2013中考压轴题选讲专题7:几何三大变换问题(排版+答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学压轴题分类解析

专题7:几何三大变换相关问题

授课老师:黄立宗

典型例题选讲:

例题1:(2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对

应点A′落在线段BC上,再打开得到折痕EF.

(1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长;

(2)观察图3和图4,设BA′=x,①当x的取值范围是时,四边形AEA′F是菱形;②在①的

条件下,利用图4证明四边形AEA′F是菱形.

例题2:(2012辽宁丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.(1)如图1,若AB=AC,AD=AE

①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示);

(2)如图2,若AB= BC=kAC,AD =ED=kAE

则线段BD与CE的数量关系为,∠BMC= (用α表示);

(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示).

例题3:(2012福建福州)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.

(1) 求抛物线的解析式;

(2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D 的坐标;

(3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB 的点P的坐标(点P、O、D分别与点N、O、B对应).

例题4:(2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。

(1)求该抛物线的解析式;

(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式;

(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线

OP与该抛物线交点的个数。

1、(2012黑龙江大庆)在直角坐标系中,C(2,3),C′(-4,3), C″(2,1),D(-4,1),A(0,a),B(a,O)( a 0).

(1)结合坐标系用坐标填空.

点C与C′关于点对称; 点C与C″关于点对称; 点C与D关于点对称(2)设点C关于点(4,2)的对称点是点P,若△PAB的面积等于5,求a值.

2、(2012辽宁阜新)(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.

①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;

②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.

(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.

甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;

乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;

丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.

3、(2012湖南怀化10分)如图1,四边形ABCD 是边长为23的正方形,长方形AEFG 的宽AE 72=,长EF 732

=.将长方形AEFG 绕点A 顺时针旋转15°得到长方形AMNH (如图2),这时BD 与MN 相交于点O . (1)求DOM ∠的度数;

(2)在图2中,求D 、N 两点间的距离;

(3)若把长方形AMNH 绕点A 再顺时针旋转15°得到长方形ARTZ,请问此时点B 在矩形ARTZ 的 内部、外部、还是边上?并说明理由.

图1

图2

4、(2012福建泉州14分)如图,点O 为坐标原点,直线l 绕着点A (0,2)旋转,与经过点C (0,1)的二次函数21y x h 4

=+交于不同的两点P 、Q. (1)求h 的值;

(2)通过操作、观察算出△POQ 面积的最小值(不必说理);

(3)过点P 、C 作直线,与x 轴交于点B ,试问:在直线l 的旋转过程中四边形AOBQ 是否为梯形,若是,请说明理由;若不是,请指明其形状.

5、(2012青海省12分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.

(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

备用图

直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN。

(1)当∠BAC=∠MBN=90°时,

①如图a,当θ=45°时,∠ANC的度数为_______;

②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;

(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明。

相关文档
最新文档