
若σ1 >σ2 >σ3 ,则最大切应力为:
(3-24)
一般表示为:
τ max
12(max
min)
(3-25)
21
(六)应力偏张量和应力球张量 ◇变形分为:体积的改变和形状的改变 ◇单位体积的改变:
◇平均应力(静水应力):
22
(七) 八面体应力和等效应力 ◇八面体应力 八面体平面:正八面体的每个平面称
11
12
13
14
15
16
◇主应力图:
受力物体内一点的应力状态,可用作用在应力 单元体上的主应力来描述,只用主应力的个数 及符号来描述一点的应力状态的简图称为主应 力图
主应力图共9种(图3-10) 三向应力状态:4种;两向应力状态:3种; 单向应力状态:2种 根据主应力图,可定性比较某一种材料采用不
为八面体平面。 八面体平面上的应力称为八面体应力。
23
图3-15 八面体平面和八面体
24
◇等效应力
3
取八面体切应力绝对值的 2 倍所得之 参量称为等效应力,也称广义应力或应 力强度。
25
◇等效应力的特点:
σ1,σ2=σ3=0
1) 等效应力是一个不变量; 2) 等效应力在数值上等于单向均匀拉伸(或压
同的塑性成形工序,塑性和变形抗力的差异
17
(五) 主切应力和最大切应力 ◇主切应力平面
斜微分平面上的切应力达到极值的平面 叫主切应力平面。 ◇主切应力 主切应力平面上作用的切应力称为主切 应力。
18
19
◇最大切应力 三个主切应力中绝对值最大的一个,也
就是一点所有方位切面上切应力的最大 者,叫做最大切应力,用τmax表示。
力。如重力、磁力和惯性力等。
2
(二) 应力 (1) 单向受力下的应力及其分量
◇内力:在外力作用下,物体内各质点之间就会 产生相互作用的力,叫做内力。
◇ 应力:单位面积上的内力称为应力。
3
一点应力的定义:在C-C截面上围绕Q点 切取一很小的面积△F,设该面积上内力 的合力为△P,则定义S为截面C-C上Q 点的全应力。